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Chapter 1

Introduction

In the years 1960-1962, Carl Adam Petri defined Petri nets which is a general purpose
mathematical model for describing relations existing between conditions and events. Petri
nets consist of two types of elements, places and transitions. Each place models a process
in terms of types of resources, and can hold arbitrary nonnegative multiplicity. Each
transition represents a state transition rule, i.e., how those resources are consumed or
produced by actions. They are described using the notion of multisets. A multiset over a
set P is a function, m : P — N [7], [10].

Linear Logic was discovered by J. Y. Girard in 1987 [3], [4], [13], [14]. Linear logic
(intuitionistic, classical and predicate) are obtained by deleting the contraction and the
weakening rules from standard sequent calculus formulations of corresponding logics. In
the Gentzen sequent calculus for intuitionistic logic, a sequent Ay, ---, A, — A is written
to mean that the formula A is deducible from the assumption formulas A;,---, A, (we
shall use capital Greek letters as an abbreviation for a sequence of formulas). The calculus
has the two structural rules for adding a vacant assumption and removing of a duplicate
of assumption.

I' = B
I'A— B

(weakening)

I''A,A— B .
T ASH (contractlon).

In the presence of these rules the following two right introduction rules for conjunction

I''A—AANB ,

' = AAB

become interderivable in the sense that the first rule can be derived from the second by
weakening, and the second from the first by contraction. In linear intuitionistic logic these
rules (weakening and contraction) are deleted and the rule of (1) and (2) are no longer
interderivable. Without them, propositions cannot be introduced arbitrarily into a list of



assumption and a duplication in the list cannot be removed. It is in this sense that linear
logic is a resource conscious logic.

The connection between linear logic and Petri nets has recently been the subject of
great interest [2], [5], [6]. Girard’s linear logic has a great deal of interest in how might be
useful in the theory of parallelism. The places are like atomic propositions in linear logic
and transitions like provability relation. Girard’s phase semantics for linear logic in [3] uses
quantales [1], [9], [11], [12], [15], and Engberg and Winskel [2] showed a straightforward
way in which a Petri net induces a quantale and so becomes a model for intuitionistic
linear logic. But they did not prove a completeness theorem for models induced by Petri
nets.

In this thesis, we prove completeness for quantales generated by Petri nets. To prove
completeness the quantales used in [2] do not work. Although the following proof shows
that

(ANB)V(ANC)— AN(BV Q)

is derivable in intuitionistic linear logic,

M(Hv) &(_)\/)
ANC — A A/\B—>B\/C’(H/\) ANC — A A/\C’—>B\/C(_>/\)
ANB — AN(BVC) ANC = AN(BVC) (v =)
_
(ANB)V(ANC)— AN(BVC)

we cannot prove the sequent
AN(BVC)—= (AANB)V(ANC).

That is, the distributivity of A and V does not hold in intuitionistic linear logic. In the
quantale given in [2], the distributivity is always valid. Therefore, if we want to prove
completeness using the quantales of [2], then we have to add the distributivity to intu-
itionistic linear logic. However this is not what we intend to do. We construct quantales
in which the distributivity is not always valid, and prove completeness. We can also prove
completeness of intuitionistic linear logic with a modal operator for quantales by using
similar construction.

In Chapter 2, we overview Petri nets and algebraic structures [8]. We introduce alge-
bras including quantales, and closure operations on the algebras which play a crucial role
in the proof of completeness.

In Chapter 3, we discuss intuitionistic linear logic (its syntax and semantics) and then
prove soundness theorem for quantales generated by Petri nets. Next we show why we
cannot prove completeness in the quantales used in [2], and then prove completeness using
the quantale based on our construction.

In Chapter 4, we discuss a modal operator of course !. The absence of the rules for
weakening and contraction is compensated, to some extent, by the addition of the modal



operator !. We consider a semantics with the modal operator using similar construction,
and then prove completeness of intuitionistic linear logic with the modal operator for
quantales generated by Petri nets.

In Chapter 5, we consider classical quantales for classical linear logic generated by
Petri nets.



Chapter 2

Petri Nets and Algebraic Structures

In this chapter, we will discuss Petri nets and algebras including quantales, and introduce
closure operations on the algebras.

2.1 Basic Structures

2.1.1 Multisets

Definition 2.1.1 (multiset) 1. Multiset over a set P is a mapping f : P — N,
where f(a) = n means that a occurs with multiplicity n,

2. operation + on multisets is defined by (m 4+ m')(a) = m(a) + m/(a) for all a € P,

3. 0 is the empty multiset.

Example 2.1.2 We shall denote the set of all finite multisets by M. We shall use {---}
for a set and - - - for a multiset. Let a and b be elements of P, then

e {a}, {b}, {a,b}, - -- are sets and
{a} = {a,a} and {a} U {a, b} = {a, b},

® a, b, a,b, --- are multisets and

a#a,aand a+a,b=a,a,b.

2.1.2 Ordered Structures and Monoids

Definition 2.1.3 (monoid) A structure M = (X, e) is a monoid with the identity e
if - is a binary operation on X and e is an element of X such that for every a,b,c € X,

l.a-(b-¢)=(a-b)- ¢,



Remark 2.1.4 When the structure satisfies only Definition 2.1.3 1., it is called a semigroup.

Definition 2.1.5 (commutative monoid) A structure M = (X, -, e} is a commutative monoid
with the identity e if

1. (X,-,e)is a monoid,
2. a-b=20b-a for every a,b € X.
Proposition 2.1.6 A structure M = (M, +,0) is a commutative monoid.

Definition 2.1.7 (preordered set) A structure X = (X, <) is a preordered set if, < is
a binary relation on X such that for every z,y,2z € X,
1.z <=z

—= Y

2. 2<y, y<z—z <2

Definition 2.1.8 (preordered commutative monoid) A structure X = (X, <,-, e) is
a preordered commutative monoid if,

1. (X,-,e)is a commutative monoid,
2. (X, <) is a preordered set,

oe<zy<y=uw-y<a o forevery z,2',y,y € X.

2.1.3 Lattices

Definition 2.1.9 (infimum & supremum) Let X be a partially ordered set. Then an
element a of X is said to be a lower bound (upper bound) of a subset F of X if a < z
(z < a) for every z in E (respectively). Let E, (E*) be the set of all lower bounds (upper
bounds) of E in X (respectively).

1. If it happens that the set F, contains a greatest element a (necessarily unique), then
a is called the in fimum of E;denoted by inf E.

2. If it happens that the set E* contains a least element a (necessarily unique), then a
is called the supremum of E;denoted by sup E.

T and L are defined as follows:
e T is the grestest element,

o | is the least element.

Definition 2.1.10 (lattice) A structure L = (L,U,N) is a lattice if, U,N are binary
operations on L such that for every a,b,c € L,



l.aUa=a,aNa=a,

o

aU(bUc)=(aUb)Uc,an(bnec)=(anbd)Nec,
3.aUb=bUa,anNb=>0Na,
4. aU(anNb)=a,an(aUb) = a.

Definition 2.1.11 (complete lattice) A structure L = (L, U) is a complete lattice if U
is a mapping of P(X) into X such that

1. y<UY forally €Y,
2. ify < zforall y €Y, then UY < z.
That is, UY is the supremum of Y.
Remark 2.1.12 We can define a mapping N the infimum of P(X) into X by
NY :=U{z|z <y for all y< Y}
In a complete lattice (X, U), the maxumum and the minimum element exist: in fact
T:=UX, L:=nX.
aUb and aNb denote U{a,b} and N{a, b}, respectively.
Remark 2.1.13 A lattice does not satisfy the distributivity of U and N in general, i.e.
e (anb)U(anc)<an(bUec),
e (aUb)N(aUc) <aU(bNe).

Example 2.1.14 For a given set U, a structure P(U) = (P(U),U,N) forms a complete
lattice, where U and N are usual set union and intersection.

2.2 Petri nets

Definition 2.2.1 (Petri net) A Petri net N is a quadruple (P,T,*(—), (—)*) such that
1. P is a set (of places),
2. T is a set (of transitions),

3. *(=),(—)* are mapping of T into M, for t € T', *(¢t) and (t)* are called pre multiset
and post multiset of ¢ respectively.

Definition 2.2.2 (reachability relation) Let N = (P,7,°(—),(—)°*) be a Petri net.
Then we define a relation— on M called the reachability relation of N as follows:
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1. Fort € T, let [t) be a relation on M defined by
mt)y m" & Im"eM. m=m"+t
and t*+m" =m'.
2. Then we define > by

m>m s dty,te,- -,y €T,
my, Ma, -+, My € M,n > 0.
m [t1> mq [t2> mo [t3>
[tn) My =m/'.

Proposition 2.2.3 A structure My = (M, >, +,0) is a preordered commutative monoid.

Proof. In fact, we can show that a structure defined as above satisfies the conditions of
Definition 2.1.8,for every m,m’,m"” € M,

L. m+(m+m")=m+m)+m”,

2. m+0=0+m=m,

3. m+m=m' +m,

4. a structure (M, ) holds Definition 2.1.7 since

(a) m > m,
(b) if m > m' and m' > m", then m > m",

b.ife > ,y>y thenax+y =2’ + .

2.3 IL-algebras and Quantales

2.3.1 IL-algebras

Definition 2.3.1 (IL-algebra) [8] A structure A = (A,=,U,N,e, 1, T, 1) is an IL-
algebra if

1. (A,U,N, T, 1) is a lattice with the greatest element T and the least element L for
which T = 1 — 1 holds

2. (A e, 1) is a commutative monoid,
3. ze(zUy)ew=(zezew)U(zeyew) for every z,y,z,w € A,

4. zoy<z& x<y= zforevery z,y,z € A.



Definition 2.3.2 (complete IL-algebra) A structure A =(A,=,U,N, e, 1)isacomplete
[L-algebra if

1. (A,U,N) is a complete lattice,
2. (A,e,1) is a commutative monoid,
3. (Uz;) ey =U(z; e y) for every z;,y € A,

4. zey< z& x <y= zforevery x,y,z € A.

Proposition 2.3.3 Let M = (M, -, e) be a commutative monoid with the identity e, and
for each X, Y C M, define sets X oY and Y = Z of M by

1. XeoY ={z -ylz e X,y e Y},
22Y=>Z:={zeMVyeY(z-ye Z)}.

Then the structure

P(M) = <P(M)7 =,U,N,e, {e}>
15 a complete IL-algebra.
Proof. 1. Definition 2.3.1 1 and 2 are trivial.
2. We show that (UX;)eY = (X, eY).
(=). Let z € (UX;)eoY. Then Jy € UX,;, 32 € Y (¢ = y e z). Therefore

di ye X;,andsoz € X;0Y CU(X;0Y).
(<). Let X; CUX;. Then X; oY C (UX;)eY. Therefore U;(X;0Y) C (UX;)eY.

3. Weshowthat X eY CZ & X CY = Z.
(=). Ifz e X. ThenVy €Y (z-y € XoY). Therefore z-y € Z,andsoz € Y = 2.

(«<). Foreveryz € X and y € Y, X CY = Z. Therefore z -y € Z, and hence
XeY C Z.

2.3.2 Quantales

Definition 2.3.4 (commutative quantale) [11] [12] [15] A structure Q = (Q,U, e, 1)
is a commutative quantale if

1. {Q,U) is a complete lattice,

2. (@, e,1) is a commutative monoid,

3. (Uzi) ey =U(z; 0 y) for every z;,y € Q.



Remark 2.3.5 Define a binary operation on Q by

y=z:=|JH{z|lzrey <z}
Then 2 <y= zifand only if z ey < 2.

Proposition 2.3.6 Let M = (M, -, e) be a commutative monoid with the identity e, and
for each X, Y C M, define a subset X oY of M by

XeY :={z-ylze X,yeY}.

Then the structure

P(M) = (P(M),U,e,{e})
18 a commutative quantale.
Proof. 1. Definition 2.3.4 1. and 2. are trivial.
2. We show that (UX;)eY =U(X,;eY).
(=). Let z € (UX;)eY. Then dy € UX;, 32 € Y (z = y e z). Therefore

di ye€ X;,andsox € X;0Y CU(X;0Y).
(<). Let X; CUX;. Then X;e0Y C (U X;)eY. Therefore U,;(X;0Y) C (UX;)oY.

Remark 2.3.7
Y=2=J{X|XeYCZ}={asecMVyeY(z-ye 2)}.

Remark 2.3.8 It is easy to show that a complete IL-algebra is just a commutative quan-
tale, in which y = 2 is defined by

y=z:=|J{z|lzr ey <z}

Proposition 2.3.9 A structure is a complete IL-algebra if and only if it is a commutative
quantale.

Proof. ( = ). is trivial.
( < ). Define y = z := U{z|z e y < z}. Then we show that commutative quantale is
always complete IL-algebra.

1. Definition 2.3.1 1., 2. and 3. are trivial.

2. Weshow that rey<:eo x<y= 2.

Let y = z:= U{ujuey < z}.



(=). fzey <z then z € {u|luey < z}, and hence z < y = 2.

(«). fz <y =z, then
rey<(y=z)ey = (U{u|u0y§z})oy
= U{uoy|uoy§z}§z7

and hence z o y < 2.

Corollary 2.3.10 A structure P(My) = (P(M),U, e, {0}) is a commutative quantale,
where X oY = {m +m/lm € X,m' e Y}.
2.3.3 Closure Operations on Quantales

Definition 2.3.11 (closure operation) An operation C' on a commutative quantale Q
= (Q,U,e,1) is a closure operation on @ if

1. z < Cr,

2. <y=Czx<C(Cy,
3. CCz < C,

4. CrxeCy < C(zey).

An element z of @ is C-closed if x = Cz holds. C(Q) denotes the set of all C-closed

elements of Q.

Proposition 2.3.12 IfC is a closure operation on a commutative quantale Q= (Q,U, o, 1),
then

C(Q) = (€(Q),Uc, 90, C1)

15 also a commutative quantale, where Ug and ec are defined by
1. chi = C(ULUi),
2. zecy:=C(zey).

Proof. We show that a structure C(Q) = (C(Q),Uc, 8¢, C1) defined as above holds
Definition 2.3.4.

1. {C(Q),Uc) is a complete lattice.
First we show that if a,b € C(Q), then anNb € C(Q),aUc b € C(Q),a = b €
C(Q), T €C(Q)and CL € C(Q).

(a) If and < a, then C(anNb) < Ca=a. Ifanbd<b, then Cland) < Cb=b.
Therefore C(anNb) <anb< C(and),and soand e C(Q).
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(b) C(aUcb) =C(C(aUb)) =C(aUb)=aUgb. Therefore a Uc b € C(Q).

(c) Cla=b)ea=C(a=b)eCa< C((a="0b)ea)=">. Therefore C(a = b) <
a=b<C(a=b),and soa=be CQ).

(d) TeC(Q)since CTLSTLCT.

(e) Since Va € @ (L < a), by definition CL < Ca = a.

Next we show that a structure (C(Q),Uc) is a lattice and holds Definition 2.1.11.
It is enough to prove for Ue.

(a) ForaUca=a,aUca=C(aUa)=Ca=a.

(b) For aUc(bUcc) = (aUcb)Ucc, aUc(bUcc) = C(aUC(bUc)) = C(CaUC(bUc))
< C(C(aU(bUc)))=C(aU(bUc))
< C(aUC(bUc)) =aUg (bUg ¢). Therefore aUc (bUg ¢) = ClaU (bUc)) =
C({aUb)Uc) =(aUgb)Ug c.

(c) ForaUgb=bUga,aUcb=C(aUb)=C(bUa)=>bU¢ a.

(d) ForanN(aUgb) =a,a>an(aUcb) =anC(aUb) >an(aUb)=a. For
aUcg(anNbd)=a,aUc(anb)=C(aU(anb)) =C(a) = a.

2. (C(Q),ec,C1) is a commutative monoid.
First we show that C(Cz e Cy) = C(xz e y).
By definition z e y < Cz o C'y, and hence C(z o y) < C(Cx o Cy). Therefore
C(CzeCy) < C(C(zey)) =C(zey), and so C(Cx e Cy) = C(x o y). We show
that a structure (C(Q), 8¢, C'1) holds Definition 2.1.3.
For every a,b,c € C(Q),

(a) Foraec(becc) = (aecb)ecc,aec(becc)=C(aeC(bec))=C(CaeC(bec))
=C(ae(bec))=C((aeb)ec)=C(C(aeb)eCc)
=(C(C(aeb)ec)=(aecb)ecec.

(b) Foraecb="beca,aecb=C(aeb)=C(bea)=">eca.

(c) Foraec Cl=Cleca=Ca,Clegca=C(Clea)=C(Cle(Ca)
=C(lea)=C(a)=a.

3. (UcS)ecb = C(C(US)eb) = C(C(US)eC) = C(USeb) =C(|J(aeb) =

acsS
C(lJ C(aeb)) = | c(aecb). Therefore for every S C C(Q) and a € S, (Up S) oc
acs acs
b= Uc(a [ Yol b)

4. (=). aeb=CaeCb< (C(aeb)=aecb<c,and hence a < b= c.
(<). If a <b= ¢, then aeb < ¢. Therefore aecb = C(aeb) < C(c) = ¢, and hence
a ¢ b < c. Therefore for every a,b,c € C(A), aecb <cifand only if a < b = c.
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Proposition 2.3.13 Let M = (M, <,-,e) be a preordered commutative monoid and de-
fine an operation | on P(M) by

1 X ={yeMFzeX (y<uz)}.
Then | is a closure operation on the commutative quantale P(M) = (P(M),U, e, {e}).

Definition 2.3.14 Let M = (M, <, -, e) be a preordered commutative monoid and define
an operation C; on P(M) by
ClX Z:l X.

Definition 2.3.15 Let M = (M, <, -, e) be an preordered commutative monoid and de-
fine two operations — and < on P(M) by

X7 :={ye M|Vz € X(z < y)},

X7 ={ye MVz € X(y <x)},
and let
CoX = (X7)".
Proposition 2.3.16 C; is a closure operation on the commutative quantale P(M) =
(P(M),U,0,{e}).
Proof. We show that a function C defined as above holds Definition 2.3.11.

1. If z € X, then # < z, and hence Jy € X (z < y). Therefore z € C1 X, and so
X C O X.

2. If 2 € C1X, then 3z € X (2 < z),and since X CY,s03z €Y (z < z). Therefore
z € (1Y, and hence C1 X C (Y.

3. If x € C1C1 X, then Jy € C1 X (x < y) and 32 € X (y < 2). Therefore z < 2, so
x < (71X, and hence C1C1 X C (1 X.

4. We show that if z € C1 X,y € C1Y, then z xy € C1(X oY). Since z € (1 X,
dz' € X (z < 2'). Sincey € C1Y, Fy €Y (y <¢). By definition z xy < 2’ % ¢/,
sozxy€ XY, o'xTy € X oY (zxy <2'xy). Therefore zxy € C1(X oY),
and hence C1 X o C1Y C Cy(X oY).

Proposition 2.3.17 Cy is a closure operation on the commutative quantale P(M) =

(P(M),U,e,{e}).
Proof. We show that a function C defined as above holds Definition 2.3.11.

1. If z € X, then Vy € X7 (¢ < y). Therefore z € (X7)” = (32X, and hence
X C 0yX.

12



22For X CY =Y~ C X~---(1),if z € Y7, then Vy € Y (y < z). Therefore
Ve € X (z <z),and hence z € X.
For X CY =Y~ C X“---(2),if 2 € Y7, then Vy € Y (¢ < y). Therefore
Ve e X (z<x),and hence z¢€ X*.
By (1) and (2),if X C Y, then Y~ C X . Therefore (X—~)~ C (Y ), and hence
Co X C LY.

3. By 1. X C(X7),and by 2. ((X7)7)” = (CoX)” C X~ ---(1).
If £ € X, then by definition Vy € (X7)~ (y < ). Therefore z € ((X~)7)~, and
hence X~ C ((X7)7)™ = (CoX) ™ ---(2).
By (1) and (2) ((X7)7)7 = (C2X)~” = X 7. Therefore C2C2X = ((C2X)7)~ C
(X7)™ = (X, and since (C2X )~ = X 7 ,then C2C12X = CoX.

4. We show that if z € Co X,y € CoY, then z xy € C2(X o Y').
Suppose z € (X ¢Y ). Then Vu € X, Yv € Y (uxv < z), and hence v < v —
z (Vu € X).
Since u € X is arbitrary,sov — z € X (Vv € Y). Thereforez <v — z (Vv €Y),
sovkz=z*xv<z (VweY), and hencev<z — 2z (Vv eY).
Since v € Y is arbitrary,sox — 2z € Y7, and hence y < x — 2z,s0 xxy = y*xx < z.
Therefore z xy € ((X ¢ Y) ), and hence CoX o CbY C Cy(X o Y).

Remark 2.3.18 (' is used in [2]. In the commutative quantales constructed from Petri
nets using (', since (' closed sets are downwards closed,

IlmClm &mc>m.

Therefore C'; adequates for the reachability relation of Petri nets. Also (5 closed sets are
downwards closed, hence it adequates for the reachability relation.

Lemma 2.3.19

Co({z}) ={y | y < z}.

Proof. o (=). If m € Cy({A}), and since < is reflexive, then A € {A}~, and hence
m< A
¢ (<). Suppose m < A. If m' € A7, then A < m'. Since < is transitive, then

).
m < m', and hence m € ({A} )" = C2({A4}).

2.3.4 Modal-Operators
Definition 2.3.20 A structure Q = (Q,U,e,! 1) is a modal quantale if

e (Q,U,e 1) is a quantale,

e ! is a unary operation on @) such that

13



1. la < a,

2. 11 =1,

3. la <!a,

4. (aNb) =laelb.

Lemma 2.3.21 In every modal quantale, the following holds:
1. la <1,

2. la <laela,

o

. laelb <!(lae!d),
4. a <b='la<lb.

We remark here that, in every quantale, condition 4. in Definition 2.3.20 is equivalent to
the conjunction of 1., 2., 3. and 4., under the assumptions 1. to 3. of Definition 2.3.20.

Definition 2.3.22 A modal classical quantale is a classical quantale with additional
unary operation ? satisfying:

1. {a —b) <?a —7b,
2. a <?a,
3. 70=0,
4. 77a <?a,
5. 0 <7?a.
Lemma 2.3.23 In every modal classical quantale, the following holds:
1. a <b=%a <70,

2. laxb<7c=lax?b <7c.

2.4 CL-algebras and Classical Quantales

2.4.1 CL-algebras

Definition 2.4.1 (complete CL-algebra) A structure A = (A,=,U,N,e,1,0) is a
complete CL-algebra if

1. {A,U,N) is a complete lattice,

2. (A,e,1) is a commutative monoid,
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3. (Uz;) ey = U(z; o y) for every z;,y € A,
4. zoy< z& x<y= zforevery z,y,z € A,
5. ~m~vz=x(~z =2 = 0).

Definition 2.4.2 Let A = (A,=,U,N,e,1,) be a complete IL-algebra. For an element
0 € A, we will define K below:

Kz:=(z=0)=0.

Proposition 2.4.3 A given complete IL-algebra A = (A,=,U,N,e,1), a mapping K
from A to A is a closure operation on A.

Proof. For a given IL-algebra A = (A,=,U,N, e, 1), a mapping K from A to A is a
closure operation on A if

1. z < Kz,
2. x <y= Kz < Ky,
3. KKz < Kz,
4. Kz e Ky < K(z e y).
Let f(z):=Kz (= (2= 0)= 0).
1. We show z < f(z).

Since ¢ = 0 <z = 0 then (z = 0) e 2 < 0.

Terefore z @ (x = 0) < 0 and hence z < (z = 0) = 0.
2. Weshow z <y = f(z) < f(y).
Since y = 0 <y = 0 then (y = 0) ey < 0.
Therefore (y = 0) @ z < 0 and hence
y=0<z=0---(1).
Since (z = 0) = 0 < (z = 0) = 0 then
((z=0)=0)e(z=10) <0,
and hence ((z = 0) = 0) e (y = 0) < 0 by (1).
3. We show f(f(z)) = f(x).
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Since f(z) = 0 < f(x) = 0 then
(f(z) = 0) e fz) <0.
Therefore (f(z) = 0) @ z < 0 and hence
fz)=0<z=0---(1).
Since x = 0 < f(z = 0) by 1. and
fle=0))=((z=0=0)=0=f(z)=0

then
r=0< f(z)=0---(2).

By (1) and (2), z = 0 = f(z) = 0, and hence
f(f(z)) = (f(z) = 0)= 0= (z=0)= 0= f(z)
4. We show f(z) e f(y) < f(z ey).
Since (a = b)e (b= c)ea<cthena=b< (b=c¢)= (a=c¢).

T Y — TkY

((zxy) = 0) = (y = 0)
(y=0)=0) = ((z*xy) = 0) =0

fly) = flz*y).

Thus z e f(y) < f(zey) then f(zx f(y)) < f(z *y).

VANRVAN VAN

Therefore f(z) e f(y) < f(z o f(y)) and hence
f(z) e fy) < flzoy)
Proposition 2.4.4 Let A= (A, =,U,N,e,1) be a complete IL-algebra. Then
K(A)=(K(A),=,Ug,N, 0k, K1)
15 a complete CL-algebra, where Ui and ex are defined by
1. 2 Ugy:= K(zUy) (Ugz,; == K(Uz;)),
2. zey:=K(zey).

Proof. We have that for a given complete IL-algebra A = (A,=,U,N, e, 1), a mapping
K from A to A is a closure operation on A. Therefor K(A) = (K(A),=,Ug, N, ex, K1)
is a complete [L-algebra, and so Definition 2.4.1 from 1. to 4. are trivial. For 5. ~~ 2 =
z (~z:=xz=0), weshow Kz =2 (i.e. (x=0)= 0=1z), hence KO =10 (i.e. (0=
0)=0=0).
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1. (<). 0< (0= 0)= 0is trivial.
2. (=). Since 1e1 < 0= 0 then
1<1=(0=0<({(0=0)=0)=(1=0),

and hence
(0=0)=0<1=0=(1=0)el1<0.

Therefore (0 = 0) = 0 < 0.

2.4.2 Classical Quantales

Definition 2.4.5 A structure Q = (Q,U, e, 1) is a commutative classical quantale if
1. (Q,VU) is a complete lattice,
2. (Q,e,1) is a commutative monoid,
3. (Uz) ey =U(z;0y),
4. ~vz =z (~z =z =0).
Remark 2.4.6 Define a binary operation on Q by
y=z:=|JH{z|lrey <z}
Then z <y = zifand onlyif z ey < 2.

Remark 2.4.7 It is easy to show that a complete CL-algebra is just a commutative
classical quantale, in which y = 2 is defined by

y=z:=|J{z|lrey <z}

Proposition 2.4.8 A structure is a complete CL-algebra if and only if it is a commutative
classical quantale.

Proof. ( = ). is trivial.
(< ). Define y = 2z := U{z|r @y < z}. Then we show that commutative quantale is
always complete IL-algebra.

1. Definition 2.3.1 1., 2. and 3. are trivial.

2. Weshow that zey <z <y= 2.

Let y = 2z := U{ulueoy < 2}.
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(=). fzey <z then z € {u|luey < z}, and hence z < y = 2.

(«). fz <y =z, then

rey<(y=z)ey = (U{u|u0y§z})oy
= Huoyluey <z} <z

and hence z o y < 2.

18



Chapter 3

Intuitionistic Linear Logic

In this chapter, we will discuss intuitionistic linear logic (its syntax and semantics) and
then will prove soundness theorem for quantales generated by Petri nets. And then we
will show how to prove completeness using the quantale based on our construction.

3.1 Syntax

3.1.1 Formulas

The language of intuitionistic linear logic (ILL) has an alphabet consisting of
1. propositional variables : a, b, ¢, ...,
2. propositional constants : 1,T, L,
3. connectives : *,V, A, D,
4. auxiliary symbols : ( , ).
The connectives carry traditional names:
e x : conjunction (times),
e \ : disjunction (or),
e A : conjunction (and).
Formulas are inductively defined by
1. The propositional variables and constants are formulas,
2. if A and B are formulas, then Ax B;AV B,AA B and A D B are formulas.

We shall use A = B as an abbreviation, for (4 D B) A (B D A), and denote the set of all
formulas by &.
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3.1.2 Sequents

A sequent of ILL is an expression of the form
-0,

where I is a finite sequence of formulas and 6 is a formula. Both I and 6 may be empty. In
the sequel, capital Greek letters will denote finite (possibly empty) sequences of formulas.

3.1.3 Axioms (initial sequents) and Rules

Definition 3.1.1 (axioms and rules of inference of ILL) The axioms of ILL are the
instances of the four axiom-schemes:

rNLi1,A— A
The rules of inference of ILL are the following structural rules:

LA— A .
T1ASA (1 - weakening)
I''A,B,A = C
B, AJA - C

(exchange)

r— A AJAY —-C
AT Y —-C

(cut)

and the following logical rules:

I AA—C T,B,A—C

IAVB,A—C (v =)
I — A I - B
I‘—>—/>1\/B(_)\/1) Feij(HVQ)
NAJA—=C (Al —) IB,A—C (A2 —)

T, ANB,A = C T AANB,A = C

r— A F—>B(
I'— AANB

—>/\)
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F)A7B7AHC F—>A AHB
F,A*B,A—>C(*_>) (— %)

- A ABY—-C

AASBIs—C P toasp (72
Remark 3.1.2 With contraction and weakening,
INA,A— B
% (weakening) ﬁ (contraction)
we can prove Ax B = A A B as follows.
e For AxB— ANB,
% (weakening) % (weakening)
AB~ANE (=)
%
AxB— ANB
e For ANB — Ax B,
A— A B— B
AAB%A‘A%)AAB—JAQ:Q
A/\B,A/\B%A*B( traction)
ANE = A+ B contraction

3.1.4 Examples of Proofs

Example 3.1.3 As an example of a proof, we can derive the rule

' - A>DB
I'A— B

from (D—) by:

A— A B—>B(
r-A>B AADB-—B
NA— B

HD)
(cut)

Example 3.1.4 We can derive that (AV B)xC = (A% C)V (B* ().
o For (AVB)+«(C — (AxC)V (Bx(C),

A—-A C->C
A0 Axc &) B,C = BxC

A0 AaxcvBxC YY) e AveovEsC
AVB,C - AxCV BxC (% —)
(AVB)xC — AxCV BxC

(—> \/2)
vV —)
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o For (AxC)V(BxC)— (AV B)xC,

Asavs VY C—-C i A C—C (.,
A,C = (AVB)*C N B,C — (AVB)+C N
AxC — (AVB)xC B*C’—>(A\/B)*C(v_>)

AxCVB*C — (AVB)xC

Example 3.1.5 We can derive that (AxB) - C=A — B D C,
e For (AxB)—-(C —A—BD>C(,

A— A B— B
A B— AxB

AB—C
A— B>C(C

(= %)

AxB —C

(cut)
(—2)

e For A= BDC — (AxB)—C,

B—-B (C—=C
A—-BD>C BDOCB—-C

AB—C
A*B—>C'(*_>)

3.2 Semantics

3.2.1 Valuation on Quantale

Definition 3.2.1 (valuation) A valuation v on a commutative quantale Q = (Q, U, e, 1)
is a mapping of ® into @) satisfying the following conditions for every A, B € ®

1. v(AA B) =v(A)Nu(B),
2. v(AV B) =v(A)Uv(B),
3. v(Ax B) =v(A)ev(B),
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3.2.2 Validity

Definition 3.2.2 (valid) A formula A is said to be

1. true in a valuation v on a commutative quantale @) if

which will be denoted by Q,v |= A;

1 <wv(A),

2. wvalid with respect to a class Q of commutative quantales if for each commutative
quantale @) € Q and each valuation v on @,

Q,v = 4,

holds, which will be denoted as Q |= 4;

3. A sequent I' — A is said to be valid with Q if and only if

QTI"D A,

where I'* is defined by < >* := 1 and (', A)* :=T"* x A.

3.2.3 Soundness

Theorem 3.2.3 (soundness) If a sequent I' — A is provable in ILL, then it is valid
with respect to the class of all commutative quantales.

Proof. Soundness is proved by a straightforward induction on hight of proof.

¢ Initial sequents are valid,

e for the rules of inference (structural rules and logical rules), if upper sequent(s) is

valid, then lower sequent is valid.

We show that initial sequents, structural rules and logical rules are valid:

1. initial sequents

(a) EFA—- A& EADA

(b) |:—>1<:> |:1

te e



2.

(c) FT=Te EI*DT

st e

1<o(I*DT)
1 <o(l*)=o(T)
Leo(I') <w(T)

o) < T

(since T is the greatest element).

(d) ET,LLA— A EA*«LxA* DA

structural rules

(a) For 1 — weakening,

¢

te e

I <o(l™xLxA") = v(A)

v(I‘* x Lx A%) <wv(A)
v(I™) e v(L) @ v(AT) < v(A)
v(L) e v(I™) e v(A7) < v(A)
v(Ll) < o(T*)ev(A™) = v(A)

(since L is the least element).

e EMA—As ET*xA* D A

& 1<% A%) = v(A)
< () ev(A") < v(A),

o I LA— A EI™*x1xA*D A

(b) For exchange,

S 1 <o x1xA%) = v(A)
< o(T*)euv(l)ev(A*) < v(A)
< u(T)ev(A") <wv(A).

e =ETVABA—C& ET*x*AxBxA*DC

& 1<l *AxBxA*) = v(C)
< (™) ev(A)eu(B)euv(A*) <v(C),

e mFI''BJAAA—-C& ET"*BxAxA*DC

< 1<o(l™*BxAxA*) = v(C
< v(I™)ev(B)ev(A)euv(A¥)
& v(l*)ev(A)euv(B)euv(A¥)

INIA
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(c) For cut,
< 1 <o) = v(A)
& o) <v(4)--- (1),
e EAAY - Ce EA*xAxY*DC
&S 1 <v(A"* AxE") = o(C)
< v(A%)ev(A)ev(X*) < v(C)
< v(A) <v(AY) ev(X*) = v(C)---(2),
& 1<o(A**T* % X)) = o(C)
< v(AY) e u(T™)ev(X*) < ov(C)
< (™) <v(AY) e v(X*) = v(C)
(since (1) and (2)).
3. logical rules
(a) For (V —),
e EFTVAA-CE ET"xAxA*DC

S 1< *xAx A") = v(0O)

< (") ev(A) e v(A*) < v(C)

< v(A) <o) ev(A") = v(C)--- (1),
e B A= C«& ET**BxA*DC

& 1 <o(I™"x BxA*) = v(C)

< v(B) <o) ev(A) = v(C)---(2),
¢ ET,AVB,A—Co T +(AVB)xA* > C

& 1<y(I"*(AV B)*A*) = v(C)

< v(I")ev(AV B)ev(A") <v(C)

< v(A)Uo(B) <o) e v(A*) = v(C)

(since (1) and (2)).
(b) For (— V1),

¢ Bycut--- (1) FT' — A & o(I™) < v(A4),
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e = - AVB& "D (AVB)

& 1<) =v(AVB)
& u(l™)<wv(AVB)
& u(I™) <wv(4)Uwv(B)

(c) The proof is similar for (— V2).

(d) For (A1 —),
e Bycut---(2) =T,4,A - C & v(A) <o) e v(A*) = v(C),
e =[NAANBA—-C& ET*"x(AANB)xA*DC

& 1<o(I**(AAB)xA*) = v(C)
< v(I*)ev(AAB)ev(A") < v(C)
& u(I™) e (v(A)Nu(B))ev(A*) < v(C)
< v(A)No(B) <o) ev(A") = v(C).

(e) The proof is similar for (A2 —).

(f) Tor (= ),
e Bycut--- (1) =T — A & o(I*) <v(A)---(1) and,
o =I' - Bso(l™) <wv(B)---(2),
o = - AANB& ET*"D>(AAB)

& 1<) = v(AAB)
& o(I™) <v(AAB)
& o) <wv(4)Nv(B)

(g) For (x —),
e =TVABA—C& ET**Ax*xBxA*DC

& 1<y(T*AxBxA") = v(C)
< v([™)ev(A)ev(B)ev(A") <v(C),

o =EI'NAxBA—-C& EI"«x(A*xB)*A* D> C

& 1<y(I™*(AxB)xA") = v(C)
& (") e (s B) e u(A%) < o(C)
& u(I™)ev(A)ev(B)euv(A™) <v(C).
(h) For (— %),
e bycut--- (1) = —- A& o) <v(A) and,
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e =EA— B& v(A*) <wv(B),

e mFTVA—-AxB& |=ET*"«xA*D A% B
& 1<y xA%) = v(AxB)
< (") ev(A*) <v(A)eu(B).

(i) For (D—),
first we show that if a < o’ and b < ¥, then ¢’ = b <a = V. Since a < da’ and
b<V,ae(ad =b)<de(ad=0)<b<¥V, and henced = b<a=1"V.
e Bycut - (1) EI' = A& v(I*) <v(A) and by cut ---(2) F A, B, ¥ —
C < v(B) <v(A*) e v(X*) = v(C),
e EFAJADBINYE—-Ce FEA*x(ADB)xI™xX* D C
& 1<v(A**(ADB)*x["*X¥") = v(C)
& v(A*x(AD B)xI™xX*) < o(C)
& v(A*) e (v(A) = v(B)) e v(I'™)
v (X") < o(C)
< (v(A) = v(B)) < v(A%) e u(T™)
(X)) = v(C)
(by the result above).
(j) The proof is similar for (—D).

3.3 Completeness

We have constructed quantales from a Petri net:
Petri net N,
|3 Proposition 2.2.3
preordered commutative monotd My,
|3 Proposition 2.3.6
quantale P(M),

(! Proposition 2.3.16 (or Proposition 2.3.17)

quantale C1(P(My)), (Ce(P(My))).
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Let Qy, Q1 and Q5 be classes of commutative quantales defined by
Qo := { P(My) : N is a Petri net },
Qy :={ C1(P(My)) : N is a Petri net },
Qy :={ C2(P(My)) : N is a Petri net },

where P(My), C1(P(My) and Co(P(My)) are commutative quantale defined from a pre-
ordered commutative monoid My as in proposition 2.3.6, and definition 2.3.14 and 2.3.15
respectively.

Definition 3.3.1 We say that ILL is complete for a class Q of commutative quantales,
if I' — A is provable in ILL whenever I' — A is valid with respect to Q.

Q, is the class of commutative quantales used in Engberg and Winskel [2]. To prove
completeness of ILL for a class of commutative quantales generated by Petri nets, Qy and
@Q; do not work. Although the following proof shows that

(AANB)V(ANC)— AN(BVC)

is derivable in ILL

B — B Cc —-C

A—A Ly BoBvo V) ana o coBve TV
ANC — A A/\B—>B\/C(H/\) ANC — A A/\C—>B\/C(_>/\)
ANB — AN(BVC) A/\C—>A/\(B\/C')( )

(ANB)V(ANC)— AN(BV(O)

we cannot prove the sequent
AN(BVC)— (ANB)V(AACQ).

That is, the distributivity of A and V does not hold in ILL. In any quantale in Qg or Qg

the distributivity is always valid. Therefore, if we want to prove completeness for Qg or

Q;, then we have to add the distributivity to ILL. Then we will consider the class O,

and prove completeness for Q,, the distributivity is not always valid in a quantale in Q5.
In the sequel, we shall prove completeness for Q.

Theorem 3.3.2 (completeness) If a sequent T' — A is valid in the Q,, then it is
provable in ILL.

Proof. First we construct a Petri net N = (P,T,*(—), (—)*) as follows:
1. P:=9,

2. T:={(I',A)|I' = A* is provable in ILL},
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3. foreach t = (I'A) € T,
() *t =T,
(b) t* = A

Note that in the preordered commutative monoid My = (M, =, +,0), if A > B, then
A — B is provable in ILL. Next we define a mapping v of ® into the quantale C2(P(My))

by
o(a) i= Cal{a))
We can show by induction on the complexity of a that v is a valuation on Cy(P(Mpy)).
We show that Qy = (C2(P(M)),Ug, ec, Co({0})) satisfies Definition 4.2.1,
1. v(AA B) =v(A)Nu(B),
2. v(AV B) =v(A)Uc v(B),

3. v(Ax B)=v(A) ec v(B),

(

(

(

4. v(A > B) = v(A) = v(B),
(T) =

6. ’U(J_) Cz@

7. v(1) = G({0}).

Casel. o = ANB.
We show v(A A B) = v(A) Nv(B). Since

v(AAB)=C({AAB}),
v(4) No(B) = C({4}) N C({B}),
then we show C({AAB})=C({A4}) N C({B}), by Lemma 2.3.19.

o (). IfAANB — A, then ANB < A, and if AANB — B, then AANB < B.
Therefore C({AA B}) C C({A}) N C({B}).

e (>). If C — A, C — B, then C — A A B. Therefore if C < A and C < B,
then C' < AA B, and hence C({A}) N C({B}) C C({AAB}).

Case2. a = AV B.
We show v(AV B) = v(A) Uc v(B). Since

v(AV B) = C({AV B}),
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and since z Ug y := C(z Uy),

v(4)Ucv(B) = C({A})Ue C({B})
c(C({A}) U C({B}))
= C({4}U{B})

(since C(Cz U Cy) = C(zUy)),

then we show {AV B} = {A} U {B}, by Lemma 2.3.19.
¢ (). IfC — AV B, then C — A or C — B. Therefore if C < AV B, then
C <AorC<B,and hence {AV B} <{A} U {B}.
e (>). If A— AV B, then A< AV B,andif B— AV B, then B < AV B.
Therefore {A} U {B} < {AV B}.

Cased. a = Ax B.
We show v(A % B) = v(A) e¢ v(B). Since
v(Ax B)=C({Ax B}),

and since z x¢c y := C(z % y),

v(A) xc v(B) = C({4})*¢c C({B})
c(C({4}) « ¢({B}))
= C({4}={B})

(since C(Czx Cy) = C(z *y))
= C({A+B}),

then we show {A} + {B} = {Ax B}.

o (<). Weshow {A} +{B} < {Ax B}.
A+B=(t)+0=A,B---T'=A,B,
AxB=(t)*+0=A*B---I'=AxB.

If I' — A* is provable, then A, B — A % B x 1 is provable.

AB— AxB —>1( ¥)
AB— AxBx1 -

o (>). Weshow {Ax B} < {A} + {B}.
AxB="(t)+0=AxB ... I'=AxB,
A+B=(t)+0=A4AB ... I' =A,B.
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If I' — A* is provable, then A * B — A x B x 1 is provable.

A B— AxB
A+B = AsB * ) —1
AxB—- AxBx1

H*)

Cased. a = A D B.
We show v(A D B) = v(A) — v(B). Since
W45 B) = C({A5 BY),
v(A) = v(B) = C({A}) — C({B}),
then we show C({A 5 B}) = C({4}) — C({B}).

o (<). For C({AD B}) < C({A}) — C({B}),
(1) f I € C({AD B}), then I' = A D B,
(2) if VA € C({A}), then A — A.
B

)
y (1) and (2),

A—A TI''A— B
I''A— B

(cut).

Then I';A — B, and hence I''A € C({B}). Since I''A = '+ A, then
I < O({A}) — C({B)).
¢ (). For C({4}) — C({B}) < C({4 2 B}),
(1) e C({4}) — C({B}),

(2) VA € C({4}).

By (1) and (2),C+A € C({B}), and hence '+A — B. Therefore' - A D B,
and so C({A}) — C({B}) < C({A D B}).

Caseb. a=T.

We show v(T) = M. By definition, C5({T}) ={y | y < T}, then
v(T) = C({T}) =

Caseb. a = L.
We show v(L) = C0.

0~ —{y|‘v’:ﬁ€®(:p<y)} M,
“i={y | VzeM (y<z)} ={L}

Case?. a = 1.
We can show v(1) = Co({0}).
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Finally we prove that — A is provable in ILL whenever 1 < v(A). If 1 < v(A), then
Co({0}) C C2({A}), and hence § < A in the original preordered monoid My. Thus — A
is provable in ILL. If — I'* D A is provable in ILL, then so is I' — A: in fact

-1 A—- A

r—-1r I*D>AT*— A

—-I"D2A I*"DAT—A
r— A

(5—=)
(cut)

(cut)
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Chapter 4

The “Of Course” Operator

In this chapter, we will discuss intuitionistic linear logic with a modal operator “of course”
(its syntax and semantics) and then will prove soundness theorem for quantales generated
by Petri nets. And then we will show how to prove completeness for quantales by using
similar construction in chapter 3.

The absence of the rules for weakening and contraction is compensated,to some ex-
tent,by the addition of the modal operator “of cource”.

4.1 Syntax

In this section we show only formulas, axioms, rules and examples of proofs we have to
add to ILL in chapter 3.

4.1.1 Formulas

The language of ILL with a modal operator has an alphabet consisting of
unary connectives : !.
Formulas are inductively defined by
1. The propositional variables and constants are formulas,

2. if A is a formula, then !A is a formula.

4.1.2 Sequents

A sequent of ILL is an expression of the form
-0,

where I is a finite sequence of formulas and 6 is a formula. Both I and 6 may be empty. In
the sequel, capital Greek letters will denote finite (possibly empty) sequences of formulas.
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4.1.3 Axioms (initial sequents) and Rules

Definition 4.1.1 The basic calculus is obtained from the calculus ILL by adding the
following rules for the modal operator !:

A — A (1)
1A—1 (2)

1A —1A%1A (3)

B—A B—1 B%B*B(Zl)
B =1A

Given a proposition A, the assertion of !A has the possibility of being instantiated by
the proposition A, the unit 1 or !A%x!A, and thus of arbitrarily many assertions of !A.

Remark 4.1.2 How this operator compensates for the absence of the two structural rules
can be seen from the derived rules Girard originally presented:

rLA—B
I''A— B ¢ =)

I'=B . i
T A—B (! - weakening)
A A— B
kR b A i
T 1A= B (! - contraction)
T —B
r—ipg (Y

where !I' is a shorthand for !A4,...,!A, where I' = A4,..., A,.

Remark 4.1.3 The rules of (1), (2) and (3) of Definition 4.1.1 are derivable from the
above original rules.

— 1

1A -1

(! - weakening)

1A 1A 14 —14
A TA S1A%IA
A STA%IA

(= %)

(! - contraction)
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Proposition 4.1.4 The rule of (1), (2) and (3) of Definition 4.1.1 for A are interderiv-
able with the following single rule:

1A — LA AN (1Ax1A4)

Proof.
'A—1ANA 1A —1Ax1A (= A)
A —1AAA(1AKIA)
Proposition 4.1.5
INANA(1AxIA) —1A
Proof. Define that B := 1A AA (1Ax!A).
1A—-1NA 1A —1Ax1A (= A)
'1AJVA — Bx B , =)
B —lAxlIA 'Ax!A — Bx B (cut)
B—-A B-—1 B%B*B(Q)
B —1A
4.1.4 Examples of Proofs
Example 4.1.6 We derive that !A — Ax!A.
A— A 1A-1A
AM%AW&FM)‘
A 1A — AslA (=)

. :
4 AslA (! - contruction)

Example 4.1.7 We derive that A —!(Ax A).

A—A A— A
AA— AxA

A= Axd ) kent
4= Ax A o (! - weakening)
A Sl (AxA)

(= %)

Example 4.1.8 We derive that (A A B) =!Ax!B.

=) ANB—=A (, .y AAB=B
(ANB) — A (AAB) — B

anB) =2 " jare) o F )

(AAB),(AAB) —IA«IB (=)

(AN B) —IAxB

(! - weakening)
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1A — A . 'B— B .
m (' - Weakemng) m (‘ /viieakemng)
IA'B — AAB (=7

4,18 —I(A A B) (! - weakening)

AxB —i(AnB) )

4.2 Semantics

4.2.1 Valuation on Quantale

Definition 4.2.1 (valuation) A valuation v on a commutative quantale Q = (Q,U, e, 1)
is a mapping of ® into ) satisfying the following conditions for every A, B € ®

1. v(AA B) =v(A)Nu(B),
v(AV B) =v(A)Uv(B),
B) =v(A) e v(B),

) v(A) = v(B),

v

N

v

<

S

1) =
1

—

(
(A
(A
(T) =
(
(
(

Sl B
<

(14) =lo(4).

4.2.2 Validity
Definition 4.2.2 (valid) A formula A is said to be

1. true in a valuation v on a commutative quantale @) if
1 <wv(A),
which will be denoted by Q,v |= A

2. wvalid with respect to a class @ of commutative quantales if for each commutative
quantale @) € Q and each valuation v on @,

QA
holds, which will be denoted as Q |= 4
3. A sequent I' — A is said to be valid with Q if and only if
QETI"D A,
where I'* is defined by < >* := 1 and (T', A)* := I'" x A.
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4.2.3 Soundness

Theorem 4.2.3 (soundness) If a sequent I' — A is provable in ILL, then it is valid
with respect to the class of all commutative quantales.

Proof. Soundness is proved by a straightforward induction on hight of proof.
e Initial sequents are valid,

e for the rules of inference (structural rules and logical rules), if upper sequent(s) is
valid, then lower sequent is valid.

We show that initial sequents, structural rules and logical rules are valid: (In this section
we show only four structural rules for of course operator we have to add to ILL in chapter

3.)
structural rules

(a) For! —,
e =T,A—-Bo ET"+AD B

< 1<o(I*xA) = v(B)
< (") ev(A) <v(B)
& v(A) <o(T) = v(B),

e ET,)JA—-B& |=T**!AD B

< 1 <o(I"xA) = v(B)
< (™) ev(lA) < v(B)
& o14) < o) = o(B)
& t(4) <o) = o(B)

(since la < a).
(b) For ! — weakening,
e =T —-B& EI*>B
< 1<) = v(B),
e =TV A—-B& =I"x!ADB
< 1 <o(I*xA) = v(B)
v(I') e v(!A) < v(B

)
v(l4) < o(I") = v(B)
lw(A) < o(I™) = o(B)
(since la < 7).

t o
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(c) For ! — contraction,

e =T1IAIA—- Be ET"%lAxlA D B

& 1
< o
& (!
< ly(

e mI'A—-B& EI"+lAD B

1 <o(T*)euv(l4) = v(B)
v(T*) e v(lA) < v(B)
v(1A) < o(T™) = v(B)
lw(A) < o(T'*) = v(B)

(since la <laxla).

t e

(d) For —!,
e =E'=B& =I*"D>B

& 1<u((I0)") = v(B)
e o) < o(B),

o = -B& = (') DB

& 1< (D)) = v(1B)
& (D)) < v(1B).

By o({(T")) < v(B)},

& W((I)") <W(B)
(since a < b —la <!b)
v(I(I1)*) < v(!B)
o(("D)*) < v(!B)
v((I1)7) < o(!B)

(since la <!la).

t ¢

4.3 Completeness

We have constructed quantales from a Petri net:

38



Petri net N,
A} Proposition 2.2.3
preordered commutative monotd My,
U Proposition 2.3.6
quantale P(M),
[} Proposition 2.3.16 (or Proposition 2.3.17)

quantale C1(P(My)),(Co(P(My))).

Let Qy, Q1 and Q, be classes of commutative quantales defined by
0 :={ P(My): N is a Petri net },
Q, := { C1(P(My)) : N is a Petri net },
Qy :={ Cx(P(My)) : N is a Petri net },

where P(My), C1(P(My) and C2(P(My)) are commutative quantale defined from a pre-
ordered commutative monoid My as in proposition 2.3.6, and definition 2.3.14 and 2.3.15
respectively.

Definition 4.3.1 We say that ILL is complete for a class Q of commutative quantales,
if I' — A is provable in ILL whenever I' — A is valid with respect to Q.

Q; is the class of commutative quantales used in Engberg and Winskel [2]. To prove
completeness of ILL for a class of commutative quantales generated by Petri nets, Qy and
@; do not work. Although the following proof shows that

(ANB)V(ANC)— AN(BVC)
is derivable in ILL

B — B c —-C

235 =) 23l =)
A— A B—>B\/C( A— A C—-BVC
ANC — 4N AABHBvcg/lng ANC —4 N 7) A/\C—>B\/Cg/;7\3

ANB — AN(BVC) ANC — AN(BVC)
(AANB)V(AANC)— AN(BV(C)

(V=)
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we cannot prove the sequent
AN(BVC)— (AANB)V(ANC).

That is, the distributivity of A and V does not hold in ILL. In any quantale in Qg or Q;,

the distributivity is always valid. Therefore, if we want to prove completeness for Qg or

Q;, then we have to add the distributivity to ILL. Then we will consider the class O,

and prove completeness for Q,, the distributivity is not always valid in a quantale in Q5.
In the sequel, we shall prove completeness for Q.

Theorem 4.3.2 (completeness) If a sequent I' — A is valid in the Q,, then it is
provable in ILL.

Proof. First we construct a Petri net N = (P,T,*(—), (—)*) as follows:
1. P.= &,
2. T:={(I',A)[T' = A* is provable in ILL},
3. foreacht = (I',A) € T,

(a) *t:=T,
(b) t*:= A.
Note that in the preordered commutative monoid My = (M, >, +,0), if A > B, then
A — B is provable in ILL. Next we define a mapping v of ® into the quantale Cy(P(My))

by
v(a) := Co({a}).

We can show by induction on the complexity of o that v is a valuation on Co(P(My)).
(In this section we show only the valuation for of course operator we have to add to ILL
in chapter 3.)

Let
IX:={lm : me X},

and let
!CX = Cz'X

Then we show that
Q = (C2(M),Uc, 0¢, o, C2({0}))

is a modal classical quantale, i.e. it satisfies the condition in Definition 2.3.20.

If CoX = X and (LY =Y, then

1. 16X C X,
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2. lolg = 1e,

3. 10X Clolo X,

4 16(XNY) =leXxoleY,
and Co{lA} =1oCo{A}.

First we show 1. to 4.

1. Casel. !¢ X C X.

For 1cX C X, suppose that m €!lcX and m' € X7, (i.e. V" € X (m” < m')).
Therefore
vm" e X (Im" <!m'),
and hence !m' € (1X)~, and so
m <!m'.

Since !m’ < m/, then m < m’, and hence
m e (X™)" = X = X.
2. Case2. 'clc = 1¢.
e (=). lolg C 1¢ is trivial.
¢ («<). For lglg D 1¢, suppose that m € 1¢, then
vm' € (11,)"andvm" €llg (m” <m').
Since 1 € 14, then !1 =!1 €!15, and hence
11 <m.

And since 1 <!1, then
1<m.

Therefore m' € {1}7, and hence m < m’, and so
m € 02!10 :!C’lC'

3. Case3. 1o X Clolo X.
For !¢ X Clole X, we show !X C CylX.
Suppose !m €!X, then Vm' € (1.IX)™ and !m €!X C Co!X (m < m/).
And 'm <!!m, then !m < m/.

Therefore 'm € Cy!Cy! X, then !X C Cy!C5!' X, and hence
IO X C CrlOh X
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4. Cased. ‘C(X OY) :!C’X*C’!CY-
o (=). For lo(X NY) Cle Xxc!cY,

Suppose that m € Co!(XNY) and m’ € (IXx!Y)~. Weshow m' € ((XNY))~.

Let m" € X NY, then !m” €!X and !m” €!Y, and hence
'm 4+ m" < m.
Since !'m" <!m”+!m”, then !m” < m/, and hence
m'e((XNY))™,

and so
m<m'.

e («). Similar to the proof of lIc(X NY) Cle Xxc!lcY.
Next we show Co{lA} =!-C2{A}.
e (=). For Cx{lA} ClcC>2{A}, suppose m € C2{!A} (i.e. m <!1A4).
Let m' € (1Co{A})~, since A € C2{A}, then
A=1A<m'
Therefore m < m’ and hence

Co{A} ClcCo{A}.

o (<). For Co{lA} DIcCr{A},
1bCo{ A} = CH1C{ A} C CH{1A).

Suppose m €lcCa{A} and m' € {{A}~ (i.e. 1A <m/).

Vim" €lC{A} (m" < A), then

Im” <!A.
Since !m"” < m/, then
m' €lCy{A}~,
and hence
m < m/,
and so
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Finally we prove that — A is provable in ILL whenever 1 < v(A). If 1 < v(A), then
Co({0}) C C2({A}), and hence § < A in the original preordered monoid My. Thus — A
is provable in ILL. If — I'* D A is provable in ILL, then so is I' — A: in fact

-1 A—- A

r—-1r I*D>AT*— A

—-I"D2A I*"DAT—A
r— A

(5—=)
(cut)

(cut)
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Chapter 5

Concluding Remarks

We have seen how to construct quantales from Petri net, and we have proved completeness
of ILL for the quantale generated by Petri net. In this concluding chapter, moreover we
consider the connection between classical linear logic (CLL) and Petri nets.

Definition Syntax (formulas, axioms and rules) of CLL are follows:
(In this section we show only formulas, axioms, rules and examples of proofs we have to
add to ILL in chapter 3 and 4.)

1. Formulas

The language of CLL has an alphabet consisting of

e a propositional constant : 0,
e an unary connective : 7,

¢ a binary connective : 6.
The connective carry traditional names:
@ : disjunction (par).
Formulas are inductively defined by

e The propositional variables and constants are formulas,

e if Ais a formula, then 7A is a formula.

2. Axioms and Rules

The basic calculus is obtained from the calculus ILL by adding the following rules.
(a) The adding axiom of CLL is the instance of one axiom-schemes:
rio—A
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(b) The adding rule of inference of CLL is the following structural rule:

' — A

T = A0 (0 - weakening)

I' = A,A B,A
I —A,BAA

(exchange)

The adding rules of inference of CLL are the following logical rules:

AT —-A BIlI—A - AAB

AGBLO-AA 7)) ToA4aep 9
% (? - weakening)
I' = ATATA ,
NG (? - contraction)

A =70 (=7) r—AA

74 7% T — A ?A (7 =)

where 7I" is a shorthand for 7A,, ..., 7A, where ' = Aq, ..., A,.

For examples of proofs we can derive as follows:

1. We can derive that (A x B)J‘ = Al @ BL.

e (=)
ﬂ(%*)
A B— A+ B B— B
T T nl (L —=,—1)
(AxB): — A' B (— &)
_
(A>l<B)L%ALGBBL
° (<)
A— A B— B
ala— =) BL,B—>(J__(29 )
_
A, B, At Bf =
(* —)

AxB,A® B >
AL @ Bt = (AxB)!

(— 1)

2. We derive that A D B= AL ¢ B.
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— A, At
ADB)— ALY B

~Y 5.5

(5—=)

a>B—atep Y
o ().
A%#4Lﬂ
A A~ — B— B (@ —)
A,AL ®B— B (—>D)
AleB - ADRB
3. We derive that (1A)t =74+,
e (=)
A— A
== 1
Soaarl )(U
— !
A 7AL ,
1A, 7AL (=1
(A —7ar (-7
o ().
A— A
— (L
AaAﬁ(%)Ué)
At 1A — 0 '
7AL 1A — L("ﬂ
7aL = (layf )

4. We derive that A+ = Arightarrow0. We use this later.

° (=)
0— A—A
AADOH(ﬁL¢DH)
AD0— At
° (<)
fﬁA%Lﬂ
e (0 - weakening)
A A0

_— D)
a0 2

Suppose we want to see how to express the negative propaty for Petri net (for example,

two processes cannot be in their critical regions at the same time). Then we consider the
operation of linear negation.
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Definition
At = A 0.

Its semantics with respect to a quantale is determined by a choice for the denotation 0.
In a net we define the interpretation of the logical constant 0 as follows:

Definition
0:={m | m is the set of all markings which can not be reached from the empty markings}.

The consequence of this choice for 0 is that whatever property we could state before in
terms of validity of a formula A can now be stated negativery as |= AL,

Now we can prove soundness for this problem, but have not proved completeness of
CLL for classical quantale by Petri net. It is one of subjects of further research.

47



Acknowledgments

I would like to thank Prof. Kunihiko Hiraishi for his kind advice and support.

48



Bibliography

1]

2]

[9]

[10]

[11]

[12]

[13]
[14]

V.M.Abrusci, Sequent Calculus for Intuitionistic Linear Propositional Logic, Mathe-
matical Logic, Edited by P.P.Petkov, Plenum Press, New York, (1990), pp.223-242.

U.Engberg and G.Winskel, Petri Nets as Models of Linear Logic, LNCS, 431,
Springer, (1990), pp.147-161.

J.Y.Girard, Linear Logic : its syntaz and semantics, Advancesin Linear Logic, Edited
by J.Y.Girard, Y.Lafont and L.Regnier, (1995), pp.1-42.

J.Y.Girard and Y.Lafont, Linear Logic and Lazy Computation, In proc. TAPSOFT
87 (Pisa), vol. 2, Springer-Verlag (LNCS 250), (1987), pp.52-66.

J.Lilius, High-level Nets and Linear Logic, LNCS, 612, Springer, (1992), pp.310-327.

Narciso Marti-Oliet and Jose Meseguer. From Petri Nets to Linear Logic, In Category
Theory and Computer Science, Manchester, UK. Spring-Verlag (LNCS 389), (1989).

0000 . 000000000000 ,00000 1, (1992).

H Ono, Algebraic aspect of logics without structural rules, in: Contemporary Mathe-

matics, Proceedings of the International Conference on Algebra Honoring A. Mal’cev,
Novosibirsk,(1989), L.A. Bokut, Yu.L.Ershov, O.H.Kegel and A.I.Kostrikin eds.,
American Mathematical Society.

H Ono, Semantics for Substructural Logics, in: Substructural logics, Oxford Univ.

Press, (1993), pp.259-291.

Wolfgang Reisig, Petri Nets, An Introduction, Volume 4 of EATCS Monogaphs on
Theoretical Computer Science. Spring-Verlag, (1985).

K.I. Rosenthal, A note on Girard quantales, Cahiers de Topologie et Geometrie Dif-
ferentielle Categoriques 31, 3-11, (1990).

K.I. Rosenthal, Quantales and their Applications, Longman Scientific & Technical,
(1990).

o000 000000 ,00000 ,(1995).
A.S.Troelstra Lectures on Linear Logic, CSLI, (1991).

49



[15] D.N.Yetter, Quantales and (noncommutative) linear logic, The Journal of Symbolic
Logic 55, 41-64, (1990).

20



