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Abstract. As well-known results, timed-release encryption (TRE) and
public key encryption scheme with keyword search (PEKS) are very close
to identity-based encryption (IBE), respectively. It seems natural that
there is a close relationship between TRE and PEKS. However, no ex-
plicit bridge has been shown between TRE and PEKS so far. In this
paper, we show that TRE can be generically constructed by PEKS with
extended functionalities, called secure-channel free PEKS (SCF-PEKS)
with adaptive security, and discuss the reason why PEKS and (non-
adaptive) SCF-PEKS are not suitable for constructing TRE. In addition
to this result, we also show that adaptive SCF-PEKS can be generically
constructed by anonymous IBE only. That is, for constructing adaptive
SCF-PEKS we do not have to require any additional cryptographic prim-
itive compared to the Abdalla et al. PEKS construction (J. Cryptology
2008), even though adaptive SCF-PEKS requires additional functionali-
ties. This result seems also independently interesting.

1 Introduction

Timed-Release Encryption (TRE): Timed-release encryption (TRE) was
proposed by May [22], where even a legitimate recipient cannot decrypt a cipher-
text before a semi-trusted time server (TS) sends (or broadcasts) a time-release
key sT assigned with a release time T of the encryptor’s choice. As a well-known
result, (public key based) TRE is very close to identity-based encryption (IBE).
More precisely, generic constructions of TRE based on IBE, public key encryp-
tion (PKE), and one-time signature (OTS) have been proposed [8, 21, 24]. Since
PKE can be constructed by IBE (and OTS) [6], and digital signature can be
constructed by the extraction algorithm of IBE [9], we can say that TRE can be
generically constructed by IBE. As an intuition, TRE might be close to other
cryptographic primitives which are also close to IBE. So, next we introduce
public key encryption scheme with keyword search (PEKS) as such a primitive.

Public key Encryption scheme with Keyword Search (PEKS): PEKS
was proposed by Boneh et al. [5]. This scheme considers searching keywords
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from encrypted data. Briefly, the flow of PEKS is as follows: A receiver makes
a trapdoor tω for a keyword ω, and uploads it on an e-mail server. A sender
makes an encrypted keyword (which is encrypted by using a keyword ω′ and
the receiver’s public key), and sends it to the server. The server outputs 1 if
ω = ω′, by using tω, and 0 otherwise. As a way to construct PEKS, Abdalla et
al. [1] showed that a generic construction of PEKS based on anonymous IBE is
sufficient. Next, we discuss the relationships among IBE, TRE, and PEKS.

The Relationships among IBE, TRE, and PEKS: One may think that
TRE can be generically constructed by PEKS, since IBE (with 1-bit plaintext
space) can be constructed by PEKS [5], and TRE can be generically constructed
by IBE [8, 24]. However, since generic constructions of TRE based on IBE [8, 24]
implicitly3 require multi-bit plaintext space, we cannot conclude that TRE can
be generically constructed by PEKS (so we denote it with “?” in Fig 1 later).
There are two easy-to-find ways for showing a relationship between TRE and
PEKS: (1) for IBE, show that 1-bit plaintext space is enough to make multi-bit
plaintext space (as in the PKE case shown by Myers and Shelat [23]), or (2)
propose a generic construction of TRE based on IBE with just 1-bit plaintext
space. We do not conclude that these are possible or impossible, but try to
establish a bridge between TRE and PEKS from another perspective in this
paper. To do so, we revisit PEKS with extended functionalities, called secure-
channel free PEKS (SCF-PEKS).

Security Conditions of Previous Secure Channel Free PEKS (SCF-
PEKS) Schemes and its Theoretic Extension: PEKS schemes ensure that
the server (or an outsider) does not learn anything about keywords chosen by
the sender without trapdoor information. If trapdoors are revealed, then anyone
can execute the test procedure. Therefore, trapdoors cannot be sent via public
(i.e., insecure) channels. So, in PEKS schemes, a secure channel (such as secure
socket layer (SSL) and transport layer security (TLS)) between a receiver and
a server is required, and establishing secure channel requires additional setup
costs. To solve this problem, secure channel-free PEKS (SCF-PEKS) have been
proposed [2, 15, 16, 19], where the server has a public/secret key pair, and the
sender makes an encrypted keyword (which is encrypted by using a keyword ω′

and both the server’s public key and the receiver’s public key), and sends it to
the server. The server outputs 1 if ω = ω′ by using the trapdoor tω and its own
secret key, and 0 otherwise. Even if tω is sent via an insecure channel, no entity
(except the server) can run the test procedure.

Next, we discuss the security conditions of the previous SCF-PEKS. The
security model considered in [2, 15, 16, 19] does not capture the test queries
(i.e., “CPA-like” security). As an exception, Rhee et al. have considered test
queries [26]. However, this definition is still weak (i.e., “Unquoted CCA-like”
security [23]), where an adversary is not allowed to issue the test queries adap-
tively. By considering the CCA2 security, SCF-PEKS must be secure even if a

3 That is, a plaintext of IBE has the form Kv||(M ⊕ r), where Kv is a verification key
of OTS, M is a plaintext of TRE, and r is a random number.
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“malicious-but-legitimate” receiver can be admitted to issue test queries adap-
tively. We insist that this adaptive (i.e., “CCA2-like”) security is the natural
extension of the SCF-PEKS security theoretically4 , which is called adaptive
SCF-PEKS.

Our Contribution: In this paper, we show the relationships of IBE, TRE, and
adaptive SCF-PEKS (dashed arrows in Fig 1).

Anonymous IBE

IBE Adaptive SCF-PEKS

SCF-PEKS

PEKS
TRE

?

X → Y : Y can be generically constructed by X

: previous results

: our works (1&2)

[5]

[8, 21, 24]
[1]

2

1

Fig. 1: Relationships of IBE, TRE, and adaptive SCF-PEKS

1. We show that TRE (with 1-bit plaintext space) can be constructed generi-
cally from adaptive SCF-PEKS.

– We discuss the detailed reason why PEKS and (non-adaptive) SCF-
PEKS are not suitable for constructing TRE in Section 4.3.

2. We propose a generic construction of adaptive SCF-PEKS based on anony-
mous IBE, selective-tag chosen-ciphertext (IND-stag-CCA) secure tag-based
encryption (TBE), and strongly existentially unforgeable (sUF) OTS. This
is the first generic construction of SCF-PEKS.

– IND-stag-CCA-secure TBE can be constructed by selective-ID chosen
plaintext (sID-CPA) secure IBE [20], and digital signature can be con-
structed by IBE [9]. So, our result shows that adaptive SCF-PEKS can
be constructed by anonymous IBE only.

– No additional cryptographic primitive is required from a generic con-
struction of PEKS [1], even though adaptive SCF-PEKS requires addi-
tional functionalities.

2 Preliminaries

In this section, we define the building tools for our generic TRE and adaptive

SCF-PEKS construction. x
$← S means that x is chosen uniformly from a set

4 The word “theoretically” means that here we do not discuss the necessity and prac-
ticality of adaptive SCF-PEKS. However, since malicious receivers can use the server
as the test oracle in the SCF-PEKS usage, our adaptive security notion might be
useful in practice.
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S. y←A(x) means that y is an output of an algorithm A under an input x. We
denote State as the state information transmitted by the adversary to himself
across stages of the attack in experiments.

2.1 Definition of TRE

We refer the Dent et al. TRE definition [10] (which is used by Nakai et al. [24]
and Matsuda et al. [21]). As an exception, we exclude pre-open capability from
the Dent et al. definition. In the following, T andMTRE are a release-time space
and a plaintext space, respectively.

TRE scheme Π consists of four algorithms, TRE.Setup, TRE.UKG, TRE.Ext,
TRE.Enc, and TRE.Dec. A global parameter prm and a master secret key msk
are given by executing TRE.Setup(1κ). A user’s public key pku and a user’s se-
cret key sku are given by executing TRE.UKG(1κ). For a release-time T ∈ T ,
a time-release key sT corresponding to release-time T is given by executing
TRE.Ext(prm,msk, T ). For a message M ∈ MTRE and T ∈ T , whereMTRE is
the message space of TRE, an encryptor runs TRE.Enc(prm, pku, T,M), and ob-
tains a ciphertext CTRE . The messageM is computed by executing TRE.Dec(prm,
sku, sT , CTRE). Correctness is defined as follows: For all (prm,msk)← TRE.Setup(1κ),
all (pku, sku) ← TRE.UKG(1κ), all M ∈ MTRE , and all T ∈ T , TRE.Dec(prm,
sku, sT , C) = M holds, where C ← TRE.Enc(prm, pku, T,M) and sT ← TRE.Ext(prm,
msk, T ).

Next, we define time-server security, called IND-TR-CCATS. It guarantees
that no TS can decrypt a ciphertext.

Definition 1 (Time-server Security). A TRE scheme Π is said to be IND-TR-CCATS

secure if the advantage is negligible for any PPT adversary A, where

AdvIND-TR-CCATS

Π,A (1κ) =
∣∣Pr [(prm,msk)← TRE.Setup(1κ);

(pku, sku)← TRE.UKG(1κ); (M∗
0 ,M

∗
1 , T

∗, State)← ADEC(find, prm,msk, pku);

µ
$← {0, 1}; C∗

TRE ← TRE.Enc(prm, pku, T
∗,M∗

µ); µ′ ← ADEC(guess, C∗
TRE , State);

µ = µ′]− 1/2
∣∣

that DEC is a decryption oracle, where, for input of a ciphertext CTRE and T ,
it returns the corresponding plaintext M . Note that (C∗

TRE , T
∗) are not allowed

as input to DEC.

Next, we define insider security, called IND-TR-CPAIS. It guarantees that
no receiver can decrypt a ciphertext before the corresponding time-release key
is published.

Definition 2 (Insider Security). A TRE scheme Π is said to be IND-TR-CPAIS

secure if the advantage is negligible for any PPT adversary A, where



5

AdvIND-TR-CPAIS

Π,A (1κ) =∣∣Pr [(prm,msk)← TRE.Setup(1κ); (pku, sku)← TRE.UKG(1κ);

(M∗
0 ,M

∗
1 , T

∗, State)← AEXT RACT (find, prm, pku, sku); µ
$← {0, 1};

C∗
TRE ← TRE.Enc(prm, pku, T

∗,M∗
µ); µ′ ← AEXT RACT (guess, C∗

TRE , State);

µ = µ′]− 1/2
∣∣

that EXT RACT is an extract oracle, where, for input of T , it returns the cor-
responding time-release key sT . T ≥ T ∗ is not allowed as input to EXT RACT .

One may think that the notion “CPA” is weak, and a stronger notion can be
defined. Actually, the TRE definition [7, 14] achieves such strong security, where
A can access the decryption oracle. However, if no other public key (pk ̸= pku)
is considered, such decryption oracle is redundant, since A has sku. Therefore,
as in [10, 21, 24], we adopt the CPA notion in this paper.

2.2 Definitions of sUF OTS

A strongly existentially unforgeable (sUF) OTS against adaptively chosen mes-
sage attack (CMA) [4] Π consists of three algorithms, Sig.KeyGen, Sign and
Verify. Sig.KeyGen is a probabilistic algorithm which outputs a signing/verification
key pair (Ks,Kv) from the security parameter 1κ. Sign is a probabilistic algo-
rithm which outputs a signature σ from Ks, and a message M ∈ MSig, where
MSig is the message space of a signature scheme. Verify is a deterministic al-
gorithm which outputs a bit (1 means that σ is a valid signature, and 0 other-
wise) from σ ∈ Ssig, Kv and M , where Ssig is the signature space. Correctness
is defined as follows: For all (Ks,Kv) ← Sig.KeyGen(1κ) and all M ∈ MSig,
Verify(Kv, σ,M) = 1 holds, where σ ← Sign(Ks,M).

Definition 3 (one-time sUF-CMA). A signature scheme is said to be one-
time sUF-CMA secure if the advantage Advone-time sUF-CMA

Π,A (1κ) is negligible
for any probabilistic polynomial-time (PPT) adversary A in the following exper-
iment.

Advone-time sUF-CMA
Π,A (1κ) := Pr

[
(Ks,Kv)← Sig.KeyGen(1κ);

(M,State)← A(Kv);σ ← Sign(Ks,M); (M∗, σ∗)← A(State, σ);
(M∗, σ∗) ̸= (M,σ);Verify(Kv, σ

∗,M∗) = 1]

2.3 Definitions of IND-stag-CCA Secure TBE

A TBE scheme [20] Π consists of three algorithms, TBE.KeyGen, TBE.Enc and
TBE.Dec. The public key pk and the secret key sk are given by executing
TBE.KeyGen(1κ), where κ ∈ N is the security parameter. For a message M ∈
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MTBE with a tag t ∈ T AG, whereMTBE is the message space and T AG is the
tag space of TBE, an encryptor runs TBE.Enc(pk, t,M), and obtains a cipher-
text CTBE . The message M is computed by executing TBE.Dec(sk, t, CTBE).
Correctness is defined as follows: For all (pk, sk) ← TBE.KeyGen(1κ), all M ∈
MTBE , and all t ∈ T AG, TBE.Dec(sk, t, CTBE) = M holds, where CTBE ←
TBE.Enc(pk, t,M).

The security experiment of TBE under selective-tag CCA (IND-stag-CCA)
is defined as follows.

Definition 4 (IND-stag-CCA). A TBE scheme is said to be IND-stag-CCA
secure if the advantage is negligible for any PPT adversary A in the following
experiment.

AdvIND-stag-CCA
Π,A (1κ) =

∣∣Pr [(t∗, State)← A(1κ); (pk, sk)← TBE.KeyGen(1κ);

(M∗
0 ,M

∗
1 , State)← ADEC(find, pk, State); µ

$← {0, 1};
C∗

TBE ← TBE.Enc(pk, t∗,M∗
µ); µ′ ← ADEC(guess, C∗, State);µ = µ′]− 1/2

∣∣
that DEC is a decryption oracle for any tag t ̸= t∗, where for input of a ciphertext
(CTBE , t) ̸= (C∗

TBE , t
∗), it returns the corresponding plaintext M . Note that

(C∗
TBE , t

∗) is not allowed as input to DEC.

2.4 Definitions of Anonymous IBE

IBE scheme Π consists of four algorithms, IBE.Setup, IBE.Extract, IBE.Enc and
IBE.Dec. The public key pk and the master key mk are given by executing
IBE.Setup(1κ). For an identity ID ∈ ID, where ID is the identity space, a secret
key corresponding to ID skID is given by executing IBE.Extract(pk,mk, ID).
For a message M ∈ MIBE and ID ∈ ID, where MIBE is the message space
of IBE, an encryptor runs IBE.Enc(pk, ID,M), and obtains a ciphertext CIBE .
The message M is computed by executing IBE.Dec(skID, CIBE). Correctness is
defined as follows: For all (pk,mk) ← IBE.Setup(1κ), all M ∈ MIBE , and all
ID ∈ ID, IBE.Dec(skID, CIBE) = M holds, where CIBE ← IBE.Enc(pk, ID,M)
and skID ← IBE.Extract(pk,mk, ID).

Next, we define the security experiment of IBE under chosen ciphertext at-
tack (IBE-IND-CCA) as follows.

Definition 5 (IBE-IND-CCA). An IBE scheme is said to be IBE-IND-CCA
secure if the advantage is negligible for any PPT adversary A in the following
experiment.

AdvIBE-IND-CCA
Π,A (1κ) =

∣∣Pr [(pk,mk)← IBE.Setup(1κ);

(M∗
0 ,M

∗
1 , ID

∗, State)← AEXT RACT ,DEC(find, pk); µ
$← {0, 1};

C∗
IBE ← IBE.Enc(pk, ID∗,M∗

µ); µ′ ← AEXT RACT ,DEC(guess, C∗
IBE , State);

µ = µ′]− 1/2
∣∣
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that EXT RACT is an extract oracle, where, for input of an identity ID, it re-
turns the corresponding secret key skID. ID∗ is not allowed as input to EXT RACT .
DEC is a decryption oracle, where, for input of a ciphertext C and an identity
ID, it returns the corresponding plaintext M . (ID∗, C∗

IBE) is not allowed as
input to DEC. Chosen plaintext security (IBE-IND-CPA) is simply defined by
removing DEC from the IBE-IND-CCA experiment.

Next, we define anonymity experiment of IBE under CPA (IBE-ANO-CPA).

Definition 6 (IBE-ANO-CPA). An IBE scheme is said to be IBE-ANO-CPA
secure if the advantage is negligible for any PPT adversary A, where

AdvIBE-ANO-CPA
Π,A (1κ) =

∣∣Pr [(pk,mk)← IBE.Setup(1κ);

(ID∗
0 , ID

∗
1 ,M

∗, State)← AEXT RACT (find, pk); µ
$← {0, 1};

C∗
IBE ← IBE.Enc(pk, ID∗

µ,M
∗); µ′ ← AEXT RACT (guess, C∗

IBE , State);

µ = µ′]− 1/2
∣∣

Note that ID∗
0 and ID∗

1 are not allowed as input to EXT RACT .

Definition 7 (Anonymous IBE). An IBE scheme is said to be anonymous
IBE if the IBE scheme is both IBE-IND-CPA secure and IBE-ANO-CPA secure.

3 Definitions of Adaptive SCF-PEKS

In this section, we define security requirements of SCF-PEKS. An SCF-PEKS
scheme Π consists of five algorithms, SCF-PEKS.KeyGenS, SCF-PEKS.KeyGenR,
SCF-PEKS.Trapdoor, SCF-PEKS.Enc and SCF-PEKS.Test. The server public key
pkS and the server secret key skS are given by executing SCF-PEKS.KeyGenS(1

κ),
and the receiver public key pkR and the receiver secret key skR are given by ex-
ecuting SCF-PEKS.KeyGenR(1

κ), where κ ∈ N is the security parameter. For a
keyword ω, a trapdoor tω is given by executing SCF-PEKS.Trapdoor(skR, ω), and
a ciphertext λ is given by executing SCF-PEKS.Enc(pkS , pkR, ω). The server has
a public/secret key pair (pkS , skS), and a sender makes a ciphertext λ (which
is encrypted by using a keyword ω′, pkS , and pkR), and sends λ to the server.
The server runs SCF-PEKS.Test(λ, skS , tω), whose output is 1 if ω = ω′, and 0
otherwise. Note that obviously SCF-PEKS implies PEKS (i.e., if skS is publicly
opened and (tω, skS) is regarded as a trapdoor of PEKS, then such a function-
downgraded SCF-PEKS is PEKS). Correctness is defined as follows: For all
(pkS , skS)← SCF-PEKS.KeyGenS(1

κ), all (pkR, skR)← SCF-PEKS.KeyGenR(1
κ),

and all ω ∈ K, SCF-PEKS.Test(λ, skS , tω) = 1 holds, where λ← SCF-PEKS.Enc(pkR,
pkS , ω), tω ← SCF-PEKS.Trapdoor(skR, ω), and K is a keyword space.

Next, we consider two security requirements “consistency” and “keyword
privacy”.
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Definition 8 (Consistency). The SCF-PEKS scheme is said to be computa-
tionally consistent if the advantage is negligible for any PPT adversary A in the
following experiment.

AdvSCF-PEKS-CONSIST
Π,A (1κ) = Pr

[
(pkS , skS)← SCF-PEKS.KeyGenS(1

κ);

(pkR, skR)← SCF-PEKS.KeyGenR(1
κ); (ω, ω′)← A(pkS , pkR);ω ̸= ω′;

λ← SCF-PEKS.Enc(pkS , pkR, ω); tω′ ← SCF-PEKS.Trapdoor(skR, ω
′);

SCF-PEKS.Test
(
λ, skS , tω′

)
= 1

]
Next, we define two security notions for keyword privacy, “indistinguishability
against chosen keyword attack with the server’s secret key” (IND-CKA-SSK for
short) and “indistinguishability against chosen keyword attack with all trap-
doors” (IND-CKA-AT for short). In the IND-CKA-SSK experiment, an adver-
sary A is assumed to be a malicious server. Therefore, A is given the server’s
secret key skS , whereas A cannot obtain the receiver’s secret key skR. Instead
of obtaining skR, A can issue a query to a trapdoor oracle T RAP, which for
an input keyword ω, returns a trapdoor tω. Note that A cannot query the chal-
lenge keywords ω∗

0 and ω∗
1 to T RAP. As in the definition of [26], A computes

(pkS , skS), and gives pkS to the challenger. So, we omit skS in the following
experiment.

Definition 9 (IND-CKA-SSK). An SCF-PEKS scheme is said to be IND-
CKA-SSK-secure if the advantage is negligible for any PPT adversary A in the
following experiment.

AdvIND-CKA-SSK
Π,A (1κ) =∣∣Pr [(pkS , State)← A(1κ); (pkR, skR)← SCF-PEKS.KeyGenR(1

κ);

(ω∗
0 , ω

∗
1 , State)← AT RAP(find, pkR, State); µ

$← {0, 1};
λ∗ ← SCF-PEKS.Enc(pkS , pkR, ω

∗
µ);µ

′ ← AT RAP(guess, λ∗, State);

µ = µ′]− 1/2
∣∣

Remark: Note that, for our TRE construction, the adversarial server’s key
generation above is not required. That is, the weaker definition can be used,
where C can run (pkS , skS)← SCF-PEKS.KeyGenS(1

κ), and sends (pkS , skS) to
A in our proof of Theorem 2.

Next, we define the adaptive-IND-CKA-AT experiment. In this experiment,
an adversary A is assumed to be a malicious-but-legitimate receiver or outsider.
Therefore, A is given the receiver’s secret key skR, whereas A cannot obtain
the server’s secret key skS . This means that A knows all trapdoors. A can
issue a query to a test oracle T EST , which for an input (λ, tω) which satisfies
(λ, tω) ̸∈ {(λ∗, tω∗

0
), (λ∗, tω∗

1
)}, returns the result of the test algorithm. As in the

definition of [26], A computes (pkR, skR), and gives pkR to the challenger. So,
we omit skR in the following experiment.
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Definition 10 (Adaptive-IND-CKA-AT). An SCF-PEKS scheme is said
to be adaptive-IND-CKA-AT-secure if the advantage is negligible for any PPT
adversary A in the following experiment.

AdvAdaptive-IND-CKA-AT
Π,A (1κ) =∣∣Pr [(pkS , skS)← SCF-PEKS.KeyGenS(1

κ); (pkR, State)← A(1κ);

(ω∗
0 , ω

∗
1 , State)← AT EST (find, pkS , State); µ

$← {0, 1};
λ∗ ← SCF-PEKS.Enc(pkS , pkR, ω

∗
µ);µ

′ ← AT EST (guess, λ∗, State);

µ = µ′]− 1/2
∣∣

Remark: As in the IND-CKA-SSK, for TRE construction, the adversarial re-
ceiver’s key generation above is not required. That is, we use the weaker defini-
tion, where C can run (pkR, skR)← SCF-PEKS.KeyGenR(1

κ), and sends (pkR, skR)
to A in our proof of Theorem 1.

4 Adaptive SCF-PEKS Implies TRE

4.1 Proposed TRE construction based on Adaptive SCF-PEKS

In this section, we propose a generic construction of TRE (with 1-bit plaintext
space) based on adaptive SCF-PEKS. Our construction adopts the Boneh et
al. IBE construction from PEKS [5], namely, for a plaintext 0 (resp. 1) and a
release-time T , the time-release key is a trapdoor of the keyword T ||0 (resp.
T ||1). In the following construction, a SCF-PEKS receiver is regarded as a TS,
and a SCF-PEKS server is regarded as a TRE receiver. We set T = K and
MTRE = {0, 1}.

Protocol 1 (TRE based on adaptive SCF-PEKS).

TRE.Setup(1κ) : Run (pkR, skR)← SCF-PEKS.KeyGenR(1
κ), set prm = pkR and

msk = skR, and return prm and msk.

TRE.UKG(1κ) : Run (pkS , skS) ← SCF-PEKS.KeyGenS(1
κ), set pku = pkS and

sku = skS, and return pku and sku.

TRE.Ext(prm,msk, T ) : Run tT0 ← SCF-PEKS.Trapdoor(msk, T ||0) and tT1 ←
SCF-PEKS.Trapdoor(msk, T ||1), set sT = (tT0, tT1), and return sT .

TRE.Enc(prm, pku, T,M) : For M ∈ {0, 1}, run λ ← SCF-PEKS.Enc(prm, pku,
T ||M), set C = λ, and return C.

TRE.Dec(prm, sku, sT , C) : Parse sT = (tT0, tT1). If SCF-PEKS.Test(C, sku, tT0) =
1 holds, then output M = 0. Else if SCF-PEKS.Test(C, sku, tT1) = 1 holds,
then output M = 1. Otherwise, output ⊥.

Obviously, correctness holds if the underlying SCF-PEKS satisfies correctness.
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4.2 Security Analysis of our TRE construction

Theorem 1. Our TRE construction satisfies IND-TR-CCATS if the underlying
SCF-PEKS satisfies adaptive IND-CKA-AT and consistency.

Proof: Let A be an adversary who can break the IND-TR-CCATS security of
our TRE construction, and C be the challenger of the adaptive IND-CKA-AT
game. Then we construct an algorithm B which can break the adaptive IND-
CKA-AT security (or consistency) of the underlying SCF-PEKS. First, C runs
(pkR, skR)← SCF-PEKS.KeyGenR(1

κ) and (pkS , skS)← SCF-PEKS.KeyGenS(1
κ),

and sends (pkR, skR, pkS) to B. B sets prm = pkR, msk = skR, and pku = pkS ,
and sends (prm,msk, pku) to A.
Phase 1: For a decryption query (C, T ), B issues two test queries (C, T ||0) and
(C, T ||1) to C. If C answers 0 for both queries, then B answers ⊥. If C answers 1
for both queries, B can break consistency and aborts. Else, C answers 1 for the
query (C, T ||M) (M ∈ {0, 1}). Then B answers M .

Challenge: A sends (M∗
0 ,M

∗
1 , T

∗) to B. W.l.o.g, we set M∗
0 = 0 and M∗

1 = 1. B
sends (T ∗||M∗

0 , T
∗||M∗

1 ) = (T ∗||0, T ∗||1) to C as the challenge keywords. C sends
λ∗ to B. B sets C∗ = λ∗, and sends C∗ to A. Note that C∗ is a TRE ciphertext
against either M∗

0 or M∗
1 .

Phase 2: For a decryption query (C, T ) ̸= (C∗, T ∗), B issues two test queries
(C, T ||0) and (C, T ||1) to C. If C answers 0 for both queries, then B answers ⊥.
If C answers 1 for both queries, B can break consistency and aborts. Else, C
answers 1 for the query (C, T ||M) (M ∈ {0, 1}). Then B answers M .

Guess: Finally, A outputs the guessing bit µ′ ∈ {0, 1}. B outputs µ′ as the
guessing bit of the adaptive IND-CKA-AT game. ⊓⊔

Theorem 2. Our TRE construction satisfies IND-TR-CPAIS if the underlying
SCF-PEKS satisfies IND-CKA-SSK.

Proof: Let A be an adversary who can break the IND-TR-CPAIS security of our
TRE construction, and C be the challenger of the IND-CKA-SSK game. Then
we construct an algorithm B which can break the IND-CKA-SSK security of the
underlying SCF-PEKS. First, C runs (pkR, skR)← SCF-PEKS.KeyGenR(1

κ) and
(pkS , skS) ← SCF-PEKS.KeyGenS(1

κ), and sends (pkR, pkS , skS) to B. B sets
prm = pkR, pku = pkS , and sku = skS , and sends (prm, pku, sku) to A.
Phase 1: For an extraction query T , B issues two trapdoor queries T ||0 and
T ||1. C sends tT0 and tT1 to B. B sets sT = (tT0, tT1), and sends sT to A.
Challenge: A sends (M∗

0 ,M
∗
1 , T

∗) to B. B sends (T ∗||0, T ∗||1) to C as the chal-
lenge keywords. C sends λ∗ to B. B sets C∗ = λ∗, and sends C∗ to A. Note that
C∗ is a TRE ciphertext against either M∗

0 or M∗
1 .

Phase 2: For an extraction query T ̸= T ∗, B issues two trapdoor queries T ||0
and T ||1. C sends tT0 and tT1 to B. B sets sT = (tT0, tT1), and sends sT to A.
Guess: Finally, A outputs the guessing bit µ′ ∈ {0, 1}. B outputs µ′ as the
guessing bit of the IND-CKA-SSK game. ⊓⊔
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4.3 Discussion: The Reason Why PEKS and Non-Adaptive
SCF-PEKS are not Suitable for Constructing TRE

First, we make it clear that we do not deny the possibility of TRE construction
based on either PEKS or non-adaptive SCF-PEKS in the following discussion.
But we observe that TRE requires two entities, called TS and receiver, and
these entities have their public/secret key pair, respectively. So, it is hard to
directly implement TRE from PEKS since PEKS requires just one entity (i.e.,
receiver). From the above considerations, SCF-PEKS is suitable for constructing
TRE, since SCF-PEKS requires two entities, called server and receiver. Next,
we need to implement the oracles defined in TRE security requirements in the
SCF-PEKS context. The extraction query (in the IND-TR-CPAIS experiment)
can be implemented by the trapdoor oracle (IND-CKA-SSK) in the non-adaptive
SCF-PEKS context. However, the decryption query (in the IND-TR-CCATS ex-
periment) is hard to be implemented in the “non-adaptive” SCF-PEKS context,
since no test query is considered in the IND-CKA-AT experiment. On the con-
trary, the decryption query can be handled by the test oracle in the adaptive
SCF-PEKS context. This is the reason why we apply SCF-PEKS with adaptive
security for constructing TRE. Note that although decryptable PEKS [12, 13,
17] might handle the decryption query, it requires just one entity, and therefore
it is hard to directly implement TRE from decryptable PEKS. As a remark,
IND-TR-CPATS secure TRE can be constructed from non-adaptive SCF-PEKS
from the above considerations.

5 Anonymous IBE Implies Adaptive SCF-PEKS

5.1 Proposed Adaptive SCF-PEKS Construction

In this section, we give a generic construction of adaptive SCF-PEKS based on
anonymous IBE, IND-stag-CCA TBE, and sUF OTS. In our construction, a ci-
phertext of an anonymous IBE scheme (say CIBE) is used as a “plaintext” of
a TBE scheme to hide keyword information from an adversary. From the result
of the decryption of the TBE scheme, the ciphertext CIBE must be obtained.
In addition, usually, CIBE ̸∈ MTBE . To handle this condition, we apply the
KEM/DEM framework [28] (a.k.a. hybrid encryption), where KEM stands for
key encapsulation mechanism, and DEM stands for data encapsulation mech-
anism. By using TBE KEM (see Section 6 of [20]), compute (K,CTBE) ←
TBE.Enc(pk, t), and encrypt CIBE as a plaintext of the CCA secure DEM such
that e = EK(CIBE). Note that a CCA-secure DEM can be generically con-
structed from any pseudorandom functions without redundancy. So, even if we
assume that a CCA secure DEM exists, we do not need any additional crypto-
graphic primitive, except anonymous IBE, for constructing adaptive SCF-PEKS.
From now on, we assume that CIBE ∈ MTBE and e = EK(CIBE) is implicitly
included in CTBE (i.e., CIBE is obtained from the decryption of CTBE).

In the following construction, we use a target collision resistant (TCR) hash
function [3] Htag : {0, 1}∗ → T AG.
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Protocol 2 (Our Construction of Adaptive SCF-PEKS).

SCF-PEKS.KeyGenS(1
κ): Run (pkS , skS) ← TBE.KeyGen(1κ), and output (pkS ,

skS).

SCF-PEKS.KeyGenR(1
κ): Run (pkR, skR) ← IBE.KeyGen(1κ), and output (pkR,

skR).

SCF-PEKS.Trapdoor(skR, ω): Run tω ← IBE.Extract(skR, ω), and output tω.

SCF-PEKS.Enc(pkS , pkR, ω): Generate (Ks,Kv)
$← Sig.KeyGen, compute t =

Htag(Kv), choose R
$← MIBE, run CIBE ← IBE.Enc(pkR, ω,R), CTBE ←

TBE.Enc(pkS , t, CIBE), and σ ← Sign(Ks, (CTBE , R)), and output λ = (CTBE ,
Kv, σ).

SCF-PEKS.Test(λ, skS , tω): Let λ = (CTBE ,Kv, σ). Compute t = Htag(Kv), run
C ′

IBE ← TBE.Dec(skS , t, CTBE) and R′ ← IBE.Dec(tω, C
′
IBE). Output 1 if

1=Verify(Kv, σ, (CTBE , R
′)), and 0 otherwise.

Obviously, correctness holds if the underlying TBE, IBE, and OTS satisfy cor-
rectness.

By observing our construction, non-adaptive SCF-PEKS (i.e., IND-CKA-
AT without test queries, which has the same security requirement with Fang
et al. [11]) can be constructed by reducing the one-time signature part and
replacing the TBE part with CPA-secure PKE (i.e., chosen plaintext security
is enough). A ciphertext is (CPKE , R), where CIBE ← IBE.Enc(pkR, ω,R) and
CPKE ← PKE.Enc(pkS , CIBE). As in our adaptive SCF-PEKS construction,
we assume that CIBE ∈ MPKE , where MPKE is the message space of the
underlying PKE scheme. The test procedure is described as follows. Compute
C ′

IBE ← PKE.Dec(skS , CPKE) and R′ ← IBE.Dec(tω, C
′
IBE). Output 1 if R′ =

R, and 0 otherwise.

5.2 Security Analysis of our Adaptive SCF-PEKS construction

Theorem 3. The SCF-PEKS scheme constructed by our method is computa-
tionally consistent if the underlying IBE scheme is IBE-IND-CPA secure.

Proof: Let A be an adversary who breaks the computational consistency of
SCF-PEKS constructed by the protocol 1, and C be the challenger of the IBE-
IND-CPA experiment. Then, we can construct an algorithm B that breaks the
IBE-IND-CPA security of the IBE scheme. First, C runs IBE.Setup(1κ), and
gives pk to B. B sets pk as pkR, runs (pkS , skS) ← TBE.KeyGen(1κ), and gives

(pkR, pkS) to A. B obtains keywords ω and ω′ from A. B chooses R0, R1
$←

MIBE as the challenge messages, and sends (ω,R0, R1) to C. C gives C∗
IBE ←

IBE.Enc(pkR, ω,Rµ) to B, where µ ∈ {0, 1}. B gets a trapdoor tω′ by issuing an
EXT RACT query. If IBE.Dec(tω′ , C∗

IBE) = R1, then B outputs 1, otherwise B
outputs 0. ⊓⊔

Theorem 4. The SCF-PEKS scheme constructed by our method is IND-CKA-
SSK secure if the underlying IBE scheme is IBE-ANO-CPA secure.
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Proof: Let A be an adversary who breaks the IND-CKA-SSK security of SCF-
PEKS constructed by the protocol 1, and C be the challenger of the IBE-ANO-
CPA experiment. Then we can construct an algorithm B that breaks the IBE-
ANO-CPA security of the underlying IBE scheme. First, C runs IBE.Setup(1κ),
and gives pk to B. B sets pk as pkR. A runs (pkS , skS)← TBE.KeyGen(1κ), and
gives pkS to B. For a T RAP query ωi, B forwards ωi to C as an EXT RACT
query of the IBE scheme, gets tωi , and answers tωi to A.

In the Challenge phase, A sends the challenge keywords ω∗
0 and ω∗

1 to B. B
chooses R∗ $←MIBE , and computes the challenge ciphertext as follows:

1. B sends (R∗, ω∗
0 , ω

∗
1) to C.

2. C gives C∗
IBE ← IBE.Enc(pkR, ω

∗
µ, R

∗) to B, where µ ∈ {0, 1}.
3. B generates (K∗

s ,K
∗
v )

$← Sig.KeyGen, and computes t∗ = Htag(K
∗
v ), C

∗
3 ←

TBE.Enc(pkS , t
∗, C∗

IBE), and σ∗ ← Sign(K∗
s , (C

∗
TBE , R

∗)).
4. B sends λ∗ = (C∗

TBE ,K
∗
v , σ

∗) to A.

Note that A can compute C∗
IBE ← TBE.Dec(skS ,Htag(K

∗
v ), C

∗
TBE). In addition,

R∗ may be revealed from σ∗ without contradicting unforgeability property. How-
ever, this situation is the same as in the IBE-ANO-CPA experiment, where A
inputs ID∗

0 := ω∗
0 , ID

∗
1 := ω∗

1 , and M∗ := R∗, and gets the challenge ciphertext
C∗

IBE . Finally, B outputs µ′, where µ′ ∈ {0, 1} is the output of A. ⊓⊔

Theorem 5. The SCF-PEKS scheme constructed by our method is adaptive-
IND-CKA-AT secure if the underlying TBE scheme is IND-stag-CCA secure,
the underlying signature is one-time sUF-CMA secure, and Htag is a TCR hash
function.

Proof: Let A be an adversary who breaks the adaptive-IND-CKA-AT security
of SCF-PEKS constructed by the protocol 1, and C be the challenger of the IND-
stag-CCA experiment. Then, we can construct an algorithm B that breaks the
IND-stag-CCA security of the underlying TBE scheme. First, B runs (K∗

s ,K
∗
v )←

Sig.KeyGen(1κ), and sends t∗ := Htag(K
∗
v ) to C as the challenge tag. C runs

TBE.KeyGen(1κ), and gives pk to B. B sets pk as pkS . A runs (pkR, skR) ←
IBE.Setup(1κ), and gives pkR to B. Let (SCF-PEKS.Enc(pkS , pkR, ωj) := (CTBE ,
Kv, σ), tωj ) be a T EST query, where ωj ∈ ID. B computes t = Htag(Kv), and
answers as follows:

t ̸= t∗ : B can use the DEC oracle of the underlying TBE scheme as follows.
1. B forwards (CTBE , t) to C as a DEC query of the TBE scheme.
2. C answers C ′

IBE ← TBE.Dec(sk, t, CTBE).

– Note that if t is not the legitimate tag of CTBE , then C answers ⊥.
In this case, B answers 0.

3. B computes R′ ← IBE.Dec(tωj , C
′
IBE).

4. If Verify(Kv, σ, (CTBE , R
′)) = 1, then B returns 1, and 0 otherwise.

t = t∗ : If Kv ̸= K∗
v , then B breaks the TCR property of Htag. If Kv = K∗

v (we
call this a forge1 event), then B gives a random answer in C, and aborts.
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In the Challenge phase, A sends the challenge keywords ω∗
0 and ω∗

1 to B. B
chooses R∗ $←MIBE , and computes the challenge ciphertext as follows:

1. B computes CIBE,0 ← IBE.Enc(pkR, ω
∗
0 , R

∗) and CIBE,1 ← IBE.Enc(pkR,
ω∗
1 , R

∗).
2. B sends (M∗

0 ,M
∗
1 ) := (CIBE,0, CIBE,1) to C as the challenge messages of the

IND-stag-CCA experiment of the TBE scheme.
3. C gives C∗

TBE ← TBE.Enc(pkS , t
∗,M∗

µ) to B.
4. B computes σ∗ ← Sign(K∗

s , (C
∗
TBE , R

∗)), and sends λ∗ = (C∗
TBE ,K

∗
v , σ

∗) to
A.

Again, let (SCF-PEKS.Enc(pkS , pkR, ωj) := (CTBE ,Kv, σ), tωj ) be a T EST query,
where ωj ∈ ID. B computes t = Htag(Kv), and answers as follows:

In the case tωj ∈ {tω∗
0
, tω∗

1
} :

t = t∗ : If Kv ̸= K∗
v , then B breaks the TCR property of Htag. If Kv = K∗

v

(we call this a forge2 event), then B gives a random answer in C, and
aborts.

t ̸= t∗ : Then B can use the DEC oracle of the underlying TBE scheme as
follows. .
1. B forwards (CTBE , t) to C as a DEC query of the TBE scheme.
2. C answers C ′

IBE ← TBE.Dec(sk, t, CTBE).
– Note that if t is not the legitimate tag of CTBE , then C answers
⊥. In this case, B answers 0.

3. B computes R′ ← IBE.Dec(tωj , C
′
IBE).

4. If Verify(Kv, σ, (CTBE , R
′)) = 1, then B returns 1, and 0 otherwise.

In the case tωj ̸∈ {tω∗
0
, tω∗

1
} :

(CTBE,Kv, σ) = (C∗
TBE,K∗

v , σ
∗) : B returns 0, since (C∗

TBE ,K
∗
v , σ

∗) is
an SCF-PEKS ciphertext of either ω∗

0 or ω∗
1 .

(CTBE,Kv, σ) ̸= (C∗
TBE,K∗

v , σ
∗) : B runs the same simulation as in the

find stage.

If B does not abort, then our simulation is perfect. Finally, B outputs µ′, where
µ′ ∈ {0, 1} is the output of A.

Next, we prove that Pr[forge] := Pr[forge1∨ forge2] is negligible. We construct
an algorithm B′ which can win the sUF game with probability at least Pr[forge].
B′ obtains K∗

v from the sUF challenger, instead of executing Sig.KeyGen(1κ). B′

runs (pkS , skS) ← TBE.KeyGen(1κ), and gives pkS to A. A runs (pkR, skR) ←
IBE.Setup(1κ), and gives pkR to B. Since B′ has skS , B′ can answer any T EST
queries. In the challenge phase of the adaptive-IND-CKA-AT experiment, B′

computes t∗ = Htag(K
∗
v ), chooses R

∗ $←MIBE , runs C
∗
IBE ← IBE.Enc(pkR, ωµ,

R), and C∗
TBE ← TBE.Enc(pkS , t

∗, C∗
IBE), sets M∗ := (C∗

TBE , R
∗), sends M∗

to the sUF challenger, and obtains σ∗ from the sUF challenger. Therefore, B′

makes at most one signature query. Note that we do not have to care about
the value µ ∈ {0, 1}, since we only have to guarantee that λ∗ = (C∗

TBE ,K
∗
v , σ

∗)
is a valid SCF-PEKS ciphertext. In the forge events, A sends a T EST query
((CTBE ,Kv, σ), tωj ) with Kv = K∗

v .
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forge1 : In this case, B′ can obtain a signature without issuing the signature
query. B′ computes CIBE ← TBE.Dec(skS ,Htag(Kv), CTBE) and R′ ←
IBE.Dec(tωj , CIBE). If ((CTBE , R

′), σ) is not a valid signature pair, then B′

returns 0 as the answer of this T EST query. Otherwise, if ((CTBE , R
′), σ) is

a valid signature pair, then B′ submits a forged pair ((CTBE , R
′), σ) to the

sUF challenger and wins.
forge2 : Now tωj ∈ {tω∗

0
, tω∗

1
}. Then (CTBE , σ) ̸= (C∗

TBE , σ
∗). B′ computes

CIBE ← TBE.Dec(skS ,Htag(Kv), CTBE) and R′ ← IBE.Dec(tωj
, CIBE). If

((CTBE , R
′), σ) is not a valid signature pair, then B′ returns 0 as the answer

of this T EST query. Otherwise, if ((CTBE , R
′), σ) is a valid signature pair,

then B′ submits a forged pair ((CTBE , R
′), σ) to the sUF challenger and

wins.

Therefore, Pr[forge] := Pr[forge1 ∨ forge2] is negligible, since the underlying sig-
nature is sUF. ⊓⊔

6 Conclusion

In this paper, to show the relationships of IBE, TRE, and adaptive SCF-PEKS,
we propose a generic construction of TRE with 1-bit plaintext space (resp. adap-
tive SCF-PEKS) from adaptive SCF-PEKS (resp. anonymous IBE). Our first
result seems interesting since no bridge between TRE and PEKS primitive has
been known before. In addition, no generic construction of SCF-PEKS has been
proposed so far. That is, our second construction also seems independently in-
teresting.

As future works, it is interesting to consider the keyword guessing attacks [18,
29], namely, if adaptive SCF-PEKS can handle keyword guessing attack, then
what happens in the TRE context. In addition, we expect that the wildcard
searching capability [27] might lead to a construction of time-specific encryp-
tion [25], where the time “interval” can be specified. Finally, a construction
of TRE with multi-bit plaintext space from adaptive SCF-PEKS needs to be
revisited.
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