
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title How to Find Short RC4 Colliding Key Pairs

Author(s) Chen, Jiageng; Miyaji, Atsuko

Citation
Lecture Notes in Computer Science, 7001/2011: 32-

46

Issue Date 2011-10-12

Type Journal Article

Text version author

URL http://hdl.handle.net/10119/10295

Rights

This is the author-created version of Springer,

Jiageng Chen and Atsuko Miyaji, Lecture Notes in

Computer Science, 7001/2011, 2011, 32-46. The

original publication is available at

www.springerlink.com,

http://dx.doi.org/10.1007/978-3-642-24861-0_3

Description

How to Find Short RC4 Colliding Key Pairs

Jiageng Chen ? and Atsuko Miyaji??

School of Information Science,
Japan Advanced Institute of Science and Technology,

1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
{jg-chen, miyaji}@jaist.ac.jp

Abstract. The property that the stream cipher RC4 can generate the
same keystream outputs under two different secret keys has been discov-
ered recently. The principle that how the two different keys can achieve
a collision is well known by investigating the key scheduling algorithm of
RC4. However, how to find those colliding key pairs is a different story,
which has been largely remained unexploited. Previous researches have
demonstrated that finding colliding key pairs becomes more difficult as
the key size decreases. The main contribution of this paper is propos-
ing an efficient searching algorithm which can successfully find 22-byte
colliding key pairs, which are by far the shortest colliding key pairs ever
found.

1 Introduction

The stream cipher RC4 is one of the oldest and most wildly used stream ciphers in
the world. It has been deployed to innumerable real world applications including
Microsoft Office, Secure Socket Layer (SSL), Wired Equivalent Privacy (WEP),
etc. Since its debut in 1994 [1], many cryptanalysis works have been done on it,
and many weaknesses have been exploited, such as [5] [6] and [7]. However, if
RC4 is used in a proper way, it is still considered to be secure. Thus it is still
considered to be a high valuable cryptanalysis target both in the industrial and
academic world.

In this paper, we focus on exploiting the weakness that RC4 can generate
colliding key pairs, namely, two different keys will result in the same keystream
output. This weakness was first discovered by [2] and later generalized by [3].
For any ciphers, the first negative effects that this property could bring is the
reducing of the key space. It seems that it is not very dangerous if the colliding
key pairs are not so many. However, [4] demonstrated a key recovery attack by
making use of this weakness, and the complexity of the attack depends heavily
on how fast we can find those colliding key pairs. In [2], it has demonstrated that
the shorter the key is, the harder it is to find the colliding key pairs. A searching
algorithm was proposed in [2] and a 24-byte colliding key pair was the shortest
one that experimentally found. Finding short colliding key pairs has its practical

? This author is supported by the Graduate Research Program.
?? This work is supported by Grant-in-Aid for Scientific Research (B), 20300003.

meaning mainly because that the key size deployed in most of the applications
are short ones which are between 16 bytes to 32 bytes, and also the link between
the attacks like [4].

Our main contribution is proposing a searching algorithm that can find short
colliding key pairs efficiently. 22-byte colliding key pair is experimentally found
by using our algorithm in about three days time while a 24-byte colliding key
pair was found in about ten days time in [2]. We also analyze the complexity
of both our algorithm and the one in [2] to support our experimental result
from a theoretical point of view, so that we can understand the new searching
techniques clearly.

This paper is organized as follows. In section 2, we give a short introduction
on RC4 algorithm and the details on the key collisions. In section 3, we review
the previous searching techniques including brute force searching and the one
proposed in [2]. Section 4 covers the new techniques we propose to reduce the
searching complexity followed by the new algorithm in section 5. Complexity
evaluations are described in section 6.

2 RC4 key collision

First we shortly describe the RC4 algorithm. The internal state of RC4 consists
of a permutation S of the numbers 0, ..., N−1 and two indices i, j ∈ {0, ..., N−1}.
The index i is determined and known to the public, while j and permutation S
remain secret. RC4 consists of two algorithms: The Key Scheduling Algorithm
(KSA) and the Pseudo Random Generator Algorithm (PRGA). The KSA gen-
erates an initial state from a random key K of k bytes as described in Algorithm
1. It starts with an array {0, 1, ..., N −1} where N = 256 by default. At the end,
we obtain the initial state SN−1.
Once the initial state is created, it is used by PRGA. The purpose of PRGA
is to generate a keystream of bytes which will be XORed with the plaintext to
generate the ciphertext. PRGA is described in Algorithm 2. Since key collision
is only related to KSA algorithm, we will ignore PRGA in the rest of the paper.

Algorithm 1. KSA
1: for i = 0 to N − 1 do
2: S[i]← i
3: end for
4: j ← 0
5: for i = 0 to N − 1 do
6: j ← j + S[i] +K[i mod l]
7: swap(S[i], S[j])
8: end for

Algorithm 2. PRGA
1: i← 0
2: j ← 0
3: loop
4: i← i+ 1
5: j ← j + S[i]
6: swap(S[i], S[j])
7: keystream byte zi = S[S[i] + S[j]]
8: end loop

We focus on the key collision pattern discovered in [2], which can generate
shorter colliding key pairs than other patterns discovered in [3]. In [2], it clearly
described how two keys K1 and K2 with the only one difference K2[d] = K1[d]+1
can achieve a collision. It traced two KSA procedure and two S-Box states

generated by the two keys, and pointed out how two S-Box states become equal
to each other at the end of the KSA. Actually, the essence of the key collisions is
only related to some j values at some specific locations. If these conditions once
satisfied, a collision is expected. Thus we prefer to use another way to explain
the collision by listing all the j conditions. In this way, we only need to exam
the behavior of one key, since once the j values generated by this key satisfy all
the conditions, then deterministically, there exists another key that they form a
colliding key pair. To simplify, we check whether a given key K1 has a related
key K2 such that K2[d] = K1[d] + 1 and K1 and K2 can achieve a collision.
Then all we need is to confirm whether K1’s j behaviors satisfy the conditions
in Table 1.

Table 1. j conditions required to achieve a collision

Round Round Interval Class 1 Class 2

1 [0, d+ 1] jd = d, jd+1 = d+ k j0∼d−1 6= d, d+ 1

2 [d+ 2, d+ k] jd+k = d+ 2k jd+2∼d+k−1 6= d+ k

...

t [d+ (t− 2)k + 1, jd+(t−1)k = d+ tk jd+(t−2)k+1∼d+(t−1)k−1 6=
d+ (t− 1)k] d+ (t− 1)k

...

n− 1 [d+ (n− 3)k + 1, jd+(n−2)k = (d− 1) + (n− 1)k jd+(n−3)k+1∼d+(n−2)k−1 6=
d+ (n− 2)k] d+ (n− 2)k

n [d+ (n− 2)k + 1, jd+(n−1)k−2 = S−1
d+(n−1)k−3[d], jd+(n−2)k+1∼d+(n−1)k−3 6=

d+ (n− 1)k − 1] jd+(n−1)k−1 = d+ (n− 1)k − 1 d+ (n− 1)k − 1

The Round column presents the round number in the KSA steps in the
Round Interval column. There are n = b 256+k−1−d

k c rounds, which is also the
times that the key difference repeats during KSA. We separate the conditions
into two categories, Class 1 and Class 2. From Table 1, you see that the conditions
in Class 1 column are computational dominant compared with Class 2. This is
because for j at some time to be some exact value, probability will only be 2−8

assuming random distribution, while not equal to some exact value in Class 2 has
a relatively much higher probability. Also the main point for finding a colliding
key pair is how to meet those low probability conditions in Class 1 column. In
the rest of the paper, we focus on the Class 1 conditions. When we say a KSA
procedure (a trial) under some key K passes round i and fails at round i+ 1, we
indicate that all the Class 1 j conditions are satisfied in the previous i rounds
and fails at the i+ 1-th round.

3 Known searching techniques

3.1 Brute force search

The most trivial method is to do the brute force search. The attacker simply
generates a random secret key K with length k, and runs the KSA to test its
random variable j’s behavior. If the trial fails, then repeat the procedure until
one colliding key pair is found. In [2], it has been demonstrated that for each
trial, the successful probability is around (1

256)n+2. Thus the complexity for the

brute force searching is 28(n+2). For 24-byte keys, the complexity is around 296,
and for 22-byte keys which is actually found by us, it is around 2104.

3.2 Matsui’s searching algorithm

A searching algorithm is proposed in [2]. Here we make a short introduction
on his searching technique which is described in Table 2. It defines a search
function with two related keys as input, and output a colliding key pair or fail.
When some trial fails to find the colliding key pair, the algorithm does not
restart by trying another random related key pair, instead, it modifies the keys
as K1[x] = K1[x]+y,K1[x+1] = K1[x+1]−y for every x and y. Since jx = jx+y
and jx+1 = jx + Sx[x+ 1] +K1[x], thus jx+1 after the modification will not be
changed. This means that by modifying in this way, the next trial will have a
relatively close relation with the previous trial, in other words, if the previous
trial before the modification tends to achieve a collision, then the next trial after
the modification will also have the tendency. The algorithm recursively calls the
function Search(K1,K2) until it return a colliding key or fail.

4 New techniques to reduce the searching complexity

In this section, we propose several techniques to reduce the searching complexity
so that we can find short colliding keys in practical time.

4.1 Bypassing the first round deterministically

Our first observation is that we can pass the first round. Recall that in the first
round, there are two j conditions in Class 1 that we need to satisfy, namely

jd = d and jd+1 = k + d

As in [2], the setting of K[d + 1] = k − d − 1 always meets the condition
jd+1 = k+d since we have jd+1 = jd+d+1+K[d+1]. But still we have another
condition jd = d left in the first round. This condition can be easily satisfied by
modifying

K[d] = 255− jd−1

at the time when KSA is proceeded at index d − 1 after the swap. Since jd =
jd−1 + d + K[d] = d, and by modifying K[d] dynamically when the previous
value jd−1 is known, jd = d will always be satisfied. Then we can bypass the
first round and reduce the necessary number of rounds to n− 1.

Table 2. Matsui’s Algorithm

Input: Key length k, d = k − 1

Output: colliding key pair K1 and K2 such that K2[d] = K1[d] + 1,

K1[i] = K2[i] if i 6= d, KSA(K1) = KSA(K2).

1. Generate a random key pair K1 and K2 which differs at position d by one.

Set K1[d+ 1] = K2[d+ 1] = k − d− 1.

2. Call function Search(K1,K2), if Search(K1,K2)=1, collision is found, else goto 1.

Search(K1,K2) :

s = MaxColStep(K1,K2)

If s = 255, then return 1.

MaxS = maxx,yMaxColStep(K1〈x, y〉,K2〈x, y〉)

If Maxs ≤ s, then return 0.

C=0

For all x and y, do the following:

If MaxColStep(K1〈x, y〉,K2〈x, y〉) = MaxS, call Search(K1,K2)

C = C + 1

If C = MaxC, then return 0.

Notations:

MaxColStep(K1,K2): The maximal number of S-Box elements that S1 differs

from S2.

K〈x, y〉 : K[x] = K[x] + y,K[x+ 1] = K[x+ 1]− y, K[i] = K[i] if i 6= x, x+ 1.

4.2 Bypassing the second round with high probability

If we choose the differential key index carefully, we find that the second round
can also be skipped with very high probability compared with the uniform distri-
bution. Generally speaking, we would like to choose d = k−1 so that in the KSA
procedure, the key differential index will be repeated as few times as possible.
Actually choosing the d at the indices close to k− 1 will have the same affect as
the last index k − 1. For example, for key with length 20-24 bytes, setting the
key differential at indices k − 1, k − 2, k − 3, k − 4 will cause the key differential
index to be repeated the same times during the KSA. Thus instead of setting
d = k − 1, let’s set

d = k − 3

so that after d, we have another two key bytes. For the first round and second
round, the following two j conditions are necessary to meet:

jd+1 = jk−2 = 2k − 3

jd+k = j2k−3 = 3k − 3

and we have

j2k−3 = jk−2 +K[k − 1] +

k−3∑
i=0

K[i] +

2k−3∑
i=k−1

Si−1[i] (1)

P2nd= jk−2 +K[k − 1] +

k−3∑
i=0

K[i] +

2k−3∑
i=k−1

Sk−2[i] (2)

Thus by modifying

K[d+ 2] = K[k − 1] = j2k−3 − jk−2 −
k−3∑
i=0

K[i]−
2k−3∑
i=k−1

Sk−2[i]

at the time i = k − 2 after the swap, with probability

P2nd =
256− (k − 2)

256
× 256− (k − 3)

256
× · · · × 256− 1

256
=

k−2∏
i=1

256− i
256

we can pass the second round.
This can be explained as follows. For two fixed j values jk−2 in the first

round, and j2k−3 in the second round, we have equation (1). At the time i =

k − 2 after the swap, we don’t know
∑2k−3
i=k−1 Si−1[i], but we can approximate

it by using
∑2k−3
i=k−1 Sk−2[i]. The conditions on this approximation is that for

i ∈ [k− 1, 2k− 4], j does not touch any indices [i+ 1, 2k− 3], which gives us the
probability P2nd. Then if we set the K[d + 2] as before, with P2nd we can pass
the second round. Notice that the reason why we can modify K[d+ 2] is related
to the choice of d. When modifying K[d + 2], we don’t wish the modification
will affect the previous execution, which has been successfully passed. When
modifying K[d+ 2] trying to meet the second round condition, this key byte is
used for the first time during KSA, thus we won’t have the previous concern.
For short keys such as k = 24, P2nd = 0.36, and for k = 22, P2nd = 0.43. The
successful probability is thus much bigger compared with the uniform probability
2−8 = 0.0039.

4.3 Reducing the complexity in the last round

In the last round, there are two j conditions need to be satisfied, namely,

j(n−1)k+d−2 = r such that S(n−1)k+d−3[r] = d

j(n−1)k+d−1 = d+ (n− 1)k − 1

And from j(n−1)k+d−1 = j(n−1)k+d−2 +S(n−1)k+d−2[(n− 1)k+ d− 1] +K[d− 1],
K[d − 1] can be decided if j(n−1)k+d−2 is fixed to some value. During the KSA

procedure, j(n−1)k+d−2 could be touching any indices, but with overwhelming
probability, it will touch index d. This is because after step i = d, one of the two
S-Box differentials will be staying at index d till step i = (n− 1)k+ d− 2 unless
it is touched by any j during the steps [d + 1, (n − 1)k + d − 3]. Thus we can
assume that

j(n−1)k+d−2 = d

and we can thus modify K[d− 1] at step i = d− 1 before the swap as follows:

K[d− 1] = j(n−1)k+d−1 − j(n−1)k+d−2 − S(n−1)k+d−2[(n− 1)k + d− 1] =
(n− 1)k + d− 1− d− (d+ 1) = (n− 1)k − d− 2

This modification indicates that if some trial meets the j(n−1)k+d−2 = d
condition in the last round, then with probability 1, the other condition in this
round on j(n−1)k+d−1 will be satisfied. Simply speaking, 216 computation cost is
required to pass the final round, while we reduce it to

Plast = 28 × (
255

256
)−((n−1)k−3)

For a 24-byte key, the computation cost can be reduced to around 29.2, which is
a significant improvement. The overall cost will be covered in the next section,
here we just demonstrate to give a intuition.

4.4 Multi-key modification

In the area of finding hash collisions, multi-message modification is a widely used
technique that first proposed by [8]. MD5 and some other hash functions are
broken by using this technique. The idea is that when modifying the message
block at some later round i to satisfy the i-th round conditions, leaving the
previous rounds conditions satisfied (In hash functions, a message block is usually
processed for many rounds in different orders). Since finding the key collision
of RC4, to some degree, is related to finding hash collisions, we are motivated
by the multi-message modification technique and find that we can also do such
efficient modifications in finding RC4 colliding key pairs. Thus we call it multi-
key modification.

After adapting previous proposed techniques, we may easily bypass the previ-
ous two rounds. Start from the third round, however, all the key bytes have been
used more than once. This means that modifying any key bytes will definitely
affect the previous rounds, which could make the previous round conditions be-
come unsatisfied. In case of RC4, due to its property, we can to some degree
maintain the previous round conditions while modifying the key in any later
round. Let’s assume for some round 2 < t < n − 1 for the easy demonstration,
the t-th round conditions are not satisfied, namely, j(t−1)k+d 6= tk + d, and all
the previous rounds conditions are satisfied. The following equations should all

be satisfied in order to pass the first t rounds.

j2k+d = jk+d +

k−1∑
j=0

K[j] +

2k+d∑
j=k+d+1

Sj−1[j] (3)

j3k+d = j2k+d +

k−1∑
j=0

K[j] +

3k+d∑
j=2k+d+1

Sj−1[j] (4)

......

j(t−1)k+d = j(t−2)k+d +

k−1∑
j=0

K[j] +

(t−1)k+d∑
j=(t−2)k+d+1

Sj−1[j] (5)

There are four parts in each of these equations, and when the trial fails to
pass the round t, (5) does not hold while all the previous equations hold. From
the satisfied equations, the sum of the secret key is fixed, and when modifying
the secret key in round t, we should not change the sum

∑k−1
j=0 K[j], otherwise

the previous equations will not be satisfied anymore. Then our problem now
becomes how to modify K to satisfy condition on j(t−1)k+d. There are many ways
to modify the secret key without changing the sum. Matsui’s algorithm actually
uses one of the ways, namely, K[x] = K[x] + y and K[x + 1] = K[x + 1] − y.
Setting the modification targets next to each other reduce the steps that different
j values will change the previous correct S-Box sum. Matsui’s algorithm tries
this modification for every x and y (x ∈ [0, k−2], y ∈ [0, 255]) one by one, hoping

that for some x and y, the S-Box sum
∑(t−1)k+d
j=(t−2)k+d+1 Sj−1[j] will be the correct

one so that condition on j(t−1)k+d is satisfied, while leaving the all the previous
S-Box sum satisfied. We point out that modifying the secret key in this way have
some drawbacks. First, only some specific x and y values will satisfy the condition
on j(t−1)k+d leaving the previous conditions satisfied, while most of the other
modifications will fail. In other words, for passing round t, this modification can
be seen as brute force search (but its effect on the previous rounds is less than
brute force search, we will cover it in the complexity evaluation). Second, as
also mentioned in [2], such modification will generate many duplicated searching
paths. Especially, since it is a recursive algorithm, one duplication in the small
depth of the tree will cause a considerable amount of computation waste.

We discover that by adding a strategy on x and y in the key modification
instead of brute force search, we could overcome the previous two drawbacks.
Let’s again consider the trial that passes all the previous t− 1 rounds and fails
to pass the t-th round, where we assume 2 < t < n− 2. Let’s run the KSA until
step i = (t−1)k+d−1 after the swap, then we check if the Class 1 j conditions
on round t is satisfied or not, namely whether

S(t−1)k+d−1[(t−1)k+d] = j(t−1)k+d−j(t−2)k+d−
(t−1)k+d−1∑
j=(t−2)k+d+1

Sj−1[j]−
k−1∑
j=0

K[j]

If the equation holds, we pass the t-th round and proceed the next round. Oth-
erwise, let’s denote

∆(t−1)k+d = j(t−1)k+d − j(t−2)k+d −
(t−1)k+d−1∑
j=(t−2)k+d+1

Sj−1[j]−
k−1∑
j=0

K[j]

And we wish the value ∆(t−1)k+d could be at index (t− 1)k+ d before i touches
it. We check if ∆(t−1)k+d ≤ (t − 2)k + d. If this is the case, it means that we
have available S-Box value that can be swapped here. In other words, modify
the key as follows:

K[∆(t−1)k+d] = K[∆(t−1)k+d] + (t− 1)k + d− j∆(t−1)k+d

K[∆(t−1)k+d + 1] = K[∆(t−1)k+d + 1]− (t− 1)k − d+ j∆(t−1)k+d

We can store all the previous j values so that j∆(t−1)k+d
is available when we need

it for the key modification. If ∆(t−1)k+d > (t− 2)k+ d, it means that no matter
how we modify the key, we can not pass the i-th round by changing S[(t−1)k+d].
In this case, we go back one step to test if S(t−1)k+d−2[(t − 1)k + d − 1] is the
correct one assuming S(t−1)k+d−2[(t− 1)k+ d] = S(t−1)k+d−1[(t− 1)k+ d]. Keep
testing until i = (t−2)k+d+1. Now modifying the key becomes target oriented
instead of brute searching all x and y, and thus duplicated searches can be greatly
reduced. And another big advantage is that once the modification succeeds, we
pass the t-th round, while in [2], after the modification assures the passing of
the previous t− 1 rounds, we need to pass the t-th round in a random way.

4.5 New Searching Algorithm

All the techniques described previously compose our new searching algorithm,
which is summarized in Table 3. It is a recursive algorithm with recursive depth
set to be n, which is the maximum rounds. If the newsearch function returns
the maximum rounds, then it indicates that a collision is found. Note that when
implementing, it can be further optimized by combining Matsui’s algorithm and
our new proposed one to proceed part of the rounds accordingly, so that a
better performance could be achieved. For the simplicity, we just describe the
most straightforward way in Table 3.

5 Complexity Evaluation

5.1 Complexity for our proposed algorithm

We will see from a theoretical point of view, how efficiently our proposed algo-
rithm can perform. We start by giving the following theorem which is important
to compute the complexity, and show the proof.

Table 3. Proposed Searching Algorithm

Input: Key length k, different index d = k − 3, n = b 256+k−1−d
k

c

Output: K1 and K2 such that K2[d] = K1[d] + 1, K1[i] = K2[i] if i 6= d,

KSA(K1) = KSA(K2)

1. Store the following j∗ values in the table, which are the conditions needed to be

satisfied. j∗d = d, j∗d+1 = k + d, j∗i = i+ k for i ∈ {d+ k, ..., d+ k(n− 2)},

j∗d−2+k(n−1) = d, j∗d−1+k(n−1) = d− 1 + k(n− 1). (Class 1 j conditions)

2. Randomly generate a key K1 with key length k. Modify

K1[d− 1] = (n− 1)k − d− 2, K1[d+ 1] = k − d− 1.

Set K2 = K1 and K2[d] = K1[d] + 1.

3. Run the KSA until i = d− 1 after the swap. Modify K1[d] = 256− jd−1, and

K2[d] = K1[d] + 1.

4. Keep running the KSA until i = d+ 1 after the swap. Modify

K1[d+ 2] = j∗2k−3 − j∗k−2 −
∑k−3
i=0 K1[i]−

∑2k−3
i=k−1 S1,k−2[i]

K2[d+ 2] = j∗2k−3 − j∗k−2 −
∑k−3
i=0 K2[i]−

∑2k−3
i=k−1 S2,k−2[i]

5. Set the recursive depth variable R = 0.

6. If newsearch(K1, K2)=n

Colliding key pair found. Output K1 and K2.

else goto 2.

newsearch(K1,K2):

If Round(K1,K2) = n

then return n.

MaxR = Round(K1,K2) = t− 1, set r = (t− 1)k + d

while r > (t− 2)k + d

set ∆r = j(t−1)k+d − j(t−2)k+d −
∑r−1
j=r−k+1 Sj−1[j]−

∑k−1
j=0 K[j].

If ∆r ≤ (t− 2)k + d

modify the key as follows:

K1[∆r] = K1[∆r] + r − j∆r K1[∆r + 1] = K1[∆r + 1]− r + j∆r

K2[∆r] = K2[∆r] + r − j∆r K2[∆r + 1] = K2[∆r + 1]− r + j∆r

If Round(K1,K2) ≤MaxR or R = n

return Round(K1,K2).

Else R = R+ 1, newsearch(K1,K2)

r = r − 1

Notation

Round(K1,K2) : The number of rounds that a key pair K1,K2 can pass. In other

words, key pair K1 and K2 satisfy all the j conditions in the

first Round(K1,K2) rounds.

Theorem 1. Define Prt,(x,y) be the probability for a trial that passes round t
(t > 2) by modifying the secret key as K[x] = K[x] + y,K[x+ 1] = K[x+ 1]− y
according to the multi-key modification given the previous trial fails to pass the
t-th round. Then

Prt,(x,y) ≈
t∑
i=1

(
(
(t− 1)k − 2

256
)×

i−2∏
j=0

(
256− (t− j)k + x+ 3

256
)4

× (t− i+ 1)k − x− 3

256
×

3∑
j=0

(
256− (t− i+ 1)k + x+ 3

256
)

)
+

256− (t− 1)k + 2

256

Proof. Now let’s consider some trial that passes all the first t − 1 rounds and
fails to pass the t-th round. Then we modify the secret key at indices x and x+1
with value difference y so that K[x] = K[x] + y,K[x+ 1] = K[x+ 1]− y. Let’s
denote j

′

s,x, j
′

s,x+1 and js,x, js,x+1 be the j values for the current trial and the
trial after the key modification at the modified key indices at round s. It is easy
to see that for each such key modification, the change of the 4 j values at each
round will cause 4 S-Box values to be changed.

For the trial before the key modification, the successful pass of the first t− 1
rounds indicates the correct S-Box sum for some fixed key sum

∑k−1
i=0 K[i]. Since

our modification doesn’t change the key sum, thus, after the key modification,
the previous correct S-Box sum should still be satisfied in order to have a chance
to pass the t-th round. Otherwise, the key modification will only cause a failure
at an rather early round. For example if the previous trial passes the first t− 1
rounds, for the key modification in round s ≤ t − 1 (assuming this key modifi-

cation passes all the previous s-1 rounds), the S-Box sum
∑(t−1)k−1
i=x+(s−1)k Si−1[i]

should not be violated by the 4 changed j values j
′

s,x, j
′

s,x+1 and js,x, js,x+1.
First let’s consider the probability that due to the key modification that

the previous correct S-Box sum is violated. The modification is processed in the
same order as the KSA procedure. And notice that in each round, due to the key
modification, we have 4 changed j values, and they are checked in the sequence
j
′

s,x, js,x, j
′

s,x+1, js,x+1 whether the failure conditions are satisfied. Notice that
due to the use of the multi-key modification technique, the S-Box sum in the
t-th round can not be touched since we have already precomputed the sum and
are expecting the corresponding swap. The following events define the the S-Box
intervals that once touched, the previous correct S-Box sums will be violated
due to the modification in round s.

– As : j
′

s,x ∈ [x + (s − 1)k, tk − 3] (the original j
′

s,x violates the S-Box sum∑tk−3
i=x+(s−1)k Si−1[i])

– Bs : js,x ∈ [x+ (s− 1)k, tk − 3] (the newly modified j
′

s,x violates the S-Box

sum
∑tk−3
i=x+(s−1)k Si−1[i]))

– Cs : j
′

s,x+1 ∈ [x+ (s− 1)k+ 1, tk− 3] (the original j
′

s,x+1 violates the S-Box

sum
∑tk−3
i=x+(s−1)k+1 Si−1[i])

– Ds : js,x+1 ∈ [x + (s − 1)k + 1, tk − 3] (the newly modified js,x+1 violates

the S-Box sum
∑tk−3
i=x+(s−1)k+1 Si−1[i])

Denote Pr(Ss) to be the probability that the modification in round s will
not break the Class 1 j conditions that have been satisfied in the previous trial.

Pr(Ss) = (1− Pr(As)) · (1− Pr(Bs)) · (1− Pr(Cs)) · (1− Pr(Ds))

= Pr(Ās) · Pr(B̄s) · Pr(C̄s) · Pr(D̄s)

Denote Pr(Fs) to be the probability that the modification in round s will
break the Class 1 j conditions that have been satisfied in the previous trial so
that the current trial fails to pass round t.

Pr(Fs) = 1− Pr(Ss)

The exact values for the four events can be computed as follows for s > 2:

Pr(As) = Pr(Bs) =
(t− s+ 1) ∗ k − x− 2

256

Pr(Cs) = Pr(Ds) =
(t− s+ 1) ∗ k − x− 3

256

Recall that the multi-key modification may fail because no available S-Box
element can be swapped to the corresponding location in the t-th round. We
approximate this probability to be

Pr(Fmulti) ≈
256− (t− 1)k + 2

256

And the probability that we successfully find a candidate for the multi-key mod-
ification is

Pr(Smulti) ≈
(t− 1)k − 2

256

Then the total probability that after the key modification the trial fails to
pass the t rounds can be computed as follows:

Pr(F) = Pr(Fmulti) + Pr(Smulti) · Pr(F1) + Pr(Smulti) · Pr(S1) · Pr(F2) +

· · ·+ Pr(Smulti)

t−1∏
i=1

Pr(Si) · Pr(Ft)

Thus the probability that for some key modification succeeds to pass the t-th
round while the trial before the modification passes the previous t− 1 rounds is

Prt,(x,y) = 1− Pr(F)

After replacing with detailed parameters we complete our proof.

Then the complexity can be derived by the Theorem 2.

Theorem 2. The complexity to find a colliding key pair for secret key with key
length k is

Compnew ≈ Pr−1
n,(x̄,ȳ)

where Prn,(x̄,ȳ) is the average case on all possible x and y, and n = b 256+k−1−d
k c,

d = k − 3.

To find 22-byte and 24-byte colliding key pairs, the complexity is around 245

and 240.

5.2 Complexity for Matsui’s Algorithm

In [2], a searching algorithm was proposed without giving the complexity evalu-
ation. In order to compare the efficiency, we also give the complexity evaluation
for algorithm proposed in [2]. Since Matsui’s algorithm is also a recursive based
algorithm, we can use a similar way as previous to analyze. We point out the
different points here.

Without using the multi-key modification technique that chooses the target
position to modify the key, it tries all the values for x and y, thus the S-Box in
the t-th round can be touched. Also they set key difference at d = k− 1. We can
redefine the following events that for the changed j value violating the S-Box
sum.

– AMs : j
′

s,x ∈ [x+ (s− 1)k, (t− 1)k − 1]
– BMs : js,x ∈ [x+ (s− 1)k, (t− 1)k − 1]
– CMs : j

′

s,x+1 ∈ [x+ (s− 1)k + 1, (t− 1)k − 1]
– DM

s : js,x+1 ∈ [x+ (s− 1)k + 1, (t− 1)k − 1]

Since there is no concern for the multi-key modification failure , Pr(FM) can
be denoted as

Pr(FM) = Pr(FM1) + Pr(SM1) · Pr(FM2) + · · ·+
t−2∏
i=1

Pr(SMi)Pr(FMt−1)

where

Pr(SMs) = (1− Pr(AMs)) · (1− Pr(BMs)) · (1− Pr(CMs)) · (1− Pr(DM
s))

= Pr(ĀMs) · Pr(B̄Ms) · Pr(C̄Ms) · Pr(D̄M
s)

and
Pr(FMs) = 1− Pr(SMs)

Also another big difference is that the modification of the key cannot guaran-
tee the passing of the t-th round. Thus we have to assume the t-th round Class
1 j conditions will be satisfied randomly, namely,

PrMt,(x,y) = (1− Pr(FM))× 2−8·(1+b t
n c)

This is because for any rounds except the last round, we have one j condition to
satisfy, and we have two in the last round. Then we have the following theorems.

Theorem 3. Define PrMt,(x,y) be the probability for a trial that passes round t by

modifying the secret key as K[x] = K[x]+y,K[x+1] = K[x+1]−y according to
the Matsui’s algorithm given the previous trial fails to pass the t-th round. Then
we have

PrMt,(x,y) ≈
(

1− (t− 1)k − x
256

×
3∑
i=0

(
256− (t− 1)k + x

256
)i −

t−1∑
i=2

((t− j)k − x
256

×

i−1∏
j=1

(
256− (t− j)k + x

256
)4 ×

3∑
j=0

(
256− (t− i)k + x

256
)j
))
× 2−8(1+b t

n c)

Theorem 4. The complexity of Matsui’s algorithm to find a colliding key pair
for secret key with key length k is

Compmatsui = (PrMn,(x̄,ȳ))
−1

where Prn,(x̄,ȳ) is the average case on all possible x and y, and n = b 256+k−1−d
k c.

As a result, the complexity for finding 24-byte colliding key pair is around
248 and 253 for 22-byte keys. The following figure shows the complexity to search
for different colliding key pairs using two different algorithms.

Fig. 1. Computational Complexity

We run the experiment under our proposed algorithm and successfully find
by far the shortest 22-byte colliding key pair in about three days computational
time by using parallel computer Cray XT5 (Quad-Core AMD Opteron 2.4GHz,
10 cores are used). In case of [2], around 10 days computational time and multiple
cpus were used (the detailed information was not published) to find a 24-byte

colliding key pair. Also, our proposed algorithm has a better efficiency searching
for other short colliding keys which seems difficult to find by using the algorithm
in [2]. Here is the concrete 22-byte colliding key pair found by us in hexadecimal
form:

K1(K2) : A2 27 43 A7 03 94 2F 17 75 BB A7 27 8F DD 3E 7B C6 A1 C7 81(82)
02 5A

6 Conclusion

In this paper, we investigate how to find RC4 colliding key pairs efficiently.
We propose several techniques that can be used to bypass several rounds faster
than brute force search, and the multi-key modification technique allows us to
further increase the searching efficiency without drawback of duplicate searching
which is the problem in [2]. We also give the complexity evaluation for both our
proposed algorithm as well as the one in [2]. And finally by showing by far the
shortest 22-byte colliding key pair ever found, we confirm that our algorithm
does work efficiently as expected.

Acknowledgements

This work is inspired by the previous work of Mitsuru Matsui, and the authors
wish to thank him for his invaluable comments. Also, the authors wish to thank
all the anonymous reviewers for their useful suggestions to help to improve this
paper.

References

1. Anonymous: RC4 Source Code. CypherPunks mailing list (September 9, 1994),
http://cypherpunks.venona.com/date/1994/09/msg00304.html,
http://groups.google.com/group/sci.crypt/msg/10a300c9d21afca0

2. Matsui, M.: Key Collisions of the RC4 Stream Cipher. In: Dunkelman, O., Preneel,
B. (eds.) FSE 2009. LNCS, vol. 5665, pp. 1.24. Springer, Heidelberg (2009)

3. Chen, J., Miyaji, A.: Generalized RC4 Key Collisions and Hash Collisions. In:
J.A.Garay., R.De Prisco (eds.): SCN 2010. LNCS, vol. 6280, pp.73-87, Springer,
Heidelberg (2010)

4. Chen, J., Miyaji, A.: A New Practical Key Recovery Attack on the Stream Cipher
RC4 Under Related-Key Model. In: et al. (eds.): Inscrypt 2010, LNCS, vol. 6584,
pp.62-76, Springer, Heidelberg (2011).

5. Sepehrdad, P., Vaudenay, S., Vuagnoux, M: Statistical Attack on RC4. In: Paterson,
K. (eds.): Eurocrypt 2011. LNCS, vol. 6632, pp.343-363, Springer, Heidelberg (2011)

6. Sepehrdad, P., Vaudenay, S., Vuagnoux, M: Discovery and Exploitation of New
Biases in RC4. In: Biryukov, A., Gong, G., Stinson, D.(eds.): SAC2010. LNCS, vol.
6544, pp.74-91, Springer, Heidelberg (2011)

7. Subhamoy , M., Goutam , P., Sourav , S: Attack on Broadcast RC4 Revisited . In:
.(eds.): FSE2011. LNCS, vol. 6733, pp. 199-217, Springer, Heidelberg (2011).

8. Wang, X., and Yu, H. How to break MD5 and other hash functions. In: Advances in
Cryptology - EUROCRYPT 2005, LNCS, vol.3494, pp. 19-35, Springer, Heidelberg
(2005)

