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Encrypted by Shared Keys
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1 School of Information Science, Japan Advanced Institute of Science and
Technology, 1-1, Asahidai, Nomi, Ishikawa, 923-1292, Japan

2 Center for Highly Dependable Embedded Systems Technology, JAIST, Japan
{jg-chen,k-emura,miyaji,}@jaist.ac.jp,

Abstract. Let a sender Alice computes a ciphertext C of a message M
by using a receiver Bob’s public key pkB . Damg̊ard, Hofheinz, Kiltz, and
Thorbek (CT-RSA2008) has proposed the notion public key encryption
with non-interactive opening (PKENO), where Bob can make an non-
interactive proof π that proves the decryption result of C under skB
is M , without revealing skB itself. When Bob would like to prove the
correctness of (C,M) (e.g., the information M sent to Bob is not the
expected one), PKENO turns out to be an effective cryptographic prim-
itive. A PKENO scheme for the KEM/DEM framework has also been
proposed by Galindo (CT-RSA2009). Bob can make a non-interactive
proof π that proves the decapsulation result of C under skB is K with-
out revealing skB itself, where K is an encapsulation key of the DEM
part. That is, no verifier can verify π without knowing K. This setting is
acceptable if K is an ephemeral value. However, PKENO is not applica-
ble if an encryption key is shared among certain users beforehand, and
is used for a relatively long period before re-running the key agreement
protocol, such as symmetric cryptosystems. In this paper, we define the
notion secret key encryption with non-interactive opening (SKENO), and
give a generic construction of SKENO from verifiable random function
(VRF) and the Berbain-Gilbert IV-dependent stream cipher construc-
tion (FSE2007). Bob can make a non-interactive proof π that proves the
decryption result of C under K is M , without revealing K itself.

1 Introduction

1.1 PKENO: Public Key Encryption with Non-interactive Opening

Let’s first consider the following scenario. Assuming that a sender Alice com-
putes a ciphertext C of a message M by using a receiver Bob’s public key pkB.
In order to solve the dispute in some circumstances, Bob would like to prove
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the correctness of the corresponding plaintext-ciphertext pair (C,M) (e.g., the
information M sent to Bob is not the expected one). The easiest way to prove
it is that Bob opens his secret key skB , demonstrates the decryption algorithm,
and shows the decryption result of C under skB is M . However, no other cipher-
text encrypted pkB remains secure. To capture this situation above, Damg̊ard,
Hofheinz, Kiltz, and Thorbek [13] has proposed the notion public key encryption
with non-interactive opening (PKENO), where Bob can make an non-interactive
proof π that proves the decryption result of C under skB is M , without revealing
skB itself. They also show a generic construction of PKENO from identity-based
encryption (IBE) [9] and strongly existentially unforgeable one-time signature
(OTS) [5]. Other generic construction of PKENO from group signature secure in
the BSZ model [4] has been proposed [17], and concrete constructions of PKENO
also have been proposed [20, 21, 28].

The main idea of PKENO construction is to make a decryption key which
works about the corresponding ciphertext only, and the decryption key is set
as a proof. For the sake of readability, we introduce the generic construction of
PKENO (based on IBE and OTS) proposed by Damg̊ard, Hofheinz, Kiltz, and
Thorbek [13] as follows: Bob runs (pkB, skB) ← IBE.KeyGen(1k), i.e., skB is a
master key of the underlying IBE scheme. Alice runs (vk, sk)← OTS.KeyGen(1k),
and computes C ← IBE.Enc(pkB , vk,M), i.e., a verification key vk is regarded as
the identity of the underlying IBE scheme, and computes σ ← OTS.Sign(sk, C).
The PKENO ciphertext is (C, σ, vk). Bob can decrypt (C, σ, vk) such that Bob
verifies 1 = OTS.Verify(vk, σ, C), and computes usk[vk] ← IBE.Extract(skB, vk)
and M ← IBE.Dec(usk[vk], C). Then, usk[vk] can be set as π, since anyone can
prove whether M = IBE.Dec(π,C) or not. Other ciphertexts encrypted by pkB
remain secure assuming that different vk is chosen in each encryption (this is a
reasonable assumption of OTS).

1.2 PKENO with the KEM/DEM framework and its Limitation

A PKENO scheme for the KEM/DEM (Key Encapsulation/Decapsulation Mech-
anism) framework also have been proposed by Galindo [20]. To encrypt M ,
Alice compute (K,C1) ← Encapsulation(pkB) and C2 ← DEM(K,M), where
DEM is a symmetric cipher, and sends C = (C1, C2) to Bob. Bob can compute
K ← Decapsulation(skB , C1) and M ← DEM(K,C2). In the Galindo’s scheme,
Bob can make a non-interactive proof π that proves the decupsulation result
of C1 under skB is K without revealing skB itself. The construction method-
ology of the Galindo PKENO scheme with the KEM/DEM framework is also
same as that of the previous PKENO scheme, where for a proof π anyone can
compute K ′ ← Decapsulation(π,C1) and check whether K = K ′ or not. That
is, no verifier can verify π without knowing K. This setting is acceptable if K
is an ephemeral value that changes per session (e.g., in the KEM/DEM usage).
However, in some other applications where the secret key K is negotiated before-
hand among a group of people, and it is then used by symmetric cryptosystems
to do encryption for relatively a period of time (especially this is the case for IV-
dependent stream cipher where the K is remained unchanged for many sessions
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while IV is changed for each session and sent in plaintext form for synchroniza-
tion), then the Galindo scheme does not work since the opening of K will expose
the unrelated messages as well. Here, we make it clear that the situation where
a ciphertext is encrypted by a shared key as follows.

– Let K be a shared key of Alice and Bob, and Charlie does not have K.
– Alice sends C to Bob, where C is a ciphertext of a message M under the
key K.

– For Charlie, Bob wants to prove that the decryption result of C is M without
revealing K.

PKENO is not capable to handle the situation above even a PKENO scheme
with the KEM/DEM framework has been proposed. Note that the proof itself is
the decryption key in the previous PKENO schemes. Since opening the shared
key K is not an option anymore,K should not be recognized as a proof. Thus, we
need to investigate a new methodology to handle the situation that a ciphertext
is encrypted by a shared key which cannot be revealed.

1.3 Our Contribution

In this paper, we define the notion secret key encryption with non-interactive
opening (SKENO), where

– Bob can make an non-interactive proof π that proves the decryption result
of C under K is M , without revealing K itself,

and give a generic construction of SKENO from verifiable random function
(VRF) [2, 14, 15, 26, 30, 33] and the Berbain-Gilbert IV-dependent stream cipher
construction [6], where IV is an initial vector.

In the Berbain-Gilbert construction, pseudo-random function (PRF) [23] is
regarded as a key scheduling algorithm (KSA) and a pseudo-random number
generator (PRNG) [8, 36] is regarded as a pseudo-random generation algorithm
(PRGA). From an n-bit initial vector IV and a k-bit secret key K, PRF (say
FK(IV )) outputs an m-bit initial state (say y) which is used as an input of
PRNG. Finally, PRNG (say G(y)) outputs L-bit keystream ZIV . A ciphertext
C is ZIV ⊕M , where ⊕ is the exclusive-or operation. Berbain and Gilbert give
a composition theorem where the composition G ◦ FK is also PRF such that
G◦F : {0, 1}n → {0, 1}L. Therefore, G◦F can be a secure stream cipher, where
no adversary A can distinguish whether G(FK(IV )) is a truly random number
or not, even if A can select IV.

A VRF is a PRF that provides a non-interactively verifiable proof: given
an input value x and its output y = FSK(x), a proof π(x) proves that y is
the output of the function F indexed by SK given input x, without revealing a
secret key SK itself. Several applications of VRF have been considered, e.g., non-
interactive lottery system used in micropayment schemes [35], resettable zero-
knowledge proofs [34], updatable zero knowledge databases [29], set intersection
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protocols [25], compact e-cash [12, 3], adaptive oblivious transfer protocols [27],
keyword search [19], and so on. We make it clear that the usage of VRF for the
PKENO functionality has not been appeared to the best of our knowledge.

We set IV as an input of VRF (as in the Berbain-Gilbert construction) and
set a shared key K as a secret key of VRF. VRF leads to an m-bit initial
state which is the input to the PRNG for generating a L-bit keystream ZIV . A
ciphertext C is ZIV ⊕M . We set π := (π′, y = FK(IV )) a proof of (IV, C,M),
where K := SK. Due to the VRF functionality, one can prove that m-bit initial
state is the result of the underlying VRF without revealing K.

Although we have to mention that the VRF primitive is a relatively expensive
assumption, our construction can be considered to be efficient in the environ-
ments where the key and IV setup phase is not executed frequently, since the
execution of PRNG will play a dominant role in the encryption and decryption
process.

2 Preliminaries

In this section, we define PRNG and VRF. We denote State as the state infor-
mation transmitted by the adversary to himself across stages of the attack in
experiments.

2.1 PRNG: Pseudo-Random Number Generator

Pseudo-random number generator (PRNG) G : {0, 1}m → {0, 1}L is used to
expand an m-bit secret seed into an L-bit sequence (m < L).

Definition 1 (Pseudorandomness of PRNG). We say that an function
G : {0, 1}m → {0, 1}L is PRNG if for all probabilistic polynomial-time (PPT)
adversary A, the following advantage is a negligible function of the security pa-
rameter λ.

AdvPseudo
G,A (1λ) := |Pr[y∗ $← {0, 1}m; b

$← {0, 1};

Z∗
0 ← G(y∗); Z∗

1
$← {0, 1}L; b′ ← A(1λ, Z∗

b ); b = b′]− 1

2
|

As a well-known result, PRNGs exist if and only if one-way functions exist [24].
Or rather, from a 1-1 one-way function f (i.e., one-way permutations, OWPs), a
PRNGG is easily constructed [22] such thatG(y) = b(y)b(f(y))b(f2(y)) · · · b(fL−1(y)),
where b is a corresponding hard-core.

2.2 VRF: Verifiable Random Function

Verifiable random functions (VRFs) were proposed by Micali, Rabin, and Vad-
han [33], and many VRF constructions have been proposed by applying the
complexity assumptions used in public-key encryption constructions (e.g., the
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strong RSA assumption [33], the q-Diffie-Hellman inversion assumption and the
q-decisional bilinear Diffie-Hellman inversion assumption [15], the generalized
Diffie-Hellman assumption [14], the ℓ-Decisional Diffie-Hellman Exponent as-
sumption [26] and so on). Some black-box separations/constructions also have
been shown by Brakerski, Goldwasser, Rothblum, and Vaikuntanathan [11],
where VRF (both weak one and standard one) cannot be constructed from OWPs
in a black-box manner, and the existence of weak VRF is essentially equivalent
to the existence of non-interactive zero-knowledge proofs for all NP languages
in the common random string model. Since OWPs are sufficient for construct-
ing most of basic symmetric-key primitives, which include, e.g., PRNG, PRF,
symmetric-key encryption schemes, and message authentication codes (Matsuda
et al. [32] provide a nice summary of OWPs), VRF is a strong tool for con-
structing a stream cipher (Fiore and Schröder explained feasibility of VRF [18]
in details). However, for handling the PKENO functionality in the symmetric
cryptosystems such strong cryptographic assumption is required. It is an inter-
esting open problem to clarify whether a black-box separation (or construction)
of SKENO based on a weaker primitive than VRF exists or not.

Next, we define VRF by referring the Hohenberger-Waters VRF definition [26]
as follows. Let F : {0, 1}k × {0, 1}n → {0, 1}m, where k = k(λ), n = n(λ), and
m = m(λ) are polynomials in the security parameter 1λ, be an efficient com-
putable function. For all SK ∈ {0, 1}k, simply we denote FSK : {0, 1}n →
{0, 1}m.

Definition 2 (VRF [26]). We say that F is a VRF if there exist algorithms
(VRF.Setup,VRF.Prove,VRF.Verify) such that

VRF.Setup(1λ) outputs a pair of keys (PK,SK);

VRF.Prove(SK, x) outputs a pair (y, π′), where y = FSK(x) is the function value
of x ∈ {0, 1}n and π′ is the proof of correctness; and

VRF.Verify(PK, x, y, π′) outputs 1 if y = FSK(x), and 0 otherwise.

In addition, three security notions are required:

Provability: This guarantees that an honestly generated proof is always ac-
cepted by the Verify algorithm, i.e., for all (PK,SK)← VRF.Setup(1λ) and
x ∈ {0, 1}n, if (y, π′) ← VRF.Prove(SK, x), then VRF.Verify(PK, x, y, π′) =
1.

Uniqueness: This guarantees that no proof is accepted for different values y1 ̸=
y2 and a common x, i.e., for all (PK,SK) ← VRF.Setup(1λ) and x ∈
{0, 1}n, there does not exist a tuple (y1, y2, π

′
1, π

′
2) such that y1 ̸= y2 and

VRF.Verify(PK, x, y1, π
′
1) = VRF.Verify(PK, x, y2, π

′
2) = 1. Note that no ad-

versary can break uniqueness even SK is opened since such tuple does not
exist. This property is used for realizing the proof soundness property (which
is defined in Section 3).

Pseudorandomness: This guarantees that no adversary can distinguish whether
an output of F is truely random or not, i.e., for all PPT adversary A, the
following advantage is a negligible function of the security parameter λ.
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AdvPseudo
F,A (1λ) :=

|Pr[(PK,SK)← VRF.Setup(1λ); (x∗, State)← AVRF.Prove(SK,·)(1λ, PK);

b
$← {0, 1}; y∗0 ← FSK(x∗); y∗1

$← {0, 1}m; b′ ← AVRF.Prove(SK,·)(y∗b , State);

b = b′]− 1

2
|

where VRF.Prove(SK, ·) the the prove oracle which takes as input x ∈ {0, 1}n
(x ̸= x∗), outputs (FSK(x), π′).

Remark: As a similar cryptographic primitive of VRF, verifiable pseudo-random
bit generators (VPRGs) has been introduced by Dwork and Naor [16], where
the holder of the seed can generate proofs of consistency for some parts of the
sequence without hurting the unpredictability of the remaining bits. Note that
in our SKENO construction we do not have to use VPRG (instead of PRNG)
by assuming that the underlying PRNG satisfies the soundness property, where
no adversary can find (y1, y2) ∈ {0, 1}m × {0, 1}m such that G(y1) = G(y2) and
y1 ̸= y2. Note that this requirement is natural, e.g., Bertoni, Daemen, Peeters,
and Assche [7] have mentioned that “loading different seeds into the PRNG
shall result in different output sequences. In this respect, a PRNG is similar to
a cryptographic hash function that should be collision-resistant”.

3 SKENO: Secret Key Encryption with Non-interactive
Opening

In this section, we give the definition of (IV-dependent) SKENO. We assume
that each IV is randomly chosen for each encryption. A SKENO consists of five
algorithms, KeyGen, Enc, Dec, Prove, and Verify.

Definition 3 (System operation of SKENO).

KeyGen(1λ): This algorithm takes as inputs a security parameter λ ∈ N, and
returns a public verification key V K and a secret key K.

Enc(K, IV,M): This algorithm takes as inputs K and an initial vector IV ∈
{0, 1}n and a message M ∈ {0, 1}L, and returns a ciphertext C. We assume
that IV is also sent to a decryptor.

Dec(K, IV,C): This algorithm takes as inputs K and C, and returns M or ⊥.
Prove(K, IV,C): This algorithm takes as inputs K, IV , and C, and returns a

proof π.

Verify(V K, IV,C,M, π): This algorithm takes as inputs V K, IV , C, M , and π,
and returns 1 if C is the ciphertext of M and IV under K, and 0, otherwise.

We require correctness and completeness as follows.
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Definition 4 (Correctness). For all (V K,K) ← KeyGen(1λ), IV ∈ {0, 1}n,
and M ∈ {0, 1}L, Dec(K, IV,Enc(K, IV,M)) = M holds.

Definition 5 (Completeness). For all (V K,K)← KeyGen(1λ), IV ∈ {0, 1}n
and for any ciphertext C, we have that for M ← Dec(K, IV,C), Verify(V K, IV,C,
M,Prove(K, IV,C)) = 1 holds with overwhelming probability (note that M may
be ⊥).

Next, we define security notions of SKENO, called indistinguishability under
chosen-ciphertext and prove attacks (IND-CCPA) and proof soundness.

Definition 6 (IND-CCPA). We say that a SKENO scheme Π is IND-CCPA
secure if for all PPT adversary A the following advantage is negligible in the
security parameter.

AdvInd-ccpaΠ,A (1λ) := |Pr[(V K,K)← KeyGen(1λ);

(IV ∗,M∗
0 ,M

∗
1 , State)← AEnc(K,·,·),Dec(K,·,·),Prove(K,·,·)(1λ, V K);

b
$← {0, 1};C∗ ← Enc(K, IV ∗,M∗

b );

b′ ← AEnc(K,·,·),Dec(K,·,·),Prove(K,·,·,·)(C∗, State); b = b′]− 1

2
|

Enc(K, ·, ·) is the encryption oracle which takes as input IV ∈ {0, 1}n and
M ∈ {0, 1}L, where IV ̸= IV ∗, outputs C ← Enc(K, IV,M). Dec(K, ·, ·) is
the decryption oracle which takes as input IV ∈ {0, 1}n and C ∈ {0, 1}L,
where (IV,C) ̸= (IV ∗, C∗), outputs M/⊥ ← Dec(K, IV,M). Prove(K, ·, ·) is
the the prove oracle which takes as input IV ∈ {0, 1}n and C ∈ {0, 1}L, where
IV ̸= IV ∗, outputs π ← Prove(K, IV,C).

Indistinguishability under chosen-plaintext and prove attacks (IND-CPPA)
is simply defined by excluding the Dec oracle from the IND-CCPA definition.

Definition 7 (Proof Soundness). We say that a SKENO scheme Π satisfies
proof soundness if for all PPT adversary A the following advantage is negligible
in the security parameter.

AdvsoundΠ,A (1λ) := Pr[(V K,K)← KeyGen(1λ); (IV,M, State)← A(1λ, V K,K);

C ← Enc(K, IV,M); (M̃, π̃)← A(C,State);
Verify(V K, IV,C, M̃, π̃) = 1; M ̸= M̃ ]

4 Our SKENO Construction

In this section, we give our IND-CPPA secure SKENO scheme. An IND-CCPA
secure SKENO scheme will be covered in Section 6. Let (VRF.Setup,VRF.Prove,
VRF.Verify) be a VRF and G be a PRNG.
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Protocol 1 (Proposed IND-CPPA secure SKENO).

KeyGen(1λ): Run (PK,SK)← VRF.Setup(1λ), and output (V K,K) = (PK,SK).

Enc(K, IV,M): Run (y, π′) ← VRF.Prove(K, IV ) and ZIV ← G(y), compute
C = M ⊕ ZIV , and output C.

Dec(K, IV,C): Run (y, π′) ← VRF.Prove(K, IV ) and ZIV ← G(y), compute
M = C ⊕ ZIV , and output M .

Prove(K, IV,C): Run (y, π′)← VRF.Prove(K, IV ) and return π = (y, π′).

Verify(V K, IV,C,M, π): Parse π = (y, π′). If π′ ̸= ⊥, VRF.Verify(V K, IV, y, π′) =
1, and C ⊕G(y) = M , then output 1. Otherwise, output 0.

The correctness clearly holds. In addition, completeness also holds if the
underlying VRF satisfies provability.

Note that in our IND-CPPA secure SKENO the Dec algorithm never outputs
⊥ (i,e., even if C was not generated by the Enc algorithm, the Dec algorithm
outputs the corresponding decryption result which belongs to the plaintext space
{0, 1}L). Therefore, the Prove algorithm does not have to prove that C is an
invalid ciphertext in the IND-CPPA secure SKENO, whereas, in the IND-CCPA
SKENO (presented in Section 6), since the Dec algorithm outputs ⊥ for invalid
ciphertexts, the Prove algorithm needs to accept the proof that the decryption
result of C is ⊥.

5 Security Analysis

In this section, we give the security proofs of our SKENO construction.

Theorem 1. Our SKENO construction is IND-CPPA secure if the underlying
VRF and PRNG satisfy pseudorandomness.

Proof. Let A be an adversary who can break the IND-CPPA security of our
SKENO construction. We construct an algorithm B that breaks the pseudoran-
domness of the underlying VRF. Let CVRF be the challenger of the underlying
VRF. CVRF sends PK to B. B sets V K = PK and sends V K to A. To answer
queries issued by A, B manages a table {(IV, y, π′)}.

Phase 1 query

Enc: Let (IV,M) be an encryption query issued by A. If there exists the entry
(IV, y, π′), then B returns C = M ⊕ G(y). Otherwise, B sends IV to CVRF

as a VRF.Prove query, obtains (y, π′), adds (IV,M, y, π′) to the table, and
returns C = M ⊕G(y).

Prove: Let (IV, C) be a prove query issued by A. If there exists the entry
(IV, y, π′), then B returns π = (y, π′). Otherwise (this means that C is
not generated via the Enc oracle), then B sends IV to CVRF as a VRF.Prove
query, obtains (y, π′), adds (IV, y, π′) to the table, where M = C ⊕ G(y),
and returns π = (y, π′).
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Challenge phase

In the challenge phase, A sends (IV ∗,M∗
0 ,M

∗
1 ) to B, and B sends IV ∗ to

CVRF. CVRF selects b ∈ {0, 1} and computes y∗ such that y∗ = FK(IV ∗) if b = 0,

and y∗
$← {0, 1}m if b = 1, and sends y∗ to B. B randomly choses b′′ ∈ {0, 1},

computes C∗ = M∗
b′′ ⊕G(y∗), and sends C∗ to A.

Phase 2 query

Enc: The same as the phase 1 query since A never issues IV ∗ as an encryption
query.

Prove: Let (IV,C) be a prove query issued by A, where IV ̸= IV ∗. If there exists
the entry (IV, y, π′), then B returns π = (y, π′). Otherwise (this means that C
is not generated via the Enc oracle), then B sends IV to CVRF as a VRF.Prove
query, obtains (y, π′), adds (IV, y, π′) to the table, where M = C ⊕ G(y),
and returns π = (y, π′).

Guessing phase

Finally, A outputs b′ ∈ {0, 1}. Note that if b = 0 (i.e., y∗ = FK(IV ∗)), then
C∗ is a valid ciphertext of M∗

b′′ . So, A has an advantage. Otherwise, let b = 1
(i.e., y∗ is a random value, and is independent of IV ∗). Then if there exist an
algorithm that can distinguish the probabilistic distribution of M∗

0 ⊕G(y∗) and
the probabilistic distribution of M∗

1 ⊕G(y∗), then it contradicts the fact that G
is a PRNG. So, these distributions are identical if G is a PRNG. So A has no
advantage in the case of b = 1. Therefore, if b′ = b′′, then B outputs 0, and 1,
otherwise. ⊓⊔

Theorem 2. Our SKENO construction satisfies proof soundness if the under-
lying VRF satisfy uniqueness.

Proof. Let (M, M̃) is a message pair and C ← Enc(K, IV,M) (these are ap-
peared in the proof soundness definition). Since M ̸= M̃ , for ZIV := C ⊕M
and ˜ZIV := C ⊕ M̃ , ZIV ̸= ˜ZIV holds. In addition, there exist y, ỹ ∈ {0, 1}m
such that ZIV = G(y) and ˜ZIV = G(ỹ). Note that y ̸= ỹ since ZIV ̸= ˜ZIV and
G is a deterministic function. This never happen if the underlying VRF satisfy
uniqueness. ⊓⊔

6 SKENO with Chosen-Ciphertext Security

As in the conversion from CPA-secure DEM to CCA-secure DEM using message
authentication code (MAC) [1], we can construct a IND-CCPA secure SKENO
scheme. We use strongly existentially unforgeable against a one-time chosen-
message attack (one-time sEU-CMA) MAC [10, 31]. A MAC consists of two
algorithms, MAC and Vrfy. The MAC algorithm takes as inputs a secret key
Z ∈ {0, 1}L2 and a message M ∈ {0, 1}L1 (L1, L2 ∈ N), and outputs a tag t ←
MACZ(M). The Vrfy algorithm takes as inputs Z and t, and outputs 0 (reject) or
1 (accept). We requre that for all Z and M we have VrfyZ(M,MACZ(M)) = 1.
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Briefly, ZIV = G(FK(IV )) is divided into two part, say Z1 ∈ {0, 1}L1 and
Z2 ∈ {0, 1}L2 , where L1 + L2 = L and L2 is the key length of the underlying
MAC algorithm (MAC,Vrfy). Then, a plaintext M ∈ {0, 1}L1 is encrypted by Z1

such that c = M ⊕ Z1, and a tag t is computed under the key Z2 such that
t = MACZ2(c). The actual ciphertext is C = (c, t). In the Dec algorithm, run
(y, π′) ← VRF.Prove(K, IV ) and ZIV ← G(y), divide ZIV = Z1||Z2, compute
M = c ⊕ Z1, and output M if VrfyZ2

(c) = 1 holds, and ⊥, otherwise. In the
Prove algorithm, run (y, π′) ← VRF.Prove(K, IV ) and ZIV ← G(y), and divide
ZIV = Z1||Z2. If VrfyZ2

(c) = 1 holds, then set π = (y, π′). If VrfyZ2
(c) = 0

holds, then set π = (y,⊥). In the Verify algorithm, if π′ = ⊥ and VrfyZ2
(c) = 0,

then output 1. If π′ ̸= ⊥, VRF.Verify(V K, IV, y, π′) = 1, and VrfyZ2
(c) = 1, then

output 1. Otherwise, output 0.

7 Conclusion

The previous proposed Non-interactive opening ciphertexts techniques are for
public key cryptosystem, which cannot bring the solutions for the situation where
the symmetric key cryptosystem is being used, and the secret key is shared
among a group of people, since the key itself is not appropriate for opening
to behave as a proof. This paper fills in the above gaps by proposing the first
stream cipher based SKENO scheme that can be proved to be IND-CPPA and
IND-CCPA secure, which can provide Non-interactive opening services in the
shared key environment.
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