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Melodic Morphing Algorithm in Formalism
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Abstract. Up to now, experiments run with many subjects are almost
the only way for demonstrating the validity of a musical algorithm. In
contrast, we employ formalism to verify that a melodic morphing algo-
rithm correctly works as specified. The way we present in the paper is
formal, theoretical, and viable. We provide a full-fledged feature struc-
ture for representing a time-span tree of “A Generative Theory of Tonal
Music” (GTTM). The key idea here is that the GTTM reduction is
identified with the subsumption or the “is-a” relation, which is the most
fundamental relation in knowledge representation. Since we obtain the
domain in which a partial order is defined, we introduce the join and
meet operations based on unification. In such an algebraic framework, as
preliminaries of the proof of a melodic morphing algorithm, we introduce
the following notions: reduction path, melodic complexity, similarity, and
interpolation. These notions are defined using the subsumption relation,
join and meet, in a formal way. Then we take the melodic morphing al-
gorithm proposed by Hamanaka et al. (2008) because it is constructed
using the join and meet operations. Finally we prove the theorem that
the melodies generated by the algorithm are the interpolations of two
given melodies.

Keywords: GTTM, time-span reduction, feature structure, subsump-
tion, join, meet, renderability, similarity, interpolation, formalism

1 Introduction

Today, many people including both professionals and non-professionals enjoy
creating musical pieces or adapting existing works to construct new ones. Such
created music is circulated within a creator-consumer community. These works
are well-known as user generated content (UGC) or consumer generated media
(CGM). For those involved in UGC and CGM, however, it remains still chal-
lenging to properly express their thoughts and emotions through musical works
or melodies. To create music, we describe it in a language, format, or structure
with supporting tools. We think the main issues we face are the trade-off between
descriptive power and simplicity1 and symbol grounding.

1 Besides descriptive power vs simplicity, we may also say expressiveness vs tractability
[8] or generality vs efficiency [2].
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Firstly, since descriptive power and simplicity are not compatible, creators
have to cope with the trade-off between them. Descriptive power is the capabil-
ity of a language and tools to precisely express creator’s thoughts and emotions,
or the degree of reproducing original music from the description in a language.
Simplicity may be measured by the description length of the music. In general,
the more abstract a description is, the shorter it is, and the less the product
of writing and reading costs is. For instance, a Standard MIDI File has high
descriptive power yet low simplicity, while the chord symbol is the opposite.
The trade-off can also be considered a problem of controllability in expressing
music. We argue that the key for being compatible is separating the basic oper-
ations whose meanings are well-understood from one’s intention for realizing a
complicated target task to combine the basic operations2. The basic operations
include the ones like addition, subtraction, intersection, and union. We are led
to an algebraic framework, in which a creator assembles basic operations into a
calculation process for a target task as a creator intends.

Secondly, in the supporting tools for UGC and CGM, no matter how care-
fully and logically algorithms are designed and implemented, mostly the only
way for verifying that they have been correctly designed and implemented is
running experiments with many subjects3. It is mainly because of incomplete,
inconsistent symbol grounding [5]. We argue that we rely on a solid music the-
ory to establish the firm symbol grounding so that the symbols and relations are
properly grounded onto the real world objects and relevancies.

The aim of the paper is exploiting the power of the algebraic framework in
music. Thus, we employ formalism to verify that a complicated musical task
correctly works as specified by proving the theorem of the task, not running
experiments. In the paper, for symbol grounding, we equate the subsumption or
an “is-a” relation of a feature structure with the reduction process of a time-
span tree in music theory “A Generative Theory of Tonal Music” (GTTM).
Since we can assume a collection of melodies, for any two of which a partial
order is defined, we construct a domain of melodies, on which join (union) and
meet (intersection) operations are defined, that is, the domain makes a lattice in
terms of the GTTM reduction. Then we pay attention to morphing as a target
task, which takes two different melodies and generates an inbetween melody. The
morphing algorithm we take here is described by using the subsumption relation
and the join and meet operations in the algebraic framework, and we formally
prove that a morphed melody is properly located in the lattice.

We briefly mention the related work concerning music representation method.
Marsden proposed a representational framework for polyphony, employing not
only ternary but also n-ary (n ≥ 4) relations for an elaboration vocabulary
[9]. Marsden began with conventional tree representations and allowed joining
of branches in the limited circumstances with preserving the directed acyclic

2 This parallels Norman’s simplicity design axiom: “the complexity of the information
appliance is that of the task, not the tool. The technology is invisible.” [10]

3 Wiggins and Smaill call the people who participate in experiments “wetware” in the
extreme [14].
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graph (DAG) property for expressing information dependency. As a result, high
expressiveness was achieved, while it was difficult to define consistent similarity
between melodies. Also, to correctly interpret the various relations, an ontology
for the vocabulary was required.

Valero proposed a representation method dedicated to a similarity compar-
ison task, called metrical tree [13]. Valero used a binary tree representing the
metrical hierarchy of music and avoided the necessity of explicitly encoding on-
sets and duration; only pitches need to be encoded. For ease of a similarity
comparison task, Valero also gave several procedures propagating pitch labels
from the leaves upward to label the internal nodes in a metrical tree. As a mea-
sure to compare metrical trees, Valero basically adopted the tree edit distance.
Metrical tree was intuitive, easy to automatize, and had a wide range of appli-
cability. When Valero ran evaluation experiments, he however needed to set up
many parameters, such as the cost for each edit operation, the label-propagation
procedure, and the pruning level for controlling the metrical resolution. The pa-
rameter setup was justified by the best performance in experiments, not from
the music theory point of view.

2 Representing Time-Span Tree in Feature Structure

A melody is considered a sequence of pitch events in temporal order4; pitch
events include a single note and a chord. Time-span reduction assigns to the
pitch events of the piece a hierarchy of structural importance with respect to
their position in grouping and metrical structure [7]. The structural importance
is derived from the pitch and temporal proximities between the pitch events and
the regular alternation patterns of strong and weak beats. Thus, a time-span tree
expressing the hierarchy of structural importance is a binary tree constructed in
bottom-up and top-down manners by comparing the structural importances of
adjacent pitch events at a number of hierarchical levels.

2.1 Time-Span Tree and Reduction

The music theory called “A Generative Theory of Tonal Music” (GTTM), pro-
posed by Lerdahl and Jackendoff in 1983 [7], is one of the few music theories
that involve the concept of reduction. Reduction, in general, connects an original
element and its ornamented one (complicated one).

Figure 1 shows an excerpt from Lerdahl and Jackendoff’s GTTM book and
demonstrates the reduction concept. The proper way to understand Figure 1
is to hear the successive levels in the same tempo5. If the reduction is done

4 Following Lerdahl and Jackendoff [7], a melody means a homophony in the paper.
5 Once a melody is reduced, each note with onset and duration properties becomes
a virtual note that is just a pitch event dominating a corresponding time-span,
omitting onset and duration. Therefore, to listen to a reduced melody, we assume
that it can be rendered by regarding a time-span as a real note with such onset
timing and length.



4 Keiji Hirata† Satoshi Tojo‡ Masatoshi Hamanaka§

Surface structure

Reduction

?

Ordering of
reduction
performed

6

Fig. 1. Time-span reduction in GTTM (Lerdahl and Jackendoff [7, page 115])

satisfactorily, each level should sound like a natural simplification of the previous
level. The alternative omission of notes must make the successive levels sound less
like the original. Hence, reduction can be regarded as rewriting an expression
to an equivalent, simpler one; it often has the same meaning as abstraction.
Since GTTM reduction is designed based on Gestalt grouping, the reduction
successfully associates a melody with another one that sounds quite similar.

We argue that the proper way of taking into account deep musical structures
is to adopt the concept of reduction [12]. The key idea of our framework is that
GTTM reduction is identified with the subsumption or the “is-a” relation, which
is the most fundamental relation in knowledge representation. For example, in
Figure 1, Level d melody is reduced to Level c melody, and similarly c to b to a.
For another example, consider pitch C5 and portcullis C. Naturally, we say that
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“the C5 note is reduced to a C note,” which can be interpreted as “a C5 note is
a C” as well, because by instantiating pitchclass C, we can obtain instances of
C4, C5, C6, and so on.

2.2 Feature Structure and Subsumption Relation

Feature structure has been mainly studied for applications to linguistic formal-
ism based on unification and constraint, such as Head-driven Phrase Structure
Grammar (HPSG)[11]. Feature structure can be considered a natural general-
ization of first-order terms to represent partial information and class hierarchy
[1].

Definition 1 (Feature structure). A feature structure is a list of feature-
value pairs where a value may be replaced by another feature structure recursively.

Below is a feature structure in attribute-value matrix (AVM) notation where
capital σi is a structure, lower-case fi is a feature label, and vi is its value:

σ1 =

f1

[
f3 v3
f4 v4

]
f2 σ7

 .

Such a structure is also called a labeled directed acyclic graph (DAG), and
needless to say, we can regard the structure as equivalent to a tree, where each
node corresponds to a feature and a leaf to a value.

When feature structure σ properly includes the other from the same top node
or is the hyper-structure of the other, σ subsumes the other.

Definition 2 (Subsumption Relation). Let σ1 and σ2 be feature structures.
We define subsumption relations by the following rules:

σ1 ⊑H σ2 ← ∀(f v1) ∈ σ1 ∃(f v2) ∈ σ2 v1 ⊑H v2
σ1 ⊑S σ2 ← ∀(f v2) ∈ σ2 ∃(f v1) ∈ σ1 v1 ⊑S v2 .

Here, ⊑H stands for the so-called Hoare order of sets, and ⊑S Smyth or-
der. Hoare order is appropriate, if there are conjunctive relations between the
elements of a set, and the Smyth order if disjunctive. For instance, we have
{b, d} ⊑H {a, b, c, d} and {a, b, c, d} ⊑S {b, d}. Since a feature structure is con-
sidered the conjunctive set of feature-value pairs, we adopt Hoare order and use
notation ‘⊑’ hereafter.

For example, by assuming v4 ⊑ [f5 v5], σ1 is subsumed both by the following
σ2 and σ3, and we write σ1 ⊑ σ2 and σ1 ⊑ σ3:

σ2 =

f1

[
f3 v3
f4 [f5 v5]

]
f2 σ7

 , σ3 =

f1

[
f3 v3
f4 v4

]
f2 σ7

f6 v6

 .
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For the above example, although both σ2 and σ3 are elaborations of σ1, the
two hyper-structures are differently elaborated. Hence, ordering ⊑ is a partial
order, not a total order. unlike integers and real numbers. Equivalence a = b is
defined as a ⊑ b ∧ b ⊑ a.

To denote value v of feature f in structure σ, we write σ.f = v. Thus,
σ1.f2 = σ7, and σ1.f4 is undefined. σ1.f1.f4 = v4. As long as no ambiguity is
present, we omit long access f1. · · · .fn as f1..fn, e.g., σ2.f1..f5 = v5.

2.3 Time-Span Trees in Feature Structures

We design the feature structure for representing a time-span tree so that the
reduction relation between the time-span trees is properly mapped to the sub-
sumption relation between feature structures ‘⊑’. In Figure 2, we show the fea-
ture structures representing the node of a time-span tree and a pitch event. A



t̃ree

head {{ i , j },
[
ẽvent

]
}

dtrs {


left

 t̃ree

head
[
i ẽvent

]
dtrs {· · ·}


right

 t̃ree

head
[
j ẽvent

]
dtrs {· · ·}




,⊥}




ẽvent
pitch P itch

pos

[
bar Integer
meter Length

]
duration Length



Fig. 2. Feature structures for representing a time-span tree (upper) and a pitch event
(lower)

feature structure is given a type, which is shown headed by ‘̃ ’ (tilde) and is
declared at the beginning of feature-value pairs, The set notation {x, y} means
the choice either of x or y, and ⊥ is empty. Let σ be a feature structure of type
t̃ree. A feature structure of σ.dtrs = ⊥ corresponds to a leaf of a time-span
tree, and at the same time, σ.head is a pitch event. Here, dtrs means daughters.

Structure sharing is indicated by tags such as i or j . The feature structures

of type ẽvent occur at positions σ.dtrs.left.head and σ.dtrs.right.head. By tags

i and j , value σ.head is assigned to σ.dtrs.left.head and σ.dtrs.right.head,

respectively. If σ.head = σ.dtrs.left.head, the node has the right-hand elabora-
tion of shape , and if σ.head = σ.dtrs.right.head, the left-hand elaboration
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. As such, the head value at the parent level is recursively taken from either
the left-hand or right-hand branch.

Within type ẽvent, instances of type Pitch include C4, B♭6, F♯3, and so on.
Feature pos stands for the onset timing, and its value is of the form n-th bar
from the beginning and the m-th beat position within a bar. In our paper, we
assume that the duration of a quarter note is a temporal unit, which is of type
Length, and feature duration also has a Length value. Using the representation
method and the subsumption relation, in Figure 1, we can successfully write
Level c melody ⊑ Level d melody, Level b melody ⊑ Level c melody, and Level
a melody ⊑ Level b melody.

2.4 Full-Fledged Feature Structure

The reduction process in Figure 1 is linear (total order) with three steps in which
every step is taken to remove several notes at one time. On the other hand,
we merely remove a note or a feature-value pair to obtain a reduced feature
structure. For removing a note, the reduction step becomes finer, and in general,
more than one note can be removed at a time. For removing a feature-value pair,
the reduction step becomes even finer, and a feature structure may represent
either more or less information than is contained in a feature structure, just
enough to be reproduced from the feature structure to a real melody (rendering).
Now, we need the notion of a full-fledged feature structure.

Definition 3 (Full-Fledged Feature Structure). There are intrinsic fea-
tures to define a typed feature structure. When all the intrinsic features accom-
pany a typed feature structure, the feature structure is said to be full-fledged.

If there are missing features for a typed feature structure, those features are
regarded to be valued ⊥.

For example, t̃ree type requires the feature set of head, dtrs.left, and
dtrs.right, and ẽvent type pitch, pos.bar, pos.meter, and duration.

3 Calculus in Melody Lattice

We denote melody A as a time-span tree in feature structure TA. Although
more than one time-span tree may correspond to a single melody in general, we
identify feature structure TA with melody A as long as there is no ambiguity.

3.1 Unification, Join and Meet

Intuitively, unification is a process of information conjunction. To formalize it, we
consider the sequence of features that we introduced for accessing the value of the
feature above f1.f2. · · · .fn called a feature path. Then we introduce the set nota-
tion of a feature structure using the set of feature-path-value pairs {f1. · · · .fn v}.
Notice that the set notation of the feature structure is equivalent to Definition 1.
A feature structure is consistent, if the unique-value restriction on the features
is satisfied.
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Definition 4 (Unification). Unification is the consistent union of feature struc-
tures in the set notation. Unification only fails when it is applied to feature struc-
tures that, when taken together, provide inconsistent information.

For the domain in which a partial order is defined, join and meet are well-
known as basic operations. Join corresponds to a union of sets or a consistent
overlay, and meet corresponds to intersection or the common part.

Definition 5 (Join). Let A and B be full-fledged feature structures represent-
ing the time-span trees of melodies A and B, respectively. If we can fix the least
upper bound of A and B, that is, the least y such that A ⊑ y and B ⊑ y is
unique, we call such y the join of A and B, denoted as A ⊔B.

Theorem 3.13 in Carpenter [1] provides that the unification of feature struc-
tures A and B is the least upper bound of A and B. Therefore, we adopt unifi-
cation as join in the paper.

For the previous examples, we have

σ2 ⊔ σ3 =

f1

[
f3 v3
f4 [f5 v5]

]
f2 σ7

f6 v6

 .

Definition 6 (Meet). Let A and B be full-fledged feature structures represent-
ing the time-span trees of melodies A and B, respectively. If we can fix the
greatest lower bound of A and B, that is, the greatest x such that x ⊑ A and
x ⊑ B is unique, we call such x the meet of A and B, denoted as A ⊓B.

Similarly, we adopt the intersection of the unifiable feature structures as
meet. For the previous examples, we have σ1 = σ2⊓σ3. We show another musical
example in Figure 3. The notes in melody C also occur in both melodies A and
B. They are the common parts of A and B, which are underlined in the figure.

Note that if we apply the join and meet operations to melodies for a finite
number of times, in general, compound values, which are ground terms containing
‘⊔’ and ‘⊓’, may occur at value positions in the resulting feature structure.

3.2 Renderability and Reduction Path

We define a property required for reproducing from a feature structure to a real
melody.

Definition 7 (Renderability). A full-fledged feature structure is renderable, if
it possesses only concrete (scalar) values for all the intrinsic features, excluding
compound values; that is, the feature structure can be uniquely mapped to a piece
of melody.
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Melody A Melody BTA TB

Notes occurring commonly

Melody C
TA ⊓ TB

Fig. 3. Meet operation extracts common part of melodies A and B

Renderability means that a melody can be reproduced by neither more nor less
information than is contained in a full-fledged feature structure. We hereafter
restrict feature structures to be renderable ones.

For melodies A and B, A \ B is the set of notes contained in A and not in
A⊓B. Note that A\B is not a time-span tree but the set of notes. For example,
in Figure 3, A is a melody of 21 notes, and C has 12 notes. The 12 notes of C
are all contained in A and those in B, too. These 12 notes are underlined. We
introduce a function of a set σ, returning the number of elements in set σ, #(σ):
Set → Integer. For example, we have #(A \ C) = 21− 12 = 9.

Definition 8 (Reduction Path). For melodies A and B such that TB ⊑ TA,
a reduction path from A to B is defined as a sequence of melodies obtained by
removing a note in A \ B from A one-by-one, according to the algorithm, as
follows:

Step 1: N := #(TA \ TB), i := 0, and T0 := TA.
Step 2: Select note p of the minimum beat strength in Ti \ TB.
Step 3: Reduce Ti to Ti+1 by removing p.
Step 4: Iterate Steps 2 and 3 N times (i = 0 ∼ N − 1).

The resulting sequence T0, T1, T2, · · ·, TN is the reduction path from A to B.

At Step 2, the algorithm collects the notes whose beat strengths are the
minimum corresponding to the least important notes in a time-span tree. Since
a note to be removed is nondeterministically selected from the collection, there is
generally more than one reduction path. The selection is justified by the following
time-span reduction preference rules: TSRPR1 (metrical position) and TSRPR5
(metrical stability) [7]. Hence the algorithm may automatically compute more
than one reduction paths, and for every melody C on the reduction path from
A to B, B ⊑

/
C ⊑

/
A holds.
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Furthermore, the long-step reduction in GTTM (Section 2.1) can always
be embedded into a reduction path with preserving the ordering. We show an
example of a reduction path from A to B in Figure 4:

A
x y
z
B

Assume #(TA \TB) = 3, and we obtain reduction
paths A → x → z → B and A → y → z → B.
Correspondingly, B ⊑ z ⊑ x ⊑ A and
B ⊑ z ⊑ y ⊑ A hold.

Fig. 4. Reduction path

3.3 Melodic Complexity

Assume a function of melody A for measuring melodic complexity or the in-
formation contained in a melody, |A|: Time-span tree → Real number. We can
use any function returning a real number such that A ⊑ B ⇒ |A| ≤ |B|. For
example, the function may return the number of pitch events in A, the number
of pitch evnets in a time-span tree, or the number of nodes weighted by the
depth at which nodes occur. We adopt the number of pitch events in a melody
as function |A| for simplicity. We give the basic lemmas for |A| below.

Lemma 1. Let A and B be renderable feature structures that are unifiable with
each other. Then |A ⊔B| = |A|+ |B| − |A ⊓B|.

Proof. When we consider melodies A and B in the set notation, the result is
obvious from the algebra of sets. ⊓⊔

Lemma 2. Given A and A ⊓ B, we can compose a reduction path from A to
A⊓B, A⊓B ⊑ a1 ⊑ a2 ⊑ · · · ⊑ an−1 ⊑ A. Then we have |ai| = i+ |A⊓B| and
|ai ⊔B| = i+ |B|.

Proof. Since ai = (ai \ (A ⊓ B)) ⊔ (A ⊓ B), |ai| = i + |A ⊓ B|. From Lemma 1,
we have |ai ⊔B| = |ai|+ |B| − |ai ⊓B|. Since ai ⊓B = A⊓B, |ai ⊓B| = |A⊓B|.
Therefore, we obtain |ai ⊔B| = i+ |A ⊓B|+ |B| − |A ⊓B| = i+ |B|. ⊓⊔
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3.4 Similarity and Interpolation

Definition 9 (Similarity). The similarity measure between melodies A and B
is defined as follows:

S(A,B) =
|A ⊓B|

max(|A|, |B|)
. (1)

We borrow the definition from Hirata et al. [6], since it is constructed using
the meet operation. Obviously from the definition, we have S(A,B) = S(B,A).
If A = B, then S(A,B) = 1, while if A ⊓B = ⊥, then S(A,B) = 0

Definition 10 (Interpolation). Let A and B be melodies. Melody µ is an
interpolation of A and B, if µ satisfies S(A,B) ≤ S(A,µ) and S(A,B) ≤ S(B,µ)
(Figure 5).

Arcs with radius of the distance between A and B
A B

µ

α

Area of interpolationS(A,B) ≤ S(A,µ) ∧ S(A,B) ≤ S(B,µ)
Fig. 5. Interpolation µ of melodies A and B

Figure 5 shows a schematic view of interpolation. Note that A, B, and µ are
discrete feature structures representing melodies, although they appear to be in
dense Euclidean space.

4 Proving Validity of Melodic Morphing Algorithm

4.1 Melodic Morphing Algorithm

We use an algorithm presented by Hamanaka et al. [3] to generate interpolating
melody µ between A and B, because the algorithm is constructed using the
join and meet operations. In the literature, to check if their algorithm works as
planned, they ran an experiment, in which human subjects actually listened to
and rated each sample melody generated by the algorithmic interpolation, given
two melodies. After statistical processing, they concluded that the algorithm can
generate the morphing melodies. In contrast, we employ formalism to check if
the algorithm works as specified.
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Definition 11 (Melodic Morphing Algorithm [3]). The algorithm consists
of the following steps (Figure 6):

Step 1: Calculate TA ⊓ TB (meet).
Step 2: Select melody TC on the reduction path from TA to TA ⊓ TB, and

select TD on the reduction path from TB to TA ⊓ TB.
Step 3: Calculate TC ⊔ TD (join), and the result is morphing melody µ.

Melody A TA Melody B TB

TA TBExtracted common part

Partially reduced melody
TC

Morphing melody µTC TD
TDMelodyC MelodyD

Fig. 6. Melodic morphing algorithm

If C close to TA is chosen, the characters of melody A are reflected in output
µ. On the other hand, If C close to TA ⊓ TB is chosen, those of A are not so
emphasized in µ. So is D similarly.

4.2 Proof of Morphing Theorem

The melodic morphing algorithm presented in the previous section can be shown
in a diagram containing two reduction paths (Figure 7), which is called full
morphing. Here, let us consider a simpler diagram containing a single reduction
path, called half morphing in Figure 8. We split the proof process into two stages
and first consider half morphing.

Lemma 3 (Similarity on side of reduction path). For melodies A and B,
we take x such that (A ⊓ B) ⊑ x ⊑ A. Then we have S(A,B) ≤ S(A, x ⊔ B)
(Figure 8).
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A B
A   B

x
x y

y
Fig. 7. Full morphing

A B
A   B

x
x B

Fig. 8. Half morphing

Proof. We have

S(A, x ⊔B) =
|A ⊓ (x ⊔B)|

max(|A|, |x ⊔B|)
=

|x|
max(|A|, |x ⊔B|)

. (2)

To compare the values of expressions 1 and 2, we consider the following two
cases.
(C1) |A| ≤ |B|. We get expression 1 = |A⊓B|/|B|, and expression 2 = |x|/|x⊔B|.
For x in expression 2, we can chose i such that x = ai. Lemma 2 leads to
expression 2 = |ai|/|ai ⊔ B| = (|A ⊓ B| + i)/(|B| + i), where 0 ≤ i ≤ n − 1.
Therefore, expression 1 ≤ expression 2.
(C2) |B| ≤ |A|. If x is increased from A ⊓ B to A, then x ⊔ B is increased
from B to A ⊔ B. Since |A| ≤ |A ⊔ B|, we can assume that the value of |x ⊔ B|
equals |A| at a certain point. That is, intermediate melody aK exists such that
A ⊓ B ⊑ aK ⊑ A and |A| = |aK ⊔ B|. Now, we further consider two cases,
depending on the denominator of expression 2.
(C2-1) A ⊓B ⊑ x ⊑ aK . We have expression 1 = |A ⊓B|/|A|, and expression 2
= |x|/|A|. Since A ⊓B ⊑ x ⊑ A, expression 1 ≤ expression 2.
(C2-2) aK ⊑ x ⊑ A. For i such that i ≥ K, we have expression 2 = |ai|/|ai ⊔B|.
From Lemma 2, we get expression 2 = (|A⊓B|+ i)/(|B|+ i). Next, we calculate
the difference between expressions 1 and 2. The numerator of (expression 2 −
expression 1) is |A ⊓B| · (|A| − |B|) + i · (|A| − |A ⊓B|), and its denominator is
|A|·(|B|+i). Since both the numerator and denominator are positive, expression 2
− expression 1 ≥ 0.
Therefore, for all cases (C1)∼(C2-2), expression 1 ≤ expression 2. ⊓⊔

Lemma 4 (Similarity on diagonal side of reduction path). Given melodies
A and B, we have y such that (A ⊓B) ⊑ y ⊑ B. Then S(A,B) ≤ S(A, y).

Proof. We have

S(A, y) =
|A ⊓ y|

max(|A|, |y|)
. (3)

To compare the values of expressions 1 and 3, let us consider the following three
cases:
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(C1) |y| ≤ |B| ≤ |A|. We have expression 1 = |A ⊓ B|/|A|, and expression 3
= |y ⊓ A|/|A|. Since A ⊓ B ⊑ y ⊑ B, y ⊓ A = A ⊓ B. Hence, expression 1 =
expression 3.
(C2-1) |A| ≤ |y| ≤ |B|. We have expression 1 = |A ⊓ B|/|B|, and expression 3
= |y ⊓A|/|y|. Since y ⊓A = A ⊓B and |y| ≤ |B|, expression 1 ≤ expression 3.
(C2-2) |y| ≤ |A| ≤ |B|. We have expression 1 = |A ⊓ B|/|B|, and expression 3
= |y⊓A|/|A|. Since y⊓A = A⊓B and |A| ≤ |B|, expression 1 ≤ expression 3. ⊓⊔

Theorem 1 (Morphing). Full morphing satisfies the condition of interpola-
tion.

Proof. In the statement of Lemma 3, we replace B with y, and then S(A, y) ≤
S(A, x⊔ y) is obtained. Together with Lemma 4, we obtain equation S(A,B) ≤
S(B, x ⊔ y). If the equation exchanges A and B for each other, then it holds,
too. ⊓⊔

5 Conclusion

We have successfully proved the validity of the melodic morphing algorithm in a
formal way and demonstrated the adequacy of the representation method for a
time-span tree in feature structure and the power of an algebraic framework for
designing and implementing musical tasks. We believe further room exists for
extending descriptive power with preserving the simplicity in our framework. If
creators could manipulate music more freely, they would enhance our capability
to create music in the context of UGC and CGM.

We would like to add two comments to our design of a morphing algorithm.
First, we proved the soundness of the melodic morphing algorithm in the sense
that all the results generated by it are interpolation. However, we conjecture
that the melodic morphing algorithm is not complete because in general, there
is more than one reduction path from B to A⊓B, as pointed out in Section 3.2.
Thus, we are interested in designing a melodic morphing algorithm that is sound
and complete. Second, besides the melodic morphing algorithm based on inter-
polation, we can consider one based on extrapolation [4]. We are interested in
providing the formal definition of extrapolation and proving its properties.

Our future work includes the following. In Section 3.1, we introduced join
and meet operations, which however only work correctly on renderable, full-
fledged feature structures that represent time-span trees (Section 3.2). From a
realistic point of view, the above condition seems too restrictive; when a creator
arbitrarily gives two melodies to the join operation, they are not unifiable in
many cases, hence join cannot be calculated (the result of meet becomes ⊥).
Conversely, let us think of a method to obtain two melodies that are unifiable.
Let A and B be melodies such that A ⊑ B, and there are two distinct reduction
paths from B to A, P1 and P2. We choose one melody on P1, C and the other
on P2, D. Since C and D are unifiable, we can calculate both C ⊔D and C ⊓D
(̸= ⊥). As we see in the process of making C and D, it is obvious that C and D
are similar (sounds similarly) to each other. Therefore, to meet a more practical
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situation, we must improve the join and meet operations to handle melodies that
are not similar to each other and/or the representation method for a time-span
tree in feature structure.

Also, we need to revise the definition of similarity (Definition 9), because
it includes the following problem. Suppose that three melodies A, B1, and B2

satisfy (A ⊓ B2) ⊑ B2 ⊑ B1 and |B2| ≤ |B1| ≤ |A|. Then, according to ex-
pression 1, we have S(A,B1) = S(A,B2) since max (|A|, |Bi|) = |A| (i = 1 or
2). However, this result is contrary to our intuition, and S(A,B1) ≤ S(A,B2)
seems more natural. One possible solution is to divide |A ⊓ Bi| by |A ⊔ Bi| for
the normalization in terms of size. For the more precise definition of similarity,
we may further take into account the length of reduction path, i.e., the number
of reduction steps from A and Bi to A ⊓B2.

For these purposes, we have to examine in more depth the computational
meaning of the time-span reduction, its tree representation, and the basic oper-
ations on time-span trees.
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