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With the nonstochastic quantum mechanical study of a quantum dot light emitter, we find that
fluorescence intermittency statistics are universal and insensitive to the microscopic nature of the
tunneling fluctuation between quantum dot and trapping state. We also investigate the power-law
exponent � and the crossover time �C of the on-time ��on� probability P��on���on

−� �for �on��C� and
�e−��on �for �on��C� under an optical field of given energy and strength. For easy off-resonance
excitation, it is found in both numerical and analytic ways that �C

−1 is proportional to the intensity of
the optical field �i.e., the square of the field strength� independent of the internal parameters of a
quantum dot. Furthermore, it is also found that �=2 in the limit of vanishing field strength is the
upper bound of the exponent and � becomes less than 2 as the field strength increases.
© 2010 American Institute of Physics. �doi:10.1063/1.3479578�

I. INTRODUCTION

The intermittency of fluorescence of single atoms or ions
has been predicted as a detection method of the “quantum
jump”1 originally proposed by Bohr almost a century ago,
and the first experimental observation was for the spectrum
of Ba+ ions in a radio-frequency trap.2 To date, many mo-
lecular and nanoscopic systems, that is, colloidal semicon-
ductor nanocrystals and quantum dots �QDs�, fluorescent
green proteins, organic dye molecules, and polymer nanopar-
ticles, have been observed to have fluorescence intermittency
under continuous wave �cw� irradiation.3–6 These unique op-
tical properties are attracting much attention because of their
great potential for nanoscopic light sources that can be sus-
tained from microseconds to many minutes. For instance,
such systems have been tried as the fluorescent markers of
biological processes7 or single-photon sources for optoelec-
tronic applications.8 It is a big challenge to control the fluo-
rescence of these nanoscopic building blocks to serve par-
ticular applications with proper understanding of
fluorescence intermittency.

One of the most intriguing features is that the fluores-
cence intermittency follows power-law statistics through the
on-time probability P��on���on

−�,3–6 where �on is the length of
the “on” sojourn time and the exponent � has been mostly
found in the range between 1 and 2 peaking at about 1.5. It is
surprising that the on �or “off”� sojourn time is not exponen-
tially distributed as expected from the early random tele-
graph model by Efros and Rosen,9 but described by the
power law implying scale invariance. Such scale invariance
could be understood in terms of the dynamics of maintaining
a long-memory. It was in fact reported that the process be-
hind the subsequent on and off times of blinking is not
memoriless, especially in the short time range following the
power-law statistics.10 However, it was also found that as

time proceeds, the power-law statistics cross over to the
bending tail of e−��on near �on��C.11 �C is the time scale that
signifies a crossover from the long-memory to memoriless
�i.e., Markov process� dynamics.

Despite its importance to both fundamental scientific
profundity and technological application, the origin of QD
fluorescence intermittency still remains an unsolved problem
under high controversy. Since the exponential random tele-
graph model,9 a series of modifications have been
suggested.3–6 For example, to reproduce the prevailing
power-law behavior, spectral diffusion of the trapping state,12

uniform spatial distribution of the traps,13 spatial diffusion of
the ejected electron,14 fluctuation of nonradiative
recombination,15 a fluctuating barrier,16 and a one-
dimensional random walk17 have been proposed. The unified
picture of these models is to interpret the intermittency blink-
ing as the charge fluctuation between a neutral �bright� and
an ionic �dark� state. As for the nature and dynamics of the
trapping states, however, there has been sharp disagreement
among the models. Incidentally, because of the stochastic
feature in common, it is rather unclear how macroscopic ob-
servations of the emission time-series would be connected to
the microscopic physical quantities of QD or the details of
the external optical field.

Recently, Lee and Maenosono18 proposed a new three-
state model incorporating the random fluctuation of the tun-
neling �or coupling� strength between a QD and the trapping
state. They succeeded in achieving robust power-law behav-
ior with an exponentially bending tail �over �on��C� through
the microscopic and nonstochastic treatment of the dynamics
of the light-emitting QD. The model allows the study of
interacting QDs or connects the macroscopic intermittency
directly to the microscopic quantities of the QD. Taking into
account the Coulomb interaction between QDs could consis-
tently explain the enhanced blinking of assembled CdSe–
ZnS QDs.19a�Electronic mail: jdlee@jaist.ac.jp.
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In this paper, based on the recent proposition of nonsto-
chastic quantum mechanical model of a QD light emitter,18

we show that the fluorescence intermittency statistics are
universal with little dependence on the microscopic nature of
the random fluctuation of tunneling between QD and trap-
ping state. We then investigate the central quantities of the
intermittency statistics under an external optical field of en-
ergy � and strength A in both numerical and analytic ways.
For easy off-resonance condition, ��	E �where 	E is the
QD excitation energy�, we find that �C is scaled to be �C

−1

�A2. Furthermore, we find that �=2 in the limits of A→0
and v0→0 �where v0 is the strength of the tunneling fluctua-
tion� is the upper bound of the exponent and � becomes less
than 2 as A or v0 increases.

The paper is organized as follows. In Sec. II, we intro-
duce a three-state model and describe the formulation. In
Sec. III, through the numerical solution, we scrutinize the
field-induced control of the fluorescence intermittency whose
statistics are universal and insensitive to the microscopic na-
ture of the tunneling fluctuation. In Sec. IV, through the ana-
lytic treatment, we confirm the field-induced fluorescence in-
termittency which is found in the numerical solution. In
Secs. V and VI, the discussion and conclusion are provided,
respectively.

II. MODEL AND FORMALISM

Considering the three-state model for a single QD and a
trapping state, we write the Hamiltonian H under cw irradia-
tion as

H = E
c

†c
 + E�c�

†c� + E�c�
†c� + v����c�

†c� + c�
†c��

+ A�ei��c

†c� + e−i��c�

†c
� . �1�

E
 and E� are the energies of two internal �neutral� levels of
the QD and E� is the trapping �ionic� level.20 c


†�c
�, c�
†�c��,

and c�
†�c�� are the creation �annihilation� operators of the

corresponding three states. v��� is the tunneling �or coupling�
strength to the trapping level. The last term of H is the ex-
ternal optical pumping of energy � and field strength A by
cw irradiation.

For theoretical treatment of the photoinduced fluores-
cence of the QD light emitter, we directly solve the time-
dependent Schrödinger equation.21 The quantum mechanical
state vector ����� is written as

����� = C
���e−iE
��
� + C����e−iE����� + C����e−iE����� ,

�2�

where �
�=c

† �0�, ���=c�

† �0�, ���=c�
†�0�, and �0� is the

vacuum. The initial state ���0�� should be the ground state,
i.e., ���0��= �
�. The time-dependent Schrödinger equation
i� /��������=H������ gives coupled differential equations
for the coefficients C
���, C����, and C����,

i
�

��
C
��� = Aei�̄�C���� ,

i
�

��
C���� = Ae−i�̄�C
��� + v���C����ei�E�−E���, �3�

i
�

��
C���� = v���C����e−i�E�−E���,

where we note that the energy or time quantities are to be
scaled by � and redefine them to be dimensionless, that is,
��→�, E
 /�→E
, E� /�→E�, E� /�→E�, A /�→A, and
v��� /�→v���. With the dimensionless parameters, �̄ is de-
fined as �̄=1−	E and 	E=E�−E
. Therefore, 	E�1 refers
to the off-resonance excitation and 	E=1 the resonant exci-
tation. It is worthy of noting that most of previous theoretical
approaches are based on the classical rate equation. In those
classical approaches, however, the explicit excitation pro-
cesses by the external optical field might not be properly
incorporated. Therefore, the present quantum mechanical ap-
proach should be consistent with the most important motiva-
tion of our study, i.e., the field-induced control of dynamics.

The microscopic randomness of the tunneling strength
can be implemented in the time sequence of v���. Its physi-
cal origin could be discussed based on the fluctuating barrier
model by Kuno and Nesbitt.16 Further, the fluctuation would
be originated from changes of the local environment. It has
been argued using the Wentzel–Kramers–Brillouin theory
that a �25% fluctuation in the height of a 4 eV barrier be-
tween a QD and trapping state would change tunneling rates
by more than a factor of 104, i.e., nearly the full dynamic
range observed experimentally. This would naturally postu-
late that the tunneling strength v��� fluctuates almost ran-
domly at each charge transfer. Although such a microscopic
nature of v��� should depend on the specific system, the
microscopic modeling of the time sequence of v��� for the
system would be an improbable and formidable task. Instead,
in our study, the problem is approached by assuming a few
different types of random time-sequences for v���: �i� binary
random sequence of v���=0 or v0, �ii� uniform random se-
quence generated from v���� �0,v0�, �iii� Gaussian random
sequence, or �iv� pseudorandom sequence �random sequence
repeating with a finite period �pseudo�. These random time
sequences are illustrated in Fig. 1. v0 could possibly be de-
termined for a specific system.

III. NUMERICAL RESULTS

We solved the coupled differential equations of C
���,
C����, and C���� for 0���109 with a time step of d�
=0.01 and a bin time of 	�=100. We adopt the parameters
E
=0, E�=0.8, and E�=1 unless mentioned otherwise. The
unnormalized probability P��on� of the on sojourn time �on is
obtained by counting how many times a particular event of
�on happens in the time-series of the fluorescence spectrum
I���. Also, the event of �on is defined as the on signal con-
tinues in n consecutive bin times satisfying n=�on /	�. I��� is
given by ����������� with ����= �C
����2+ �C�����2−0.65,22

where ��x� is the Heaviside step function. In Fig. 2, the
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statistics of P��on� are provided with respect to the strength A
of the external optical field for the binary random sequence
�say type I� and the uniform random sequence �say type II�
for v���. For both types, the inverse crossover time �C

−1 is
found to have quadratic dependence on A and � is found to
decrease as A increases. This corresponds to �C

−1�P, where
P is the laser intensity ��A2�. Experiments of the linear
laser-intensity-dependence have been reported by Stefani et
al.23 �for Zn0.42Cd0.58Se QD� and Lee et al.24 �for CdSe/ZnS
QD� for both on the insulating glass, consistent with an iso-
lated QD emitter in our case. The decreasing behavior of �
with A has also been observed recently for CdSe/ZnS QDs
by Peterson and Nesbitt.25 In the left panel of Fig. 3, for
types I and II sequences for v���, the behaviors of �C are
displayed with respect to the inverse tunneling strength 1 /v0.
It is found that �C is scaled to be �C�1 /v0 except for v0

�1 for both sequences of v���. The dependences of �C on A
or v0 could also give the important insight on the suitable
parameter set necessary to compare with the actual experi-
ment. Here we mention that the statistics of the off sojourn
time �off is symmetric to those of �on in our study because of
neglect of relaxation channels.

Figures 2 and 3 �left panel� imply that the fluorescence
intermittency statistics have little dependence on the micro-
scopic nature of the tunneling fluctuation. One may predict
the QD dynamics under other random sequences for v���.
For the Gaussian random sequence, ��1 leads to a situation
qualitatively similar to that of type II sequence, while ��1
�i.e., v���→ v̄� does not result in fluorescence intermittency,
but steady fluorescence. For a pseudorandom sequence, i.e.,
a random sequence repeating with a finite period �pseudo, it is
noted that the QD dynamics and fluorescence intermittency
are governed by the competition between the binning time 	�

and �pseudo. We find that the power-law intermittency is re-
produced for �pseudo�	�, but not for �pseudo�	�, as illus-
trated in Fig. 4.

IV. ANALYTIC RESULTS

In this section, we seek a deeper physical insight through
the analytic treatment of the same problem. Our model is
simple enough to enable some limited analytic arguments.
Starting from v���=0, we can obtain the exact solutions as

C

�0���� = ei��̄/2��	 A2

�̄X + 2X2eiX� −
A2

�̄X − 2X2e−iX�
 ,

�4�

C�
�0���� = − i

A

X
e−i��̄/2�� sin X� ,

where X=�A2+ �̄2 /4. Of course, we have C�
�0����=0. Using

the exact solutions of Eq. �4�, C�
�1���� can be immediately

obtained from Eq. �3� as

C�
�1���� = −

A

X
�

0

�

d��v����sin X��e−i��̄/2���e−i�E�−E
���. �5�

C�
�3���� can also be easily obtained after getting C�

�2���� by
applying the successive perturbation scheme to Eq. �3�,

C�
�3���� =

A

X
�

0

�

d��v����e−i�E�−E����

� �
0

��
d��v����ei�E�−E����

� �
0

��
d��v����sin X��e−i��̄/2���ei�E�−E����. �6�

� � �

� � �

� � �

� � �

� � �

� � �
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Both Eqs. �5� and �6� can be examined in the following in-
teresting limits. First, we assume off-resonance excitation,
i.e., �̄�0 or 	E�1. This is a straightforward situation be-
cause the realistic electronic structure of a QD comprises

multiple conduction and valence levels. Second, we assume
E�E�. As shown in the right panel of Fig. 3, the relative
position of E� and E� is not so relevant. This is interesting
because it may imply that the spectral diffusion of trapping
states12 might not be consistent with the blinking statistics.
Third, we examine the equations in the limits of the
weak field strength �i.e., A→0� and the weak tunneling
strength �i.e., v0→0�. Under these considerations, picking

� � � �

� � � �

� � �

� �

�

� �

�

� � �

� � 	

� � 


� � �

�



τ
��

�

� �

�

� � � � � 	 � � 


τ � �

� � � � � � �

� � � � � �

 ! " # $

% & '

+ ) ,

+ ) *

- ) ,

- ) *

* ) ,

* ) *

- ) +* ) .* ) /* ) * 0

1
/τ

1

2 3

45

6 7

8

9 : ;

9 : <

9 : =

9 : >

9 : 9

9 : ?

θ

9 : >? : @? : <? : ? A

B C D E

B C D F

B C G

B C F

B C E

B C H

B C I

B C J

B C K

L

τ

 

B C

E

B C H B C I B C

J

τ  

    W X Y

Z [ \ ] ^ _

` a b c d

e f g

h

i

j

k

l

m

n

o p qr p sr p tr p r u

1
/τ

v

w x

yz

{ |

}

~ � �

~ � �

~ � �

~ � �

~ � ~

~ � �

θ

~ � �� � �� � �� � � �

FIG. 2. Unnormalized probability of the on sojourn time for types I �upper panel� and II �lower panel� sequences of v��� with respect to A: For both types,
v0=1 is used. Behaviors of 1 /�C and � are also given with respect to A.

� � � � � � �

� �

� �

	 �


 �

�

τ

�

� ���	


 � � �

� � � � �

� � � � � � �

� �

� �

� �

� �

�

τ

�

 ����� ! "

# $

% & ' ( ) )

* + ,

* + -

* + .

* + /

0

1

τ

23

4

* + - * + 5 * + . * + 6

τ 7 8

9

γ : ; < =

9

γ : ; < >

9

γ ? @

A

β B

C  

  

  

  

  





τ



P

     Q      R

τ S T

U

γ V W X Y

U

γ Z [

U

γ V \ X ]

^

β _

`

FIG. 3. Left panel: Behavior of �C with respect to 1 /v0 for types I and II
sequences of v���. A=0.25 is used. Right panel: Unnormalized probability
of the on sojourn time with E� and E� �E
=0�. E�=0.8 and E�=1 corre-
spond to off-resonance and resonant excitation, respectively. Type I se-
quence for v��� with v0=1 and A=0.25 is used.

� � �

� � �

� � �

� � �

� � �

� � 	

� � 


�

τ

�

� � � � �

�

� �

�

� � 	

τ � �

τ � � � � � � � � � �

τ � � � � � � � � � �

τ � � � � � � � � � �

τ � � � � � � � � � �

FIG. 4. Unnormalized probability of the on sojourn time for the bin time
	�=100 with several values of �pseudo: The pseudobinary random sequence
�repeating with a period �pseudo� with v0=1 and A=0.25 are used.

074703-4 J. D. Lee and S. Maenosono J. Chem. Phys. 133, 074703 �2010�

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



up only the slowly oscillating contribution with
X �̄ /2+A2 / �̄+¯, we find

C�
�1����  i

A

2X
�

0

�

d��v����e−i�A2/�̄���

 i�1v0A� + �2v0A3�2 + ¯ �7�

and in the same way,

C�
�3����  i�3v0

3A�3 + ¯ , �8�

where �1, �2, and �3 are real numbers of O�1� with bounded
randomness, such as �� ��̄−	� /2, �̄+	� /2�. �̄ is an aver-
age value.

Now, let us discuss the intermittency statistics on the
basis of the above analytic exploration. We define the prob-
ability that the state is unchanged during the time interval
�0����0+T when the system is in a bright �neutral� state
initially at �0 as P��0 ,�0+T�. Then P��0 ,�0+T� can be for-
mally written as

P��0,�0 + T� = P��0,�0 + 	��P��0 + 	�,�0 + 2	��

� ¯ � P��0 + �N − 1�	�,�0 + T� , �9�

where T=N	�. Here we note an expression of P��0 ,�0+	��
in terms of �C�����2 simply like

P��0,�0 + 	�� 
�C���0��2

�C���0 + 	���2
. �10�

With �C�����2= �C�
�1����+C�

�3����+¯�2, we obtain the first few
leading order terms for P��0 ,�0+T� in the limits of A→0
and v0→0,

P��0,�0 + T� �
1

�1
2T2 + 6�0��1�3v0

2 +
2�2

2

3
A4�T3 + ¯


1

�1
2T

−2 − 6�0��3

�1
3v0

2 +
2�2

2

3�1
4A4�T−1 + ¯

� T−2 + �� − ��T−1 + ¯ , �11�

where we assume T��0 keeping �0T�O�1� ��0 is arbitrary�.
The last line of Eq. �11� is for a comparison with an empiri-
cal formula P��0 ,�0+T��T−�e−�T, with �=2−�. Noting that
� is known to be ���C

−1� ��v0+�A2� from the behaviors of
�C shown in Figs. 2 and 3, we finally find �� ��v0+�A2

+O�v0
2 ,A4��. Therefore, Eq. �11� shows that the power-law

exponent has �=2 as its upper bound in the limits of A→0
and v0→0 and becomes less than 2 as A or v0 increases. The
sketch of the behavior of � with respect to A is displayed in
Fig. 5. This naturally explains the decrease of � with increas-
ing A at the qualitative level, already shown in Fig. 2.

The power-law behavior changes to the exponential be-
havior near the crossover time �C. Such a crossover means a
change from the long-memory to memoriless dynamics. The
lowest order term of C���� thus has the randomness of
	�1v0A� centered about �̄1v0A� and in the same way, the
next higher order terms have randomness of 	�2v0A3�2 and
	�3v0

3A�3. If the randomness of the next higher order term is
larger than that of the lowest order term, the initial memory

disappears and the dynamics cross over to the memoriless
ones. That is, we impose for the crossover time �C,

v0A�C � v0A3�C
2 and v0A�C � v0

3A�C
3 .

Therefore, we find �C
−1�A2 and �C

−1�v0. These relations con-
firm our numerical findings in Figs. 2 and 3 �left panel�,
respectively. We note that in the lowest order, A and v0 do
not couple to each other in the scaling of �C

−1. This signifies
that the field-dependence of �C

−1 is independent of the internal
parameters of the QD �i.e., size of v0 or internal levels ac-
cording to Fig. 3�. That is, numerical results of Fig. 2 would
be robust to the value of v0 or relative position of E� and E�.

After the crossover time �C, the memory of the dynamics
is completely lost so that one has P��0 ,�0+	��= P��0

+	� ,�0+2	��= ¯ =C. From this, P��0 ,�0+T� can be written
as

P��0,�0 + T� = CN = e−��T/	�� �12�

taking C=e−�. It is readily understood that the intermittency
statistics proceed from the power-law behavior to the expo-
nential behavior.

So far, we have considered only the easy off-resonance
excitation ��̄�0 or 	E�1�; however, one may need to con-
sider the resonant excitation of �̄0, i.e., 	E1. If a par-
ticular excitation, for instance, the lowest excitation of 1Sh

→1Se in CdSe QD, has a dominantly strong oscillator
strength, one may think of the resonant excitation by tuning
the field energy to the corresponding excitation energy. In
this case, we have C�

�1����−�0
�d��v����sin A���1v0A�2

+�2v0A3�4+¯ and in the same way, C�
�3�����3v0

3A�4+¯,
where �1, �2, and �3 carry similar randomness. We estimate
�C as v0A�C

2 �v0A3�C
4 and v0A�C

2 �v0
3A�C

4 and find �C
−1�A

and �C
−1�v0. In particular, �C

−1�A sharply contrasts with the
relation of �C

−1�A2 for the easy off-resonance excitation. In
Fig. 6, we confirm �C

−1�A through the numerical calculation.

V. DISCUSSION

The first QD blinking model was suggested by Efros and
Rosen.9 Even if the biexciton and its successive Auger ion-
ization based on the model cannot directly predict the power-
law intermittency, the physical insight by the Auger-like non-
radiative relaxation is not small. We argue that such
relaxation could be in principle included in our formalism
and considered to contribute effectively and partly to the ef-
fective tunneling constant. However, it is assumed that the
contribution would be eventually screened in the strong fluc-
tuation of the direct tunneling in our consideration. This is

FIG. 5. Sketch of the power-law exponent � with respect to the field
strength A �for v0→0�: The dashed part is from the numerical results in
Fig. 2.
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schematically illustrated in Fig. 7. From the figure, one may

note that v+GḠv+¯ would correspond to v��� in Eq. �1�,
where G and Ḡ stand for electron-hole creation and recom-

bination, respectively. GḠv would simply represent the Au-
ger process together with the Auger electron to the trapping
level.

Another point to be considered in the underlying dynam-
ics of QD would be the radiative decay, that is, the sponta-
neous emission. The spontaneous emission cannot be imme-
diately incorporated in our model Hamiltonian because it has
no classical analog and should be handled in the quantum
mechanical photon field. In our model, the optical pumping
is done by the classical radiation field. Nevertheless, we
could try to set in the relevant term by hand in the equation.
In that case, we find that our finding of the field-induced
scaling of the QD blinking statistics is robust because the
energy scale relevant for the spontaneous emission �typically,
�10−6 eV corresponding to �O�1� ns� is much smaller
than the field parameters. For a given set of the QD param-
eters �all the parameters are scaled by �� with �=O�1� eV,
it may be possible to make an estimation for �C, that is, by
taking A�0.1–0.01 meV and v0�10 meV, one may get
�C�0.1–10 s, which is more or less comparable with the
experiment. In spite of such an estimation, in order to discuss
the absolute time scales, we may have limitations in our
conclusion and need to explicitly consider the spontaneous
emission more carefully.

Finally, we remark on the field-dependence of the QD
fluorescence intermittency, which might be seminal to both
application control and fundamental understanding of the
phenomena. With regard to the laser-intensity-dependence of
the inverse crossover time �C

−1, one may find special interest
because it could be directly observed in the experiments.
Stefani et al.23 and Lee et al.24 discussed the important role
of the QD’s environment and reported the linear dependence
for QDs on the insulating glass. In this environment, QDs
would respond like isolated ones with the least communica-
tion between them, consistent with an isolated QD emitter in
our present consideration. Peterson and Nesbitt25 reported
the quadratic dependence for QDs on the polymer film and
argued it as evidence of the increasing probability of biexci-
ton formation leading to Auger ionization. However, it is
well known that the random telegraph model9 which origi-
nally proposed the scenario of biexciton and Auger ioniza-
tion cannot reproduce the power-law distribution of on or off
times.

VI. CONCLUSION

In conclusion, we found that the intermittency statistics
are universal �i.e., power-law behavior with an exponential
tail� with little dependence on the microscopic nature of tun-
neling fluctuation between QD and trapping state. The
power-law exponent �, crossover time �C, and their optical
field dependence were investigated in both numerical and
analytic ways. We found that for easy off-resonance excita-
tion, �C is scaled to be �C

−1�A2 ��P� independent of internal
parameters of QD. We also found that �=2 in the limits of
A→0 and v0→0 is the upper bound of the exponent and �
becomes less than 2 as A or v0 increases.
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FIG. 6. Unnormalized probability of the on sojourn time with respect to A under resonant excitation, i.e., 	E=E�−E
=1 �E
=0, E�=1, and E�=1.2 are
taken�. Type I sequence of v��� with v0=1 is used. Behaviors of 1 /�C and � are also given with respect to A.

FIG. 7. Schematic illustration of the direct tunneling �v� and the biexciton

and the Auger-like nonradiative relaxation �GḠv�: The shaded box corre-

sponds to GḠ, where G and Ḡ represent the propagator of electron-hole
creation and recombination, respectively. Filled red dots represent electrons
and empty dots holes, respectively.
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