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LETTER

An Approximative Calculation of the Fractal Structure
in Self-Similar Tilings

Yukio HAYASHI†a), Member

SUMMARY Fractal structures emerge from statistical and hierarchical
processes in urban development or network evolution. In a class of efficient
and robust geographical networks, we derive the size distribution of layered
areas, and estimate the fractal dimension by using the distribution without
huge computations. This method can be applied to self-similar tilings based
on a stochastic process.
key words: complex network science, geographical network, random frac-
tal, Markov chain, urban planning

1. Introduction

Fractal nature is observed in our real-life infrastructures
of urban spatial organization and many technological net-
works. Indeed, the fractal dimensions of land-use and area-
perimeter have been measured in real data of urban cities
[1], [2]. Similar structures with mixing of dense and sparse
areas of nodes have been found in router networks [3], air
transportation networks [4], and mobile communication net-
works [5]. These studies show that the spatial distribution
of human activities is inhomogeneous and concerning with
the population density. Thus, there commonly exists a hier-
archical structure based on statistical self-similarity beyond
regular mathematical models such as Sierpinski gasket and
carpet. In other words, fractal behavior is not limited to ob-
jects with a regular morphology, but can be introduced by
iterative evolutionary processes of subdivision or growing
at different levels of scaling.

Recently, a multi-scale quartered (MSQ) network,
which is stochastically constructed by a self-similar tiling,
has been proposed [6], [7]. The geographical network em-
bedded on a planar space has several advantages [6]: the
robustness of connectivity against failures and attacks, the
bounded short path lengths, and the decentralized routing
algorithm [8] in a distributed manner. Furthermore [7], it
is more efficient (economic) with shorter link lengths and
more suitable (tolerant) with lower load for avoiding traf-
fic congestion than the state-of-the-art geometric growing
networks [9]–[15] and the spatially preferential attachment
models with various topologies ranging from river to scale-
free geographical networks. These properties are useful for
the future self-organized design of wide-area wireless ad
hoc networks.
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This paper investigates the size distribution of faces it-
eratively divided in the generation process of a MSQ net-
work. In particular, we derive an approximative equation
for the averaging behavior of random process, and apply it
to easily estimate the fractal dimension of such a self-similar
tiling.

2. MSQ Network

For generating a MSQ network, the following process is re-
peated from an initial tiling which consists of same shaped
faces. At each time step, a face is chosen, e.g., with a prob-
ability proportional to the population in the space of a face
for the load balancing of communication requests, or uni-
formly at random. Then, as shown in Fig. 1, four smaller
faces are created in the chosen face, and a planar network is
self-organized on a geographical space. Such a fractal struc-
ture is also observed in urban road networks [16], [17]. Note
that the MSQ network includes a Sierpinski gasket obtained
by a special selection when each triangle, except the central
one, is hierarchically divided, however its fractal dimension
log 3/ log 2 ≈ 1.585 differs to that in the average behavior
of the following random selection.

3. Infinite State Markov Chain

For simplicity, we treat the uniformly random selection of a
face, whose case corresponds to general positions of nodes
in the geographical network. In addition, even if a face in
the area of high population density tend to be chosen for the
subdivision, the assigned population to a node in its terri-
tory is asymptotically balanced, then the behavior closes to
the case of random selections in course of time. In this set-
ting, the subdivision process makes an infinite state Markov
chain as illustrated in Fig. 2. Here, we consider a vec-

Fig. 1 Basic process of the division.
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Fig. 2 Iterative division of a face chosen uniformly at random.

tor (n1(t), n2(t), . . . , nl(t) . . .) as the state of Markov chain,
whose element nl(t) represents the number of faces at time
step t on the layer l defined by decreasing order of size. A
face on the layer l is chosen with the probability pl(t) =
nl(t)/N(t) at the next step t+1, then the sate is changed from
(. . . , nl(t), nl+1(t), . . .) to (. . . , nl(t+1)−1, nl+1(t+1)+4, . . .),
where N(t) =

∑
k nk(t) = N0 + 3t denotes the total number

of faces at t, and N0 is the initial number. Note that pl(t) is
time-dependent on a selected path for the decision tree from
the top to the bottom in Fig. 2, equivalently on a selection
sequence of faces. Thus, the above Markov chain is differ-
ent from the Galton-Watson type branching process with a
time-independent probability for generating offsprings [18].

We obtain the averaging behavior for

Δnl
def
= nl(t + 1) − nl(t). (1)

This can be written as

Δnl = 4pl−1(t) − pl(t), (2)

since a face on the layer l chosen with the probability pl(t)
is divided into four smaller ones which belong to the layer
l+1, therefore a face on the layer l−1 contributes to increase
the number of faces on the layer l. For a large t, by noticing
nl(t) = N(t)pl(t) and substituting N(t) = N0 + 3t ≈ 3t into
the right-hand side of Eq. (1), it is

Δnl = 3(t + 1)pl(t + 1) − 3tpl(t),

= 3t[pl(t + 1) − pl(t)] + 3pl(t + 1).

Using pl(t + 1) ≈ pl(t) because of t + 1 ≈ t � 1, Eq. (2) is
rewritten to

pl(t + 1) − pl(t) = − 4
3t

[pl(t) − pl−1(t)]. (3)

We numerically confirm that the average behavior of
the Markov chain is well fitting to the solution for Eq. (3) as
shown in Fig. 3. Here, the cross, asterisk, open square, and
closed square marks correspond to the average of 100 states
reached at each time t = 102, 103, 104, and 105, respec-
tively, on the decision tree from the initial state (3, 4, 0, . . .)

Fig. 3 The distribution of pl.

Fig. 4 Mean & variance of the distribution of pl.

in Fig. 2. The four types of dashed curves correspond to
the distributions calculated by Eq. (3) until these times. The
solid curve fitting with the closed square marks is the ap-
proximation by a normal distribution. Note that the aver-
aged or calculated number nl of faces on each layer l at t
is normalized as the relative frequency pl. This bell-shaped
distribution means that there exist a mixing of dense and
sparse areas with various sizes of faces whose majorities
have the intermediate sizes. Figure 4 shows the mean and
the variance of the distribution pl. The upper and lower tri-
angle marks denote the mean and the variance of the distri-
bution obtained for the Markov chain. The solid and dashed
lines denote the corresponding results for Eq. (3). In Fig. 5,
the circle marks and dotted piecewise linear line denote the
skewness of these distributions for the Markov chain and
for Eq. (3), respectively. The mean and the variance grow as
O(log t), while the skewness is almost constant around 0.2.
Although the pl is asymptotically a Poisson distribution with
a same value for the mean and the variance as mentioned in
the Appendix, it is rather fitting with the approximation by
Eq. (3) in a finite size.

On the basis of the numerically obtained pl(t), the frac-
tal dimension df is estimated as 1.2 (a similar value is ob-
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Fig. 5 Skewness of the distribution of pl.

tained for a chair or a sphinx tilling [19]) by using a cover-
based method in the hierarchically coarse measure of dou-
bling link length on each layer l until t = 108. Figure 6
shows an example at the state (1, 11, 4, 0, . . .). The number
of covered areas (gray rectangles) is

N[2] = 2 × N[1] + 11 + 3 × (42 − (4 × 1 + 11)),

where we set the number of initial coverings N[1] = 12
for a square tiling. It depends on the primitive shape;
N[1] = 9 for a triangle tiling, and N[1] = 8 for a chair
or a sphinx tiling. In general for a large l, we calculate
df = log N/ log 2l from

2 × N[l − 1] + nl + 3 × (Tl − S l), (4)

the total number of faces in the completely recursive di-

vision Tl
def
= 4l, the number of holes without subdivisions

S l
def
= 4 × nl−1 + nl, and S 1 = n1. Three terms in the right-

hand side of Eq. (4) correspond to thick, thin solid lines, and
dashed lines in Fig. 6. Since there is one-to-one correspon-
dence between the divided four faces and the cross-edges in
a square at each layer l, e.g., by applying a clockwise map-
ping rule, nl represents this effect on the covering. However,
the 2nd and the 3rd terms are replaced by 3 × �nl/4� for
a triangle tiling, and by 8 × �nl/4� for a chair or a sphinx
tiling. We emphasis that our method can be performed by
only using the calculated nl without both averaging and im-
age processings in a box-counting method.

We should remark that the continuous approximation
with respect to time and space variables for both sides of
Eq. (3)

∂pl

∂t
= − 4

3t
∂pl

∂l

gives an incorrect solution, which keeps the shape in the
traveling wave

pl(t) = F(l − v log t),

where a function F() is determined by the initial distribution,
and v = 4/3.

Fig. 6 Illustration for a cover-based method. We count holes by the
numbers for n2 and the parenthesized numbers for n1.

4. Conclusion

Considering the stochastic network construction [6], [7] as a
Markov chain, the size distribution of the divided faces has
been investigated. We have shown, by numerically solving
Eq. (3) as the average behavior, that the mean and the vari-
ance are proportional to log t, while the skewness is small
positive. In a realistic finite size N ∝ t ≤ 108, this ap-
proximation of pl is fitting better than the asymptotical Pois-
son solution for the interactive particle system (see the Ap-
pendix). From the distribution nl = N pl, the fractal di-
mension is estimated as 1.2 without huge computations of
averaging and image processings in the conventional box-
counting method. The proposed method can be applied to
other self-similar tilings based on a stochastic process. Fur-
thermore, it would be interesting to discuss a self-similar
modeling which reproduces the fractal structures of urban
road [16], [17], air-sea transportation [4], communication
[5] networks.
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Appendix

Let us reformulate the subdivision process for generating
a MSQ network as a model in interacting infinite particle
systems. Then, according to the notation [18], we consider
the generator ΩH on Z+ = {1, 2, . . .},
ΩH f (η) =

∑
x∈Z+
η(x)[ f (ηx,x+1) − f (η)],

where we set m = 4 and define the following functions on
η ∈ {0, 1, 2, . . .}Z+ ,

ηx,x+1(y)
def
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
η(x + 1) + m, y = x + 1,
η(x) − 1, y = x,
η(y), y � x, x + 1.

Note that the position x corresponds to the layer l of a chosen

face in Sect. 3, therefore the number η(x) decreases by 1 at
x and increases by m at x due to the contribution at x − 1. In
particular for f (η) = η(x), we have

dnx(τ)
dτ

= m × nx−1(τ) − nx(τ), x ≥ 1, (A· 1)

dn0(τ)
dτ

= −n0(τ), (A· 2)

where nx(τ) = E[ητ(x)] is the expectation of the number of
particles at position x and at time τ, and the initial configu-
ration is η0 = (m, 0, 0, . . .). We can solve (A· 1), (A· 2),

nx(τ) = mx τ
x−1

(x − 1)!
e−τ, x ≥ 1.

Also, the expectation of the total number of particles is given
by

N(τ) = me(m−1)τ.

Therefore, from px(τ) = nx(τ)/N(τ), we obtain the Poisson
distribution with a parameter mτ

px(τ) =
(mτ)x−1

(x − 1)!
e−mτ, x ≥ 1.

By the variable transformation between t and τ from the re-
lation N(t) = N(0) + (m − 1)t ⇔ N(τ) = me(m−1)τ, the
mean and the variance follow mτ ∝ log t. This logarithmic
behavior is consistent with the numerical results in Sect. 3.

As another typical approach, if we consider a generat-
ing function

H(t)(z)
def
=

∞∑
l=1

pl(t)z
l,

by multiplying zl to both sides of Eq. (3) and taking the sum-
mation

∑∞
l=1, we obtain

H(t+1)(z) =

(
1 − 4(1 − z)

3t

)
H(t)(z).

Here, we use
∑

l pl−1(t)zl = zH(t)(z). The frequency pl(t) is
only formally calculated by the recursive differentials

pl(t) =
1
l!
∂lH(t)(z)
∂zl

∣∣∣∣∣∣
z=0

.

However, it is practically unsolvable because of involving
with a very complicated combinatorial explosion for a large
t, equivalently for a large network size N ∝ t.


