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PAPER

Traffic Properties for Stochastic Routing on Scale-Free Networks

Yukio HAYASHI†a) and Yasumasa ONO†, Members

SUMMARY For realistic scale-free networks, we investigate the traf-
fic properties of stochastic routing inspired by a zero-range process known
in statistical physics. By parameters α and δ, this model controls degree-
dependent hopping of packets and forwarding of packets with higher per-
formance at more busy nodes. Through a theoretical analysis and numerical
simulations, we derive the condition for the concentration of packets at a
few hubs. In particular, we show that the optimal α and δ are involved in
the trade-off between a detour path for α < 0 and long wait at hubs for
α > 0; In the low-performance regime at a small δ, the wandering path for
α < 0 better reduces the mean travel time of a packet with high reachabil-
ity. Although, in the high-performance regime at a large δ, the difference
between α > 0 and α < 0 is small, neither the wandering long path with
short wait trapped at nodes (α = −1), nor the short hopping path with
long wait trapped at hubs (α = 1) is advisable. A uniformly random walk
(α = 0) yields slightly better performance. We also discuss the congestion
phenomena in a more complicated situation with packet generation at each
time step.
key words: traffic dynamics, degree-dependent random walks, zero-range
process, phase transition, scale-free network

1. Introduction

In daily socio-economic network systems, many commodi-
ties, passengers, or information fragments (abstractly re-
ferred to as packets in this paper) are delivered from one
place to another place. In general, it is expected to send
and receive packets as quickly as possible without encoun-
tering traffic congestion which would force packets to wait
at nodes. Even if packets are concentrated (or condensed in
term of statistical physics) on just a few nodes in some parts
of a network, this situation may cause congestion over the
network. Thus, one of the important issues is a routing strat-
egy: how to select a forwarding node in the neighbors of the
resident node of a packet. Since the efficiency of transporta-
tion or communication depends on not only routing strategy,
but also on network topology, we should consider a realistic
problem setting for the routing and the topology. In addi-
tion, considering the interaction of accumulated packets in
a buffer (called queue) at each node is necessary, since it
crucially affects the traffic flow on a network. This paper
discusses traffic properties that depend on routing strategies
in the interaction of packets on a realistic network topology.

During this decade, a new research field, complex net-
work science, has been created [1], since a common topo-
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logical structure called scale-free (SF) was found to exist in
many real networks such as the Internet, the World-Wide-
Web, power grids, airline networks, social collaboration
networks, human sexual contacts, and biological metabolic
pathways, etc. The SF structure is characterized by the prop-
erty that the distribution of degree (the number of connec-
tions to a node) follows a power-law. In other words, the
network consists of many nodes with low degrees and a few
hubs with high degrees. Moreover, a SF network naturally
emerges in social acquaintance relationships or peer-to-peer
communications, and it has short paths compared with large
network size (the total number of nodes).

In a realistic SF network, a routing path is shortened by
passing through hubs for the forwarding of a packet. How-
ever, many packets may be concentrated at the hubs [2], in
whose queues the packets are cumulatively stored if they
arrive in a quantity larger than the processing limit for for-
warding. In such a situation, there exists a trade-off between
delivering packets on a short path and avoiding traffic con-
gestion. To improve communication efficiency even in a dy-
namic environment for a wireless or ad hoc network, vari-
ous routing schemes are being developed. Because, in an
ad hoc network, many nodes (such as base stations or com-
munication sites) and connections between them are likely
to change over time, then global information, e.g., a routing
table in the Internet, cannot be applied. In early work, some
decentralized routing developed to reduce energy consump-
tion in sensor or mobile networks, however they lead to the
failure of guaranteed delivery [3]; in the flooding algorithm,
multiple redundant copies of a message are sent and cause
congestion, while greedy and compass routing may occa-
sionally fall into infinite loops or into a dead end. Thus, we
focus on stochastic routing methods using only local infor-
mation with respect to the resident node of a packet and to
the connected neighbors on a path, due to their simplicity
and power. If the terminal node of a packet is included in
the neighbors of the resident node, then the packet is deter-
ministically sent to the terminal in order to guarantee reach-
ability unless the connectivity is broken. We call this neigh-
bor search (or n-search) only at the last step to the terminal.
Note that the development of stochastic routing methods is
still in progress depending on device and information pro-
cessing technologies. Although we suppose a mixture of
wireless and wired communications in future networks, first
of all, we aim to understand the relations for traffic proper-
ties between fixed network topology and routing methods.
Here, it is usually assumed for simplicity that each node has

Copyright c© 2011 The Institute of Electronics, Information and Communication Engineers
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the same performance in the forwarding of packets.
The enhancement of performance in forwarding is also

reasonable [4], [5]. For example, in the Internet or airline
networks, an important facility with many connections has
high performance; more packets or flights are processed as
the incoming flux of communication requests or of passen-
gers increases. Such higher performance at more busy nodes
is effectively applied in a zero-range process (ZRP) [6], [7],
which tends to distribute packets throughout the whole net-
work, instead of avoiding paths through hubs.

In this paper, from the random walk version, we ex-
tend the ZRP on a SF network to the degree-dependent hop-
ping rule, which parametrically controls routing strategies
in the trade-off between the selection of a short path pass-
ing through hubs, and the avoidance of hubs at which many
packets are condensed and wait in queues for a long time.
The above models in statistical physics are useful for the
analysis of complex phenomena involved in transition form
a free-flow phase to a congestion phase, or the opposite tran-
sition. Most research on traffic congestion rely on numeri-
cal simulations. Although a few other theoretical analyses
based on the mean-field approximation [8] have been done,
we can not compare them to the ZRP, simply because of dif-
ferent problem settings. Thus, we consider a combination of
settings as modified traffic models, and numerically investi-
gate them.

The organization of this paper is as follows. In Sect. 2,
we briefly review the related models in recent studies. In
Sect. 3, we introduce a stochastic packet transfer model de-
fined by the ZRP, in which all packets persist without any
generation and removals. Then, in terms of fundamental
properties, we approximately analyze the stationary prob-
ability of incoming packets at each node on SF networks,
and derive the phase transition for condensation of packets
at hubs in the degree-dependent hopping rule. In Sect. 4,
we numerically confirm the phase transition, and as a new
result, show the trade-off between a detour wandering path
and long wait at hubs. Moreover, we discuss the congestion
phenomenon in the modified traffic models with packet gen-
eration. In Sect. 5, we summarize these results and describe
some issues for further research.

2. Related Work

Many traffic models have been proposed in various prob-
lem settings for routing, node capacity, and packet genera-
tion. They are summarized in Table 1. The basic processes
for packet transfer consist of the selection of a forwarding
(coming-in) node and the jumping-out of packets in the node
capacity. In these models (including our model discussed
later), a significant issue commonly arises from the trade-
off between delivering packets on a shorter path and avoid-
ing the congestion caused by a concentration of packets on
a few nodes such as hubs.

In the typical models, a forwarding node k is cho-
sen with probability either Kαk /

∑
j∈Ni

Kαj [9]–[11] or (m(k) +

1)−β/
∑

j∈Ni
(m( j) + 1)−β [12]. Here, α and β are real param-

Table 1 Recent traffic models for complex networks. When a packet is
forwarded from a current node i to k ∈ Ni, the neighboring node k is chosen
with probability Πk or by minimizing an objective function on a routing
path. The node capacity ci is defined by the number of simultaneously
transferable packets from each node i. Here, K(xl) denotes the degree of
node xl, Θ(x) is the step function, and m∗ is a threshold, β ≥ 0, and 0 ≤ η̄ <
1.

Ref. selection of node packet
forwarding node capacity generation

[10] Πk ∝ Kαk ci = 10 or Yes
−1 ≤ α ≤ 1 ci = Ki

[11] min
∑

l K(xl)β ci = 1 Yes
on a path {x0, . . . , xn}

[12] Πk ∝ (m(k) + 1)−β ci = 1 Yes

[13] Πk ∝ Kk(m(k) + 1)−β ci = 5 Yes

[14] min hdk + (1 − h)m(k) ci = 1 Yes
0 ≤ h ≤ 1

[8] random walk
with a refusal prob. ci = 1 Yes
η̄Θ(m(k) − m∗)

[6], [7], [15] Πk ∝ Kαk jumping rate No
[16] α > 0 mδ(i)

eters, Kk and m(k) denote the degree and the dynamically-
occupied queue length by packets at node k in the connected
neighbors Ni to the resident node i of the packet. These
methods are not based on a random walk (selecting a for-
warding node uniformly at random among the neighbors),
but on the extensions (including the uniformly random one
at α, β = 0) called preferential and congestion-aware walks,
respectively. Note that α > 0 leads to a short path passing
through hubs, and that α < 0 and β > 0 lead to the avoidance
of hubs and congested nodes with large m(k). In stochastic
routing methods, instead of using the shortest path, the opti-
mal values α = −1 and β = 1 for maximizing the generation
rate of packets in a free-flow regime have been obtained by
numerical simulations [10], [11]. A correlation between the
congestion at node level and a betweenness centrality mea-
sure was suggested [12].

Other routing schemes [8], [13], [14] have also been
considered, taking into account lengths of both the routing
path and of the queue. In a deterministic model [14], a for-
warding node k is chosen among neighbors Ni by minimiz-
ing the quantity hdk+ (1−h)m(k) with a weight 0 ≤ h ≤ 1, dk

denoting the distance from k to the terminal node. Since we
must solve the optimization problems, these models [11],
[14] are not suitable for wireless or ad hoc communication
networks. Thus, stochastic routing methods using only local
information are potentially promising. In a stochastic model
[8], k ∈ Ni is chosen at random, and a packet at the top of
its queue is sent with probability 1 − η(m(k)) or refused with
probability η(m(k)) as a nondecreasing function of the queue
length m(k). This model is simplified by the assumption of
a constant arrival rate of packets, for analyzing the critical
point of traffic congestion in a mean-field equation [8].
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With a different processing power at each node [10],
it has also been considered that the node capacity ci is pro-
portional to its degree Ki, therefore more packets jump out
from a node as the degree becomes larger. On the other
hand, in the ZRP [6], [7], [15], the forwarding capacity at
a node depends on the number of m(i) defined as a queue
length occupied by packets at node i. The ZRP is a solv-
able theoretical model for traffic dynamics. In particular, in
the ZRP with a random walk at α = 0, the phase transition
between condensation of packets at hubs and uncondensa-
tion on SF networks has been derived [6], [7]. For α > 0, a
similar phase transition has been analyzed in the mean-field
approximation [16].

In the next two sections, based on a straightforward ap-
proach introduced in Refs. [6], [7], we derive the phase tran-
sition in the ZRP on SF networks with the degree-dependent
hopping rule for both α > 0 and α < 0, inspired by preferen-
tial [9]–[11] and congestion-aware walks. Although the rule
is not identical to the congestion-aware routing scheme [12]
based on occupied queue length m(k), α < 0 corresponds to
avoiding hubs with large degrees, where many packets tend
to be concentrated. Furthermore, we study the traffic prop-
erties in the case with neighbor search into a terminal node
at the last step.

3. Packet Transfer Model

3.1 Routing Rule

Consider a system of M interacting packets on a network of
N nodes with a density ρ = M/N, M =

∑N
i=1 m(i), where

m(i) ≥ 0 denotes the occupation number of packets in the
queue at each node 1 ≤ i ≤ N. For simplicity, we as-
sume that the queue length is not limited, and that the or-
der of stored packets is ignored. If there is a limitation on
the queue length, it may become necessary to discuss a cas-
cading problem [17]–[19] whose dynamics are very compli-
cated.

To investigate the predicted properties from the theo-
retical analysis in the ZRP [6], [7], [15], we use the same
problem setting, such that all packets persist on paths in
the network without generation or removals of packets. For
more complex situations with packet generation, some mod-
els modified by adding different routing rules will be inves-
tigated in Sect. 4.2.

In this routing rule related to the ZRP, the total num-
ber M of packets is constant at any time, and each node
performs a stochastic local search as follows: at each time
step, a packet jumps out of a node i stochastically at a given
rate qi(m(i)) as a function of m(i), and then comes into one
of the neighboring nodes k ∈ Ni chosen with probability
Kαk /

∑
k′∈Ni

Kαk′ . When a packet is transferred from i to k, the
queue length m(k) is increased by one unit, and m(i) is simul-
taneously decreased. The above processes are conceptual,
the relaxation dynamics for the simulation of packet trans-
fer is necessary, and described in Sect. 4. The effect of the
deterministic neighbor search into a terminal node at the last

Fig. 1 Combination of consecutive nodes on the route from node i to j.
The dashed rectangles correspond to the sum of Eqs. (1)–(3).

step will also be discussed later.

3.2 Stationary Probability in α-Random Walks

Before investigating the influence of dynamic queue lengths
on traffic properties, we consider the stationary probability
of incoming packets at each node. As mentioned in the pre-
vious subsection, we extend a random walk routing [15],
[20], in which a walker (packet) chooses a node uniformly
at random among the neighbors of the current node on a
path, to a degree-dependent routing. We call it α-random
walk.

As in Ref. [20], for the probability Pi j of finding the
walker at node j ∈ Nk from node i through the intermediate
nodes k ∈ Ni at time t, the master equation is

Pi j(t + 1) =
∑

k

Kαj∑
j′∈Nk

Kαj′
Pik(t). (1)

By iterating Eq. (1), an explicit expression for the transition
probability Pi j to go from node i through j1, . . . , jt−1 to j in
t steps follows as

Pi j(t) =
∑

j1 ,..., jt−1

Kαj1∑
j′1∈Ni

Kαj′1
× . . . ×

Kαj∑
j′∈N jt−1

Kαj′
, (2)

where the sum
∑

j1 ,..., jt−1
is taken over the connected paths

between nodes i and j, as shown in Fig. 1. In the opposite
directions of the same paths, the transition probability Pji

follows as

Pji(t) =
∑

jt−1 ,..., j1

Kαjt−1∑
j′t−1∈N j

Kαj′t−1

× . . . × Kαi∑
i′∈N j1

Kαi′
. (3)

We assume the network to be uncorrelated: there is no corre-
lation between two degrees of any connected nodes, so that∑

j′1 Kαj′1
= Ki · 〈Kα〉 and

∑
j′t−1

Kαj′t−1
= Kj · 〈Kα〉 hold by us-

ing the mean value 〈Kα〉 of the α-power of the degree. By
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Fig. 2 Probability of incoming at a node with degree K in the α-random
walk of M = 1000 independent packets (equivalent to the case of δ = 1)
through 1000 rounds. The lines guide the estimated slopes in the left col-
umn (without n-search) in Table 2, and the plotted marks show the proba-
bility obtained in a BA network with N = 1000 and 〈K〉 = 10.

comparing the expression of Pi j in Eq. (2) with that of Pji in
Eq. (3), we obtain the equivalent relation

Ki

Kαj
Pi j =

Kj

Kαi
P ji.

Thus, for any source i and step t, Pi j is proportional to K1+α
j ,

while Pji is proportional to K1+α
i . Consequently, the sta-

tionary solution P∞j of the incoming probability Pi j is pro-

portional to K1+α
j . This form, related only to the degree of

the forwarding node j, is suitable for the theoretical analysis
of the ZRP presented in the next subsection and in the Ap-
pendix. The approximative solution is also obtained from
a different approach to the master equation [10] under the
same assumption of uncorrelated networks.

Figure 2 shows the stationary solution P∞j ∝ Kβj and
the exponent β ≈ 1 + α ≥ 0 for the SF networks (gener-
ated by the BA: Barabási-Albert model [1]). Table 2 also
shows that the estimated exponents β are consistent in the
cases both with and without neighbor search into a terminal
node at the last step. Here, the terminal is chosen from all
nodes uniformly at random. After arriving at the terminal,
the packet is restarted (resent) from the node to a new ter-
minal, in order to maintain the persistency of packets in the
ZRP.

3.3 Phase Transition in the ZRP

We discuss the phase transition between condensation and
uncondensation in the ZRP with degree-dependent hopping
rule of packets. For the configuration

m(1), . . . ,m(i), . . . ,m(N)

of occupation at each node, the stationary solution of a sin-
gle packet is given by the factorized form

Table 2 Numerically estimated exponent β ≈ 1 + α for the lines from
the plotted marks in Fig. 2 by using the mean-square-error method for the
independent walks of M = 1000 packets. These values give the averaged
slopes for P∞j ∝ Kβj in 100 BA networks with N = 1000 and 〈K〉 = 10.

without with n-search
α β β

1.0 2.245 2.143
0.5 1.611 1.576
0.0 1.039 1.027
−0.5 0.524 0.519
−1.0 0.022 0.019

Fig. 3 Illustration of the queue length occupied by packets at each
node. For the sum

∑
∗ in Eq. (6), there are many combinations of

{m(1), . . . ,m(i−1),m(i+1), . . . ,m(N)} satisfying
∑

j�i m( j) = M − ω.

P(m(1), . . . ,m(i), . . . ,m(N)) =
1
Z
ΠN

i=1 fi(m(i)), (4)

where Z is a normalization factor and

fi(m(i))
def
= Π

m(i)

ω=1

(
P∞i

qi(ω)

)
, (5)

for an integer m(i) > 0 and fi(0) = 1. We consider a function
qi(ω) = ωδ with a parameter 0 ≤ δ ≤ 1 for forwarding per-
formance. This means that a node works harder for transfer,
as it has more packets in the queue with larger ω and δ.

Using the probability distribution in Eq. (4) and the sta-
tionary probability P∞i ∝ Kβi , we can calculate the mean

value 〈m(i)〉 at each node. Here, 〈m(i)〉 def
=

∑∞
ω=0 ωPi(m(i) =

ω) is defined by using the probability distribution Pi(m(i)) =

ω) of the number of packets occupying node i.

Pi(m(i) = ω) =
1
Zi

∑
∗

fi(ω)Π j�i f j(m( j)), (6)

where the sum
∑
∗ is taken in combination {m(1), . . . ,m(i−1),

m(i+1), . . . ,m(N)} on the constraint
∑

j�i m( j) = M − ω as
shown in Fig. 3, and Zi is a normalization factor. It is diffi-
cult to directly solve the normalization factor Zi or Z. Thus,
introducing a fugacity variable z [21], the mean value is
given by a generating function

〈m(i)〉 =
∑
ω ωzω fi(ω)∑
ω zω fi(ω)

= z
∂ ln Fi(z)
∂z

, (7)

where the second term in the right-hand side of Eq. (7) is
due to the definition

Fi(z)
def
=

∞∑
ω=0

zω fi(ω).
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Table 3 Scaling of the crossover degree Kc, the mean occupation num-
ber mK at a node with degree K and mhub at the hub with the maximum
degree Kmax for the cases: (A) δ > δc, (B) δ = δc, (C) 0 < δ < δc, and (D)
δ = 0. A blank denotes no correspondence.

Kc mK<Kc mK>Kc mhub

(A) Kβ/δ O(Nδc/δ)
(B) (ln Kmax)δc/β (K/Kc)β (K/Kc)β/δc O(N/ ln N)
(C) K1−δ/δc

max (K/Kc)β (K/Kc)β/δ O(N)
(D) Kmax Kβ/(Kβmax − Kβ) ρN

From the definition (5), qi(ω) = ωδ, and P∞i ∝ Kβi , we have

Fi(z) =
∞∑
ω=0

(zKβi )ω

(ω !)δ
, (8)

because fi(ω) = Πωm=1

(
Kβi
mδ

)
=

(Kβi )ω

(ω!)δ in Eq. (5). The fu-

gacity z should be determined from the self-consistency
equation ρ =

∑N
i=1〈m(i)〉/N as a function of z. Note that

M =
∑N

i=1〈m(i)〉 is the total number of packets in a network
of N nodes, and that the density ρ is constant at N,M → ∞.

In this paper, we consider a SF network whose degree
distribution follows a power-law P(K) ∼ K−γ. According to
the performances of jumping-out, we classify the following

cases (A) δ > δc
def
= β/(γ − 1), (B) δ = δc, (C) δ < δc, and

(D) δ = 0 for a critical value δc of the phase transition from
uncondensation to condensation of packets, or the opposite
transition. Since the derivation is the same as in Refs. [6],
[7] at α = 0, except with a slight modification for a general
value of α (and the corresponding β ≈ 1 + α), we briefly
review it in the Appendix. We summarize the generalized
results for 0 ≤ |α| ≤ 1 in Table 3 (from that for α = 0).
In the cases (B) and (C), many packets condensate at nodes
with degree K > Kc because of the larger exponent β/δ > β.
Note that the queue length occupied by packets is rewritten
as mKi taking into account the dependence on the degree Ki.

4. Simulation

In Sect. 4.1, we numerically investigate the basic properties
of packet transfer in the ZRP. In Sect. 4.2, we further discuss
congestion phenomena with packet generation.

4.1 Traffic Properties for α-Random Walks in the ZRP

We have performed simulations for M = 1000 packets on
SF networks generated by the BA model [1] with a size
N = 1000, an average degree 〈K〉 = 10, and an exponent
γ = 3 of P(K) ∼ K−γ. From the initial state in which
one packet is set on each node, the following processes
are repeated as the relaxation of the ZRP [7] from node-
based dynamics to particle-based dynamics [21]. At each
time step, a packet is selected at random. With probabil-
ity qi(m(i))/m(i) = mδ−1

(i) , the packet jumps out of its resident
node i, and hops to one of the neighboring nodes j ∈ Ni with
probability Kαj /

∑
j′∈Ni

Kαj′ . Otherwise, the selected packet

Fig. 4 Typical results for the mean occupation number 〈mK 〉 of packets
at a node with degree K in the routing without n-search. Inset: the cases
with n-search. The circle and cross marks correspond to the results in 1000
and 100 rounds, respectively. The dashed lines show the slopes β and β/δ in
Table 3. Note that condensation of packets at the nodes with high degrees
occurs in Case(C). These results are obtained from the averages of 100
samples of packet transfer on a BA network whose maximum degree is the
closest to the average value Kmax = 132 in the 100 realizations.

does not move with probability 1− qi(m(i))/m(i). The time is
measured as a unit of one round (Monte Carlo sweep) con-
sisting of M trials of the random selection of a packet.

Figure 4 shows the mean occupation number 〈mK〉
of packets at a node with degree K in the cases both
with/without neighbor search (n-search), while the top of
Fig. 4 shows the predicted piecewise linear behavior [16] for
the crossover degree Kc shown in Table 4; the steeper line
indicates condensation at the nodes with high degrees, and
the bottom of Fig. 4 shows that condensation is suppressed
by a more gentle line. As shown in the insets, the marks
slightly deviate from a line, especially in the head and the
tail, because of the effect of n-search into a terminal node
at the last step. In these cases at the top and the bottom of
Fig. 4, the critical values of δc ≈ (1+α)/(γ−1) are 0.75 > δ
and 0.25 < δ, respectively. Thus, condensation of pack-
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Table 4 Classification of the cases in Table 3 for the combinations of
α and δ. The values in the mid-columns are Kc = K1−δ/δc

max , for δc = β/2
in the case (C), corresponding to the maximum, average, and minimum of
Kmax = 189, 132, 98 in each vertical triplet from the top to the bottom.
These results are obtained in 100 realizations of BA networks with N =
1000 and 〈K〉 = 10.

δ 0.0 0.2 0.5 0.8 δc
α

74.26 18.29 4.504
1.0 (D) 55.29 14.98 4.063 1.122

43.28 12.71 3.731

51.44 7.304 1.037
0.5 (D) 39.27 6.374 1.034 0.805

31.39 5.693 1.032

25.15 1.221
0.0 (D) 20.16 1.204 (A) 0.519

16.79 1.191

3.478
-0.5 (D) 3.193 (A) (A) 0.262

2.975

-1.0 (D) (A) (A) (A) 0.011

ets at hubs can be avoided as the performance of transfer
is enhanced at a large δ, although the transition depends on
the probability of incoming packets according to the value
of α; a negative α induces a nearly homogeneous visiting
of nodes, while a positive α induces a heterogeneously bi-
ased visiting of the nodes with high degrees. We note that
the uncondensed phase is maintained in a wide range of
δ > δc ≈ (1 + α)/(γ − 1) for α < 0, as shown in the case (A)
of Table 4.

Next, in order to study the traffic properties, such as the
travel time on the routing path, we consider packet dynamics
in a realistic situation with n-search into a terminal node at
the last step. If the terminal is included among the neighbors
of the resident node for a randomly selected packet, then it
is deterministically forwarded to the terminal node, taking
into account the reachable chance, otherwise it is stochas-
tically forwarded to a neighboring node j with probability
Kαj /

∑
j′∈Ni

Kαj′ . The n-search is practically effective and nec-
essary in order to reach a terminal node. Remember that
the estimated values of β are similar to both with/without
n-search, as shown in Table 2. Therefore, the behavior of
the mean occupation number 〈mK〉 is similar to that shown
in Fig. 4 and the inset. In the following discussions, if we
leave out n-search, then the optimal parameter values of α
and δmay be changed for low-latency delivery, although the
difference is probably small from the above similarity. By
selecting hubs for α > 0, a packet is terminated with higher
probability even in only the stochastic forwarding, because a
terminal node is highly likely to be connected to some hubs.
At the same time, this leads to congestion at hubs. How-
ever, in the case without n-search, a packet may wander for
a very long time, which is not bounded a priori for the sim-
ulation of the packet transfer. It is intractable due to huge
computations. Thus, we focus on the case with n-search.

We investigate the traffic properties for reachability of
packets, the number of hops, the travel time Ta including the
wait time of a trapped packet in queues, and the sum Tw of
wait times on a path until arrival at the terminal. Note that
the travel time is Ta = Tw + (time to one hop) × (the num-
ber of hops). We also define the averaged wait time Tw/Nw
per node, where Nw is the number of trappings in queues
at the nodes on a routing path. These measures are cumu-
latively counted in the observed interval after 1000 rounds,
and averaged over 100 samples of this simulation. Here, we
discarded the initial 1000 rounds as a transient before the
stationary state of m(i) is reached.

Figure 5 shows, from the top to the bottom, the conver-
gence of reachability, the mean number of restarted packets
per round, and the mean travel time in the high-performance
regime at δ = 0.8. The inset shows a slightly slow conver-
gence in the low-performance regime at δ = 0.0. For other
measures, similar convergence properties are obtained. We
compare these curves in terms of the values of α; they shift
up from α = −1.0 to α = 0.5 in the case (A) δ > δc, while
down from α = 0.5 to α = 1.0 in the case (C) δ < δc.
This non-monotonic dependence on α is related to the con-
densation transition, since the change between δ > δc and
δ < δc occurs at the critical value α = 0.6 for the equiv-
alence δc ≈ (1 + α)/(γ − 1) ⇔ δ = 0.8. Thus, it appears
when α is greater or less than 0.5 in Fig. 5. In the following,
we briefly explain each property: reachability, the number
of restarts, and 〈Ta〉. The reachability of the restarted pack-
ets is around 0.99 on similar curves for all values of α at
δ = 0.8, while these curves separate in increasing order of
α at δ = 0.0 (see the inset at the top of Fig. 5). Note that
the number of restarted packets cumulatively increases as
the observed interval is longer, although the rate per round
is constantly around 3 ∼ 5 in the ordering from α = 0,
α = ±0.5, to α = ±1 for δ = 0.8, and less than 1 in the
ordering from α = −1.0 to α = 1.0 for δ = 0.0, as shown in
the middle of Fig. 5 and in the inset. The maximum and the
minimum lines for the mean travel time 〈Ta〉 are obtained at
α = −1 and α = 0, respectively, for δ = 0.8. However, all
of the curves shift up for δ = 0.0 (see the inset at the bot-
tom of Fig. 5), and 〈Ta〉 is longer as the value of α increases,
because of the waiting at high-degree nodes.

We further investigate the above traffic properties, es-
pecially for the forwarding of packets with more detailed
values of δ for 30000 rounds in the quasi-convergent state.
As shown in Fig. 6, the mean travel time 〈Ta〉 decreases
as the value of δ increases with higher forwarding perfor-
mance, because the wait time trapped in a queue decreases
on average. In particular, packets tend to be trapped at hubs
for a long time when α > 0, and then 〈Ta〉 is longer. In con-
trast, the number of hops increases on average as the value
of δ increases, because some longer paths are included in
higher reachability. The path length counted by hops tends
to be short through hubs when α > 0, however it tends to be
long on a wandering path when α < 0. Therefore the num-
ber of hops increases in decreasing order of α. Note that
the number of hops is very small compared to 〈Ta〉, which
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Fig. 5 Convergence properties in the high-performance regime at δ = 0.8
in the observed interval [rounds] after the transient state of 〈mK 〉. Inset:
results in the low-performance regime at δ = 0.0. These results are obtained
from the averages of 100 samples of packet transfers on a BA network
whose maximum degree is the closest to the average value Kmax = 132 in
the 100 realizations.

is dominated by the mean wait time 〈Tw〉 ≈ 〈Ta〉 on a path.
As shown in Fig. 7, the mean number 〈Nw〉 of trappings

at nodes on a path increases when α > 0 and decreases when
α < 0 as the value of δ increases with higher forwarding per-
formance. This up-down phenomenon may be caused by a
trade-off between the avoidance of trapping through suffi-
ciently high forwarding performance at a node and the in-

Fig. 6 The mean travel time (top) and the mean number of hops (bot-
tom). The �, +, ∗, ×, and � marks correspond to α = 1.0, 0.5, 0.0,−0.5,
and −1.0, respectively. The simulation conditions are the same as in Fig. 5.

clusion of longer paths with high reachability. The mean
wait time 〈Tw/Nw〉 per node decreases as the value of δ in-
creases, and is longer in increasing order of α because of the
long wait time at hubs.

In summary, the wandering path for α < 0 better re-
duces the mean travel time of a packet with high reacha-
bility in the low-performance regime at a small δ, while in
the high-performance regime at a large δ, the difference be-
tween α > 0 and α < 0 is small, neither the wandering
long path with short wait trapped at nodes (α = −1), nor the
short hopping path with long wait trapped at hubs (α = 1)
is advisable. Thus, a uniformly random walk (α = 0) yields
slightly better performance.

4.2 Congestion Phenomenon

This subsection discusses the congestion phenomenon when
packets are randomly generated at each node at a constant
rate p, and removed at the terminal nodes (not restarted
within the persistency). In order to reduce the computational
load, the packet dynamics starts from the initial state: there
are no other packets than the ones that are generated. We
compare the phenomenon in our traffic model based on the
ZRP with that in the following modifications related to the
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Table 5 Modified traffic models.

Refusal n-search const. arrival

No η̄ = 0 ZRP Mod 3
Yes η̄ > 0 Mod 1 Mod 2

Fig. 7 The mean number of trappings at nodes (top) and the mean wait
time per node (bottom). The �, +, ∗, ×, and � marks correspond to α =
1.0, 0.5, 0.0,−0.5, and −1.0, respectively. The simulation conditions are the
same as in Fig. 5.

traffic-aware routing [14] at α = 0 [8]. Table 5 summarizes
a combination of the basic processes: with or without (Yes
or No) the refusal of forwarding, n-search, and a constant
arrival with probability μ. The other processes for choosing
a forwarding node j with probability ∝ Kαj and for jumping-
out a packet from its resident node i at the rate mδ(i) are com-
mon.

Mod 1: With probability η(m( j)) = η̄Θ(m( j) − m∗), the se-
lected packet is not transfered to j ∈ Ni, but is re-
fused at node i, where Θ(x) is the step function, m∗
is a threshold, and a parameter 0 < η̄ ≤ 1.
Here, node j is chosen deterministically by n-search if
j is the terminal node, otherwise it is chosen with a
probability proportional to Kαj .

Mod 2: Moreover, instead of n-search, the selected packet
is removed with probability μ, or it enters the queue

with probability 1 − μ.
Mod 3: In Mod 2, there is no refusal process (η̄ = 0).

In Mod 1, the randomly-selected packet from the queue
does not leave node i with a constant probability η̄ if the
occupation number m( j) of packets is greater than a thresh-
old m∗, while in Mod 2, after passing this refusal check, it
is removed with a constant probability μ. Note that con-
stant arrival was assumed to theoretically predict the critical
point of traffic congestion in the mean-field approximation
as N → ∞ [8]. With packet generation, we can perform the
ZRP as an extension of the model in Ref. [8]. In particular,
the case of δ = 0 corresponds to node capacity ci = 1 for all
nodes i; only one packet is transferable from a node at each
time.

For a variable generation rate p, we investigate the ap-
pearance of congestion by using the order parameter [8],
[14]

op = lim
t→∞

M(t + τ) − M(t)
τpN

,

where M(t) denotes the sum of existing packets in queues
over network (practically for a large t), and τ is the observed
interval. The value of op represents level of congestion, e.g.
op ≈ 0 indicates a free-flow regime, while op ≈ 1 indicates
a congested regime.

In the following, we set η̄ = 0.7 and m∗ = 5 for the
refusal process. As shown in Fig. 8, in the cases in which
n-search takes place, the value of op rapidly grows with the
increasing of the generation rate p, since the removal of a
packet arriving at the terminal node is rare, especially for
a small δ. Here, the marks and color lines indicates dif-
ferent values of δ and α. By comparing the corresponding
curves of the same color and marks in the top and the bot-
tom figures, we notice that the ZRP suppresses congestion in
smaller ops than Mod 1, in particular, for δ = 0.5, 0.8 (blue
and magenta lines). At the top of Fig. 8, the magenta lines
indicate the existence of a free-flow regime around a small
p for δ = 0.8 as high forwarding performance. Thus, the
refusal process does not work effectively in the cases with
n-search, at least for this parameter set. At both the top and
the bottom of Fig. 8, the difference for the same color lines
with three marks corresponding to α = ±1, 0 is small, except
for δ = 0.8 in Mod 1 (magenta lines at the bottom). How-
ever, the curves shift down as δ becomes larger; in other
words, the congestion is suppressed by higher forwarding
performance. Note that a uniformly random walk at α = 0
(asterisk marks) yields better performance for each value of
δ.

When a constant arrival with probability μ is applied
instead of the realistic n-search, the behavior changes. Fig-
ure 9 shows that the refusal process works effectively, since
Mod 2 with the refusal process (at the bottom) has smaller
op than Mod 3 without the refusal process (at the top). The
gap between three marks for the lines of each color for Mod
2 at the bottom of Fig. 9 resembles to that at the top of Fig. 8,
however the gap appears remarkably at δ = 0.8 (magenta
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Fig. 8 The values of op for the ZRP (top) and Mod 1 (bottom) using
n-search. The open �, ∗, and � marks correspond to α = 1.0, 0.0, and
−1.0, respectively. The red, green, blue, and magenta lines correspond to
δ = 0.0, 0.2, 0.5, and 0.8, respectively.

lines) for Mod 3 in the top of Fig. 9. Although n-search
leads to a low arrival (lower than μ = 0.01) as shown in
Fig. 5, and reachability is not 100% even in the case of per-
sistent packets after restarting, in the meaning of smaller op,
the ZRP is better than other models, by comparison with the
corresponding curves in Figs. 8 and 9.

We consider the other stochastic routing method in
which a forwarding node k ∈ Ni is chosen with probabil-
ity

Πk ∝ Kk(m(k) + 1)−β, (9)

where β = 3 yields the maximum generation rate in a free-
flow regime [13]. As shown in Fig. 10, in this optimal case,
the behavior is similar to that in Mod 3 without the refusal
process at the top of Fig. 9, although it has better perfor-
mance than Mod 3. There is a free-flow regime in the case
when δ = 0.8 (the magenta line with filled upward-pointing
triangle marks) at a constant arrival rate. In this method, a
forwarding node is dynamically selected in a balance be-
tween reducing distance by passing through large degree
nodes, and avoiding congestion. Thus, a further improve-

Fig. 9 The values of op for Mod 3 (top) and Mod 2 (bottom) at a constant
arrival with probability μ = 0.01, instead of using n-search. The filled �,
×, and � marks correspond to α = 1.0, 0.0, and −1.0, respectively. The
red, green, blue, and magenta lines correspond to δ = 0.0, 0.2, 0.5, and 0.8,
respectively.

Fig. 10 The values of op for a traffic-aware routing [13] in which a for-
warding node k is chosen by applying Eq. (9) in the cases of n-search (open
marks), and of a constant arrival with probability μ = 0.01 (filled marks).
The red, green, blue, and magenta lines correspond to δ = 0.0, 0.2, 0.5, and
0.8, respectively.
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ment may be potentially expected in the tuning of the bal-
ance for α-random walks and other modifications.

5. Conclusion

For a SF network, whose topology is found in many real sys-
tems, we have studied extensions of the ZRP [6], [7], [15],
[20] which controls both the routing strategies in the pref-
erential [9]–[11] and congestion-aware [12] walks, and the
node performance for packet transfers. Under the assump-
tion of persistent packets, we have approximately analyzed
the phase transition between condensation of packets at hubs
and uncondensation on SF networks by another straightfor-
ward approach [6], [7] instead of the mean-field approxima-
tion in the preferential walk for α > 0 [16]. In particular,
we have found that uncondensation is maintained in a wide
rage of δ > δc ≈ (1 + α)/(γ − 1) for α < 0.

Moreover, we have numerically investigated the traf-
fic properties when the practical n-search into a terminal
node at the last step takes place. The phase transition has
been consistently observed in the cases both with/without
n-search. The obtained results are summarized in Table 6.
We conclude that the wandering path for α < 0 better re-
duces mean travel time of a packet with high reachability
in the low-performance regime at a small δ, while in the
high-performance regime at a large δ, neither the wander-
ing long path with short wait trapped at nodes (α = −1),
nor the short hopping path with long wait trapped at hubs
(α = 1) is advisable. A uniformly random walk (α = 0)
yields slightly better performance. This optimality at α = 0
in a high-performance regime is consistent with the results
obtained for the critical generation rate in other traffic model
[10] on a SF network with node capacity (corresponding
to the forwarding performance) proportional to its degree.
However, in the details for our traffic model, the optimal
case depends on a combination of the values of α and δ re-
lated to the condensation transition at δc. We emphasize
that, for high reachability, small number of hops, and short
travel or wait time, such traffic properties summarized in Ta-
ble 6 as the trade-off between a detour wandering path and
long wait at hubs cannot be obtained from only the theoret-
ically predicted phase transition between condensation and
uncondensation in Ref. [6], [7], [15], [16]. Concerning the
fundamental traffic properties, we have investigated the con-
gestion phenomenon with packet generation, compared with
other models related to the traffic-aware routing [8], [13],
[14]. We suggest that the high-forwarding performance at
a large δ is more dominant than the refusal process in or-
der to suppress congestion in a small op, and that the dif-
ference of op is small when the values of α are varied (the
case of α = 0 is slightly better for n-search). The above re-
sults only show qualitative tendencies. In further research,
more complex and quantitative properties should be care-
fully discussed for many combinations of parameters α, δ,
μ, η̄, m∗, etc., although such simulations may be intractable
due to huge computation load and memory consumption for
the processing of millions of packets in very long iterations.

Table 6 Qualitative summary of the traffic properties.

Mean Value α > 0 α < 0 for larger δ

Reachability low high increased↗
Num. of Hops small large increased↗

Travel Time 〈Ta〉 long short decreased↘
One Wait 〈Tw〉/〈Nw〉 long short decreased↘
Num. of Wait 〈Nw〉 small increased↗

large decreased↘
Characteristics condensation uniformly

of a Path at hubs wandering

This direction of research on stochastic routing may be
the first step to reveal complex traffic dynamics such as the
trade-off between the selection of a short path and long wait
(delay) at some particular nodes related to the underlying
network structure. We will investigate this problem, includ-
ing the effects of more realistic selections of the source and
the terminal nodes which depend on geographical positions
or population density, the queue discipline such as FIFO or
LIFO, and other topologies to develop the optimal routing
schemes [22] for advanced sensor or ad hoc networks.
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[14] P. Echenique, J. Gómez-Gardeñes, and Y. Moreno, “Dynamics of
jamming transitions in complex networks,” Eupophys. Lett., vol.71,
pp.325–331, 2005.

[15] J.D. Noh, “Interacting particle systems in complex networks,”
arXiv:cond-mat/0701401, 2007.

[16] M. Tang, Z. Liu, and J. Zhou, “Condensation in a zero range pro-
cess on weighted scale-free networks,” Phys. Rev. E, vol.74, 036101,
2006.

[17] A.E. Motter and Y.-C. Lai, “Cascade-based attacks on complex net-
works,” Phy. Rev. E, vol.66, 065102, 2002.

[18] A.E. Motter, “Cascade control and defense in complex networks,”
Phy. Rev. Lett., vol.93, 098701, 2004.

[19] J.J. Wu, Z.Y. Gao, and H.J. Sun, “Effects of the cascading failures on
scale-free traffic networks,” Physica A, vol.378, pp.505–511, 2007.

[20] J.D. Noh and H. Rieger, “Random Walks on Complex Networks,”
Phys. Rev. Lett., vol.92, no.11, 118701, 2004.

[21] M.R. Evans, “Phase Transitions in one-dimensional nonequilibrum
systems,” J. Phys., vol.30, pp.42–57, 2000.

[22] B. Tadic, G.J. Rodgers, and S. Thurner, “Transport on Complex
Networks: Flow, Jamming & Optimization,” Int. J. Bifurcation and
Chaos, vol.17, no.7, pp.2363–2385, 2007.

Appendix

As a modification to Refs. [6], [7], we briefly review the
derivation of the results presented in Table 3.

For δ = 0: case (D), we have a constant jumping rate
qi(ω) = 1 independent of the occupation number ω and
Fi(z) =

∑
ω

(
zKβi

)ω
= 1

1−zKβi
. Then, from Eq. (7),

mKi =
zKβi

1 − zKβi
→ Kβi

Kβmax − Kβi
,

is divergent for the hub with the maximum degree Kmax as
z approaches zc = 1/Kβmax in the range z < zc, because the
denominator becomes zero in the first term of the right-hand
side, equivalently to the case in which node i has the maxi-
mum degree in the second term. It is convenient to decom-
pose the density into two terms such that ρ = ρs + ρn for
the hub with the maximum degree and for the other nodes.
These two terms are given by

ρs =
mhub

N
=

1
N

zKβmax

1 − zKβmax

, (A· 1)

ρn =

∫ Kmax−1

Kmin

zKβ

1 − zKβ
P(K)dK. (A· 2)

By using the relation 1
1−x =

∑∞
l=0 xl for Eq. (A· 2), we derive

ρn =

∫
zKβ

1 − zKβ
P(K)dK

=

∫
zKβ

∞∑
l=0

(zKβ)lP(K)dK

∼
∞∑

l=1

{∫
(zKβ)lK−γdK

}

=

∞∑
l=1

{
zl

∫
Kβl−γdK

}

=

∞∑
l=1

{
zl (Kmax − 1)(βl−γ+1)

βl − γ + 1

}

∼
∞∑

l=1

⎧⎪⎪⎨⎪⎪⎩
(zKβmax)l × (K(−γ+1)

max )
βl

⎫⎪⎪⎬⎪⎪⎭
=

K(−γ+1)
max

β
×
∞∑

l=1

(zKβmax)l

l

=
K(−γ+1)

max

β
× [− ln(1 − zKβmax)]

∼ N−1 × ln(1 + mhub)→ 0,

for a large size N → ∞. In the last terms, we apply K(−γ+1)
max ∼

N−1 from
∫ ∞

Kmax
P(K)dK ∼ 1/N, and

ln
1

1 − x
= − ln(1 − x) =

∞∑
l=1

xl

l
,

1

1 − zKβmax

= 1 + ρsN = 1 + mhub > 0,

from Eq. (A· 1). Since only ρs remains, condensation occurs
at the hub for any α in case (D) at this uniform jumping rate
given by δ = 0.

In the general case where δ > 0, the infinite series in
Eq. (8) does not have a closed form, except for Fi(z) = ezKβi

at δ = 1. We approximate the series as in [6], [7],

Fi(z) ≈ 1√
δ

(2π(zKβi )1/δ)(1−δ)/2 × exp(δ(zKβi )1/δ).

The second term in the right-hand side is dominant for
zKβi ≥ 1. We can simply approximate it with a few lowest-
order terms such as Fi(z) = 1+zKβi +O((zKβi )2) for zKβi � 1.

From Eq. (7) and ∂ ln Fi(z)/∂z for the above two cases
of Fi(z), the mean occupation number is given by

mKi ≈
{

zKβi for zKβi � 1
(zKβi )1/δ for zKβi ≥ 1.

Thus, the mean occupation number of a node increases
monotonically with its degree. Depending on a constant
magnitude of z, we consider the following two cases (i) and
(ii).

(i) We assume that the fugacity z is in such a range
that zKβi ≥ 1 for all nodes. From mKi = (zKβi )1/δ for
all nodes and the self-consistent equation ρ = 1

N

∑
i mKi =

1
N z1/δ∑

i(K
β
i )1/δ, the solution z = ρδ/(K̄β/δ)δ is valid only

when K̄β/δ
def
=

∫ Kmax

Kmin
Kβ/δP(K)dK remains finite in the limit

of large N. By using P(K) ∼ K−γ, at N → ∞, we have
∫ Kmax

Kmin

Kβ/δP(K)dK ∼
∫

Kβ/δ−γdK → K(β/δ−γ+1)
max .

From the negative exponent, this finite condition imposes
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that δ > δc with

δc
def
=
β

γ − 1
.

In this regime, we find mKi ∼ Kβ/δi for all nodes. The occu-
pation number at the hub with the maximum degree Kmax ∼
N1/(γ−1) scales sublinearly as mhub ∼ Nβ/δ(γ−1) = Nδc/δ with
the exponent β/δ(γ − 1) = δc/δ < 1. Therefore, the extreme
condensation of almost all packets at the hub with Kmax is
avoided when δ > δc: case (A).

(ii) We assume that the fugacity z is defined as Kβc =
1/z in the interval Kmin < Kc < Kmax. Then, the self-
consistent equation becomes ρ = ρn + ρs =

∑
i mKi , where

ρn =

Kc∑
Kmin

zKβ = K−βc

∫ Kc

Kmin

KβP(K)dK, (A· 3)

is the density for the nodes with K < Kc: zKβ < 1, and

ρs =

Kmax∑
Kc

(zKβ)1/δ = K−β/δc

∫ Kmax

Kc

Kβ/δP(K)dK, (A· 4)

is the density for the nodes with K > Kc: zKβ > 1. Since
the integral part in Eq. (A· 3) is smaller than the average β-
power of the degree, ρn vanishes as K−βc in the limit of large
N. In order to have a finite value of ρs = ρ, the integral part
in Eq. (A· 4) should be divergent, which yields that δ ≤ δc =
β/(γ−1). This integral should be of the same order as K−β/δc ,
which yields

Kc ∼
{

(ln Kmax)δc/β for δ = δc
(Kmax)1−δ/δc for δ < δc.

in cases (B) and (C), respectively.
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