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Ahstract- The objective of many applications with the surveil­
lance missions in wireless sensor networks is to provide long-term 
monitoring of the specific environments, such as disaster-hit re­
gions. These applications usually perform continuous monitoring 
without any maintenance, even if some sensor nodes fail. A signif­
icant challenge when designing the data collection approaches for 
such systems is that the conventional communication protocols 
for wireless sensor networks would present low efficiency, since 
the network topology changes rapidly due to the node failure. 
Thus the sensor nodes in such systems should use an automatic 
transmission approach to disseminate their sensed data to the 
sink in a distributed manner. In this paper, we propose a novel 
Coding-based Probabilistic Routing (CPR) to address this specific 
problem of data collection for distributed surveillance sensor 
networks in disaster-hit regions. CPR dynamically adapts to node 
failure to collect the maximum data in any given time and chooses 
an optimal probabilistic routing to decrease the transmission 
consumption. The extensive simulation results are presented to 
show that CPR outperforms other strategies. 

I. INTRODUCTION 

In wireless sensor networks, many applications such as 

[1-5] have targeted to provide long-term monitoring of the 

specific environments, such as disaster-hit regions and hostile 

areas. In such applications, the sensor nodes which store the 

valuable data would fail frequently due to the disaster or 

enemy's breaking, and the routing trees would easily catch 

failure. However, these unpredictable failures are especially 

troubling because of the potential loss of valuable data col­

lected by the sensor nodes. 

During the process of data collection in such disaster­

hit applications, the sink ought to maximize the amount of 

received data. However, the setup of routing trees usually 

produces much long delay, which implies the sink has to waste 

long time to wait for the setup of routing trees. It is contrary to 

the objective of maximizing the received data during limited 

time. In addition, each sensor node monitored the environment 

would be treated as a source, thus there would be quite a lot of 

routing trees. Moreover, the constructed routing trees may be 

likely to catch failure, especially in a disaster or hostile area. 

Thus it takes much consumption to maintain the routing trees 

and the conventional communication protocols for wireless 

sensor networks would present low efficiency in such systems. 

Once the sink comes into the surveillance area, it sends 

out the query request, and then the nodes try to deliver their 

stored data to the sink. Often, the rate of data generated within 

a sensor network greatly exceeds the capacity available to 

deliver the data to the data sinks [6]. With so many nodes 

trying to channel data to the sink, there may be congestion 

and delay in the neighborhood around the sink, thus much of 

the sensed data trying to reach the sink will be stalled. During 

this time, data is especially vulnerable to loss if the nodes 

storing the data catch failure due to the disaster. Though some 

forwarding transmission of sensed data does not increase the 

rate at which data moves toward the sink, it does increase 

the likelihood that such data will survive as some nodes fail. 

Thus, when there is a chance to disseminate a packet, how to 

decide the transmission direction ("forward" or "backward") 

becomes a challenge when designing the probabilistic routing. 

Though there are proposed methods to reduce the data 

congestion, they are not suitable for our problem. In [7], data 

congestion is detected by sensors signaling their upstream 

neighbors via a backpressure mechanism. This method does 

not take advantage of transmitting "backward" to increase 

the probability of combining a packet with others. In [8], 

congestion avoidance is achieved by data aggregation. How­

ever, the original data is needed in our problem. In [9], the 

authors suggest to use predictive routing to decrease the data 

congestion, but they assume a static sensor network. 

A kind of coding strategies, called Growth Codes [10], 

employ a dynamically changing codeword degree distribution 

and promise to be able to decode a substantial number of the 

codewords at any given time. Growth Codes are especially use­

ful in wireless sensor network where there is no infonnation 

about the sink node. However, the original Growth Codes are 

not suitable for data collection of disaster-hit sensor networks 

we described above. On one hand, when using Growth Codes, 

the knowledge of the total number of sensor nodes is required 

for calculating the specified degree distribution. It is not 

practical in the applications of disaster sensor networks, since 

these networks should keep long-term running and thus the 

total node number would gradually decrease and become 

unknown to each individual node. On the other hand, the 

data collection problem we described above is query-based, 

the sensor nodes would know the direction of the sink after 

the query-broadcast phase. 

In this paper, we propose a coding-based probabilistic 

routing (CPR), to address the problem of data collection for 

distributed surveillance sensor networks in disaster-hit regions. 



CPR chooses an optimal probabilistic routing to decrease 

the total transmission consumption and dynamically adapts to 

node failure to collect the maximum data in any given time. 

The first contribution of CPR is to determine the opti­

mal probabilistic routing. The proposed optimal transmission 

scheme strikes a balance between the incoming and outgoing 

data for the sink's neighborhood, thus can remove the heavy 

data congestion around the sink. Meanwhile, it is sufficient 

for CPR to facilitate mixing and encoding of symbols. By 

choosing the optimal transmission scheme, CPR maintains the 

same level of data collection but introduces lower transmission 

cost compared to the original Growth Codes. 

The second contribution of CPR is to search the near­

optimal degree transition points to avoid the performance 

degradation as the total node number decreases. Here, degree is 

referred to as the number of symbols encoded together to form 

a codeword and degree transition points is referred to as the 

time when a node should choose a higher codeword degree. 

In CPR, the sensors can dynamically chooses their optimal 

degree transition points when some neighbors are found to 

catch failure, since node failure leads to the dynamic degree 

transition points. By choosing the near-optimal degree transi­

tion points, CPR maintains a higher level of data collection 

compared to the original Growth Codes [10] and No Coding. 

The rest of the paper is organized as follows: Section II 

introduces some previous related work. Section III describes 

the network model and provides the motivation of CPR. 

Section IV describes the design of CPR in detail, including a 

complete form of the proposed algorithm. Section V evaluates 

the performance of CPR by simulation. Finally, Section VI 

concludes this paper. 

II. RELATED WORK 

Without coding, sensor nodes simply exchange the original 

symbols, so that the sink would be likely to receive many 

duplicates. In the well studied Coupon Collectors Problem, it 

has been shown that if the N original symbols are generated 

uniformly randomly, the sink needs to receive approximately 

O(NlogN) symbols to recover all N original symbols. Net­

work coding [11] is used for data storage in [12], the authors 

show that a simple distribution scheme using network coding 

and only based on local information can perform almost as 

well as the case where there is complete coordination among 

nodes. 

In [13], a kind of decentralized erasure codes is proposed. 

Assuming a scenario where there are n storage nodes with 

limited memory, among them, k (k < n) sources can generate 

the data, the authors show the sink is able to retrieve all the 

data by querying any k nodes. Decentralized erasure codes 

are optimally sparse and lead to reduced communication, 

storage and computation costs over random linear coding. The 

algorithms for the extreme case where each storage node can 

only store a single information unit is investigated in [14]. 

Data is pre-routed to log(N) of the N storage nodes and the 

storage nodes simply combine the incoming information with 

their existing information. 

Persistence and reliability of cached data can be improved 

through Decentralized Fountain Codes [15] [16]. The authors 

address the problem that how to collectively store sensed data 

when the sink is not present in the network. They use Belief 

Propagation for the reason of low decoding complexity and 

Random Walks to disseminate coded data in a scalable way. 

The authors argue that all data could be recovered as long as 

a sufficient number of sensor nodes are alive. Channel codes 

such as LT Codes [l7] start decoding only after accumulating 

a large number of received packets, is not suitable for our 

disaster sensor networks since the resource constrained sensor 

nodes are prone to fail at any time. 

Growth Codes [10] are specifically designed to increase data 

persistence, i.e., to maximize the amount of symbols that can 

be recovered at the sink at any time. Nodes send out one 

codeword to one random neighbor when there is a transmission 

chance, the neighbor node then combines received codeword 

with its stored local codeword(s). In Growth Codes, the 

number of original symbol units a codeword is coded over 

is referred to as degree. The authors propose to transmit 

codewords of degree one at early time, then gradually increase 

the degree with more and more codewords being received by 

the sink (hence the name Growth Codes). One drawback of 

Growth codes is that the optimal transition points, at which the 

codes switch to higher complexity codewords and which are 

pre-defined before disposing sensor networks, do not adjust 

adaptively even if parts of nodes fail. So that it is a critical 

challenge for Growth Codes to be migrated into the application 

of data collection for distributed surveillance sensor networks 

in disaster-hit regions. 

The design of Growth Codes is generalized to the multi­

snapshot scenarios in [18]. The authors aim to maximize the 

expected utility gain through joint coding and scheduling and 

propose two algorithms, with and without mixing different 

snapshots. When no mixing is used, it needs a schedule to 

improve the total data utility. They formalize the scheduling 

problem into a Multi-Armed Bandit Problem so as to de­

rive the optimal solution using Gittins Indices and identify 

conditions under which a greedy algorithm is optimal. To 

improve Growth Codes under scenarios of different node 

mobility, resilient coding algorithms [19] [20] are proposed. 

They investigate the suitability of different codeword degree 

distributions with respect to the dynamics of the underlying 

wireless network and design a corresponding data management 

algorithm. To improve the performance of Growth Codes 

in large-scale sensor networks, a joint scheduling of packet 

encoding and priority broadcast is proposed in [21]. 

Notice that, the above coding strategies are designed for 

data storage or data persistence in different aspects but do 

not consider the problem of data collection for distributed 

surveillance sensor networks in disaster-hit regions. The goal 

of our proposed method of CPR is to investigate techniques to 

maximize the received data for data collection in the scenarios 

where the sink would send out the query-request but the stored 

nodes failed rapidly. 



III. PROBLEM DESCRIPTION 

A. Network Model 

We start with the description of the network model. A 

sensor network consists of N sensors distributed randomly in 

a monitored region, each sensor node has a unique identifier 

(ID) and is capable of sensing an area around itself (called the 

sensing region). Each sensor node also has a radio interface to 

communicate directly with neighboring sensors. A query from 

the sink would ask for a summarization of some sensed data 

over some time window. Such queries typically run multiple 

times, periodically for different time windows. 

Given a data query over a sensor network, a naive way 

is to simply flood the network with the query. We add an 

item of hop number into the query message, which indicates 

the number of hops between the sink and a sensor node. 

Initially, the query message has a hop number of zero. Each 

intermediate node in the network increases the item of the 

hop number by one and then broadcasts the query message. 

During this query flooding phase, the sensors will get their 

hop number in a breadth-first manner. The parameter of hop 

number is used to estimate which node is "nearer" to the sink 

and which is "farther" from the sink. 

As a result, the neighbor set of one node can be divided 

into three subsets: NI consists of neighbors with a smaller hop 

number, N2 with a same hop number while N3 with a larger 

hop number. Notice that, though some other methods of more 

efficient query execution than the above flooding approach 

were presented, such as the works in [22], there are also easy 

manners for the sensors to get their approximate hop number 

during the query execution phase. Moreover, even though the 

hop number changes when several intermediate sensors fail, 

the relationship of which is nearer to the sink between two 

nodes would not be changes drastically. 

B. Transmission Scheme 

This section addresses the problem of what affects the 

selection of transmitting "forward" or "backward". When there 

is a transmitting chance, a node needs to choose one neighbor 

as the receiver. We distinguish the probabilities of transmitting 

to different subsets: the probability of choosing a node in NI 

(i.e., "forward") is PI, the probability of choosing a node 

in N2 is P2, and the probability of choosing a node in N3 

(Le., "backward") is P3. Growth Codes select PI : P2 : P3 as 

1 : 1 : 1, since they were designed for emergence applications 

where the sensors have little chance to know the direction 

of the sink. However, when addressing our problem of data 

collection in disaster scenarios, we should choose a more 

efficient transmission scheme. In this paper, we try to search 

the optimal transmission scheme of the distributed manner, 

which can be considered as a kind of probabilistic routing 

approach. 

Intuitively, transmitting to NI ("forward") increases the 

probability of delivering a packet to the sink using fewer links. 

However, strict ("forward") would reinforce the funneling 

effect, a phenomenon that there is heavy congestion and long 

delay in the neighborhood of the sink when too many nodes 

try to channel data. 
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Fig. 1: Transmission consumption to recover certain fraction 

of symbols under different PI : P2 : P3 in a 500 node random 

network with node density of 15. 

Here, we perform a simulation to observe that how the trans­

mission scheme affects the total transmission consumption, 

where the simulation settings will be described in detail in 

Section V. Three transmission schemes (i.e., PI : P2 : P3) 

are considered -- 1 : 1 : 1 (random way), 1 : 0 : 0 (strict 

"forward") and 9 : 3 : 1. Fig. 1 depicts the simulation results. 

Strict "forward" is not the optimal transmission scheme, since 

it reinforces the funneling effect. Thus, the optimal transmis­

sion is a tradeoff between strict "forward" and a random way. 

IV. DESIGN OF CPR 

Taking advantage of the information of hop number and the 

local neighbor table, we propose a coding-based probabilistic 

routing (CPR) to address the problem of data collection for 

distributed surveillance sensor networks in disaster-hit regions. 

First of all, we summarize the key factors a distributed protocol 

should pay attention to. 

Data Congestion: As many nodes try to deliver their data 

to the sink and limited buffer size, there may be a heavy 

congestion in the neighborhood of the sink. Limited to the 

buffer size, a part of incoming data has to be deserted. Thus, 

a good protocol for sensor network should try to avoid heavy 

data congestion. 

Node Failure: Node failure is inevitable in many applica­

tions, especially in a disaster or hostile environment. If some 

nodes fail, the total number of nodes N will decrease. Since 

the sensor nodes are deployed in a distributed manner, it is not 

feasible to update this global information of N to the whole 

network. Existing coding approaches of sensor networks, such 

as Growth Codes [10], fail to adjust adaptively and thus lead 

to a performance decrease. 

Energy Consumption: The limited energy supply of sens­

ing devices in sensor networks demands low energy consump­

tion. Since data sending and receiving is a main consumption 



of energy, the total transmission consumption should be min­
imized. In this paper, we assume that when any node delivers 
a packet, the total transmission consumption increases by 1. 

A. Protocol Overview 

In our protocol, we assume that there are N nodes in the 
network where each node takes a single snapshot of their 
environment and generates one unit of data message that can fit 
into a packet. For the purpose of decreasing total transmission 
cost, nodes do not exchange symbols until a query request is 
notified. Once the sink comes into sensing area, it disseminates 
a query message and then sensor nodes in the network start 
the performing of CPR. 

Now, we regard PI : P2 : P3 defined in Section III as (3 : 0: : 
1. Furthermore, since it is difficult to specify the appropriate 
values of two variables ((3 and 0:) respectively in different 
scenarios, we simplified assume (3 as 0:2. 

On account of the effect that too many nodes are willing 
to deliver data to the sink, neighborhood of the sink may 
receive much data that exceed their transmitting capacity. As 
the process of data collection goes, more and more data will be 
stalled in the buffer and lead to data congestion. A quantitative 
measurement of data congestion of a sensor node is defined 
to be the quotient of received packet number and sent packet 
number. Based on this measurement, we perform a simulation 
of 500 nodes random network to analyze the relationship of 
congestion and node density. Fig. 2 demonstrates that it is the 
transmission scheme (i.e., 0:) that mainly results in the data 
congestion rather than the other factors, such as node density. 
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Fig. 2: Congestion changes little with node density but varies 
much with 0:. 

It is not hard to understand that why node density does not 
affect congestion much. Taking an example, we compare two 
cases where 0: is fixed to be 1: (i) node A is located in a 
network of 10 neighbors in average, (ii) node B is located 
in a network of 20 neighbors in average. In the first case, 
the probability that A is chosen as the receiver by any of its 
neighbors is 1/10, so that A receives lOx1/10 = 1 packet 
in expectation. In the second case, the probability that B is 
chosen as the receiver by any of its neighbors is 1/20, so that 

B receives 20 xl /20 = 1 packet in expectation, as well. As 
long as the transmission scheme (i.e., 0:) is fixed, a single node 
will not receive any more data during a time slot. Therefore, by 
choosing an appropriate value of 0:, CPR maintains the same 
level of data collection as Growth Codes, while introducing 
lower transmission and avoiding the data congestion around 
the sink. 

Growth Codes calculate the degree transition points Ki,N, 
but ignore the fact that when N decreases as parts of network 
fail, Ki,N should also decrease, thus the degree transition 
points ought to be gradually advanced as N decreases. Notice 
that, this kind of "advance" is not important for Growth 
Codes but is indeed important for protocols designed for 
data collection in disaster-hit sensor networks. The reason is 
that Growth Codes are specially defined for high dynamical 
scenarios and the sensor nodes in these applications do not 
need to continuously work for a very long time. However, 
in the application of disaster-hit regions where sensor nodes 
need to work for a very long time, the node number N would 
inevitably decrease drastically at different time. 

Now, we summarize the basic flow of the process of CPR: 
(i) nodes calculate the degree transition points as is shown in 
[10]; (ii) nodes modify the degree transition points as parts 
of nodes are found to catch failure; (iii) nodes adaptively 
determine the optimal transmission scheme (i.e., 0:). The 
choosing of 0: and the modification of Ki,N is described in 
detail in the next subsections, and the complete algorithm of 
CPR is given at the end of this section. 

B. Determining Optimal Transmission Scheme 

Clearly, nodes with larger buffer tolerate to data congestion 
better than ones with smaller buffer. To recover all N symbols, 
KN,N codewords are required to be received by the sink in 
expectation. Let can be the average value of the quotient of 
the number of received packets and the number of transmitted 
packets during one time slot, then each node may buffer 
can - 1 packets during one time slot. If there is heavy data 
congestion of some intermediate nodes, some packets should 
be deserted and removed from the buffer due to the limited 
buffer capacity. Let B be the buffer size of each sensor node. 

Since one node stores at most B packets in the buffer 
and sends out a random packet from the buffer at one time 
slot, according to the Coupon Collector Problem, it will take 
BZog2B time slots to disseminate all the B packets. During 
these time slots, any incoming packets would be little useful 
in some sense. Thus, to avoid the useless data desertion, the 
value of con should satisfy the following inequation: 

(con -1 ) xBlog2B � B. (1) 

Assume conmax to be the largest value of can, then we get 

1 
conmax = -Z B 

+ 1. 
Og2 

(2) 

To determine the appropriate value of 0:, we first consider 
a centering network model where all the nodes are uniformly 
distributed in a circle filed and the sink is located at the center 
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Fig. 3: The optimal 0: at different data congestion in a 500 
node random network. 

position. Then, we consider a complete random network where 

both the sink and other nodes are randomly located in the 

network. 

Here, the centering model can be thought as the theoretical 

value of the optimal transmission scheme, while the random 

model can be thought as the simulation value. 

1) Centering Model: In a centering model, the sink is 

located in the center of a circle field and other nodes are 

randomly located. Assume the density of nodes to be d, 

then the average number of nodes with hop number k is 

1f[k2 - (k - 1)2] xd. Thus, the expected number of packets 

received at the nodes with hop number k(k 2': 2) is given by 

ndcx2 [(k + 1)2 - k2] + ndcx [k2 - (k - 1)2] 1 +cx+cx2 1 +cx+cx2 
+ 1+�!cx2 [(k -1)2 - (k - 2)2]. (3) 

The average number of transmitted packets is obtained as 

1f(2k - l) xd. (4) 

Therefore, the average congestion is the quotient of Eq. (3) 

and Eq. (4), which can be transformed as follows: 

cx2-cx-3 + 1 
1 + -=-cx,--- 2--,--+",cx+-,--=-- 1 __ 

2k -1 
(5) 

As k (k 2': 2) decreases, data congestion increases, so we 

especially consider the maximum congestion when k is 2. 

When k = 2, then we get conmax 

0:2 -0: -3 4 
conmax = 

3(0:2 + 0: + 1) 
+ 

3' 

Settling Eq. (6), then we get 

(6) 

(3conmax -3) + J -27 con�ax + 54conmax -11 
0: = . (7) 

2(5 -3conmax) 

From Eq. (2), we know that conmax is 10:2B + 1. Let 8 be 

conmax, the appropriate value of 0: is determined as follows: 

(38 -3) + V-2782 + 548-11 
0:= �----�--�--�---------

2(5 -38) 
(8) 

2) Complete Random Network: In a complete random 

network where both the sink and other nodes are randomly 

located, it is hard to get the exact transmission scheme 0: 
by formulation. Therefore, we turn to derive some empirical 

values from simulation. 

When performing our simulation, we choose a 500 node 

network with density of 15 neighbors on average, the sink is 

randomly attached to one sensor node. Since node density does 

not increase/decrease the congestion much, our selected setting 

of 15 neighbors on average is reasonable and representative. 

Transmitting "forward" helps to reduce the total transmis­

sion cost, but increases data congestion around the sink. Once 

the congestion exceeds the buffer capacity, a part of data is 

thrown and removed from the buffer. Moreover, transmitting 

"backward" helps to mix the symbols. The optimal 0: enables 

us to balance the tradeoff between transmission cost and data 

congestion. 

Fig. 3 depicts the optimal 0: at different data congestion 

within different ranges. Respectively, Fig. 3(a) depicts the 

result that when 1 :=:; con :=:; 1.25, the optimal 0: (i.e., the 

optimal transmission scheme) should be between 1 and 2, 
Fig. 3(b) depicts that when l:=:;con:=:;1.8, a wider range, the 

optimal 0: should be corresponding different. As a result, nodes 

in a complete random network can adaptively determine an 

appropriate 0: according to the empirical values derived from 

these two figures. 

For practical issue, we give the resulting decision in TABLE 

I, which can be pre-stored before disposing the sensor nodes. 

C. Determining Near-Optimal Degree Transition Points 

1) Degree Transition Points of Growth Codes: The authors 

of [10] suggest that codewords in the network start with degree 

one and then gradually increase the degree over time. Growth 

Codes define the degree transition points as time points when 

a node should send out a codeword with a higher degree and 

give the optimal degree transition points as follows. 

Let Ri,N represent the number of symbols recovered by a 

sink when codewords of size greater than i provide a greater 

likelihood for providing recovery than those of degree less 

than i in a N node network. 

N -1 iN-l 
R1N= -- RN= ---, 2

'" . , " 
i + 1 

(9) 



TABLE I: The optimal ex in different data congestion. 

To recover Rj,N= j�-;.l symbols, at most Kj,N codewords 

are required in expectation. 

Rj,N-1 

Kj,N = Kj-1,N + L 
i=R(j-l),N 

(�) (10) 

2) Degree Transition Points of CPR: Growth Codes require 

KN,N codewords to recover all the symbols. In the application 

of data collection in disaster scenarios where sensor nodes 

need to work for a very long time, the node number N 
would inevitably decrease drastically at different time. Since 

it is unrealistic to get the global information of N, the 

decentralized nodes in sensor networks need to estimate the 

updated degree transition points Ki,N if parts of network fail. 

In this subsection, we describe how to estimate the advance 

of degree transition points Ki,N ' Here, we refer to the term 

of "adv" as the number of time slots that should be advanced 

for each sensor node to do certain coding operation. 

When a node finds one of its neighbors fail, it implies that 

the advance value of each active node is Ki,N -Ki,N -1, since 

there are only N -1 active nodes. Thus the total advance of 

the whole network is (Ki,N -Ki,N-d(N -1). Assume that 

avgN eighbor is the average number of neighbors per node, 

so that an incident of one time of node failure can be found 

by avgN eighbor nodes in average. Furthermore, we replace 

avgN eighbor with N1 + N2 + N3, since the former parameter 

is hard to get. 

Therefore, when a node finds one of its neighbors failed, 

its average advance value (termed as adv) is: 

adv = 
(Ki,N -Ki,N-1)(N -1) 

N1 +N2 +N3 (11) 

Though Eq. (11) describes the advance value of degree 

transition points, it is impractical for some kinds of sensor 

networks to calculate this value, since they may have much 

low computation capacity and Ki,N involves the calculation 

of the combination number. So that, we need to estimate the 

advance value in Eq. (11). 

Notice that, the right component of Eq. (10) is trivial if 

R(i-l),N 2': Ri,N -1. 

R(i- 1),N > Ri,N -1 
-'--( i _-_1---,-)_N _-_ 1 

> 
_iN_- _1  _ 1 i i + 1 

. V 4N + 5 -1 r;;;N t> ;::::; V IV 2 (12) 

When i = 1, Growth Codes are equal to the coupon 

collector problem. So we can use the settlement of coupon 

collector problem to get the value of K1,N ' To recover R1,N 
symbols, the collecting times is calculated as below (the 

parameter "( below refers to the Euler-Mascheroni constant). 

(13) 

Let Pr,i be the probability of successfully decoding a 

randomly chosen symbol of degree i when r symbols have 

I d b d h C:,)(N-1) 
Th a rea y een recovere , t en Pr,i = 

en 
. us, 

Pr+1,i 

Pr,i 

(:�D(N-l) 
(�) r 

r+2-i 

When 2 ::; i ::; VJj, r 2': N:;l, we can know 

Pr+1,i ;::::; 1. 
Pr,i 

(14) 

(15) 

Eq. (15) implies that when 2 ::; i ::; VJj, Pr,i is approxi­

mately a const value. When 2 ::; i ::; VN, 

R N -RIN ;::::; K1,N + t, , 
PR"N,l 

N In � + (i -1) (N + 1) . N+1 i+1 
Therefore, we get the approximate value of Ki,N : 

Ki,N ;::::; N In � + (i -1) (N + 1) 
N+1 i+1 

NI (i-1)(N+1) 
� n2+ . i+1 

(16) 

(17) 

From Eq. (11) and Eq. (17), we finally get the approximate 

value of adv: 

(ln2 + i+
-�)(N -1) 

adv;::::; t . Nl +N2 +N3 (18) 

By Eq. (18), we know the degree transition points should 
(In2+ i-l)(N_l) . 

be advanced by N, +JV2+N3 ' when a node finds one of Its 

neighbor failed. 

The complete algorithm for the design of CPR is given as 

follows. 



Algorithm of CPR 
1: N f- pre-deployed information of total node number 
2: K[lN],N f- derived from Eg. (10) 
3: Nl f- neighbors with the smaller hop number 
4: N2 f- neighbors with the same hop number 
5: N3 f- neighbors with the larger hop number 
6: B f- buffer size 
7: con f- K 

B +1 
N.N 

8: determine a according to con 
9: (3 f- axa 
10: while this node keeps running do 
11: if one of my neighbors fails then 
12: update N1,N2,N3 
13: avgNeighbor f- Nl +N2+N3 
14: forif-ltoN 
15: adv f- derived from Eg. (18) 
16: Ki,N f- Ki,N - adv 
17: deg f- 0 
18: while data collection is going on do 
19: if time now> Kdeg,N then 
20: deg f- deg+ 1 
21: form a codeword P with degree of deg 

by XORing symbols in the local buffer 
22: rand f- a random decimal between 0 and 1 
23: if rand < (3 then 
24: dest f- Nl 
25: if rand < ((3 + a) then 
26: if deSi f- N2 then 
27: desi f- N3 
28: destNode f- a random node from subset of desi 
29: send codeword P to destNode 

V. PERFORMANCE EVALUATION 

Since no existing strategies were designed to deal with the 

specific problem of data collection for distributed surveillance 

sensor networks in disaster-hit regions, where the sink presents 

to send the query-request but the storing nodes fail rapidly 

at unpredictable time, we compare CPR with the original 

Growth Codes and No Coding, to evaluate the correctness and 

effectiveness of the proposed CPR algorithm. In this section, 

we have implemented both the original Growth Codes and 

CPR, both of the two algorithms are implemented in C++. No 

Coding is also considered, where nodes simply exchange the 

uncoded symbols without doing any coding operation. 

A. Simulation Settings 
In our settings, 500 sensor nodes are randomly located 

in a 1 x 1 square field, the sink is attached to one of the 

nodes at random. Each sensor takes a single reading of the 

monitored region and stores only one packet initially. We 

assume that each sensor node has a storage capacity of B = 40 
(L e., buffer size is 40 and one node can store at most 40 
codewords at any given time). A maximum of 40N codewords 

can be temporarily stored in the network, so it is sufficient to 

facilitate mixing of symbols. We also performed simulations 

with N = 1000 and different values of B, but the results were 

not significantly different. 

To present how CPR performs on transmission consumption 

in different scenarios, we vary the communicating radius of 

nodes (i.e., R). As R increases, each node in the network 

has more neighbors to communicate with. Typically in sensor 

networks, nodes have several neighbors, so we choose the 

appropriate R to afford a range of 10 - 20 neighbors in 

expectation. 

To present how CPR performs on maximizing the received 

data during the process of data collection, we simulate two 

networks where there are 20 and 10 neighbors for each node 

on average, respectively. T hus, in the former case, the sensor 

nodes are deployed at a high density, while in the latter case at 

a low density. Besides, we consider different scenarios where 

10%, 30%, 50% of the sensors nodes failed, respectively. 

B. Lower Transmission Cost 
One goal of CPR is to adaptively choose the optimal trans­

mission scheme (Le., 0;) to achieve more efficient transmission. 

Since in CPR, the sensors select the value of 0; greater than 1, 
thus it is more likely for the transmission to deliver a packet 

to the sink in the "forward" direction. Moreover, the selected 

0; is not too large to lead to heavy data congestion around the 

sink. T herefore, CPR outperforms the original Growth Codes 

in transmission consumption. 

Fig. 4 depicts the transmission consumption of CPR and 

the original Growth Codes versus node density in different 

networks. Here, the transmission consumption refers to the 

total transmitting times to recover all N = 500 symbols. Once 

a node disseminates a packet, we regard that the transmission 

consumption increases by 1. In our simulation, the buffer size 

is fixed at 40. From Eq. (2), Eq. (17) and TABLE I, the value 

of can and 0; is also fixed to be 1.2 and 1.65, respectively. 

As is shown in Fig. 4, CPR decreases the transmission 

consumption in different cases. W hen node density is 20, 
CPR can save up to 15% transmitting times. Notice that, CPR 

consumes a decreasing cost as node density increases. T his 

can be explained by a fact that in a fixed field of 1 x 1 square, 

the increasing of node density implies fewer hops required 

for a symbol to be delivered to the sink, and hence the total 

transmission consumption decreases. 
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Fig. 4: CPR consumes lower transmission cost compared to 

the original Growth Codes. 
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Fig. 5: Data collection for disaster-hit sensor networks with high density (N = 500, average number of neighbors is 20). 
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Fig. 6: Data collection for disaster-hit sensor networks with low density (N = 500, average number of neighbors is 10). 

C. Maximize Received Data Amount 

The other goal of CPR is to maximize the received data 

for data collection, where the sink would send the query­

request but the storing nodes fail rapidly at unpredictable time. 

We simulate two kinds of long-term running networks, where 

the node density is 20 (high density) and 10 (low density), 

respectively. Due to node failure, the total number of active 

nodes in a wireless sensor network will inevitably decrease. 

Thus, we consider a sensor network with N = 500 nodes in 

three cases where 10%, 30% and 50% nodes failed prior to 

the process of data collection, respectively. 

Fig. 5 and Fig. 6 depicts the number of codewords used 

in the network to recover certain fraction of symbols. In 

Fig. 5, the performances in a high density sensor network 

are considered. Clearly, CPR outperforms the original Growth 

Codes and No Coding in all the cases of 10% nodes failed 

(i.e., 450 active nodes) and 30% nodes failed (i.e., 350 active 

nodes), as is shown in Fig. 5(a), Fig. 5(b) respectively. For 

example, to recover 280 symbols when 30% nodes failed, 

628 codewords are required to reach the sink for CPR, while 

800 codewords are required for the original Growth Codes 

and more than 1500 codewords are required for No Coding. 

In Fig. 6, the performances in a low density sensor network 

are depicted. Again, CPR is shown to outperform the original 

Growth Codes and No Coding. 

Sometimes in the cases of 50% nodes failed (i.e., 250 
active nodes), No Coding would give better performance than 

both CPR and the original Growth Codes during the earlier 

phase of data collection (in Fig. 5(c) and Fig. 6(c)). It is not 

hard to understand, since both CPR and the original Growth 

Codes need a certain number of codewords to do the decoding 

operation. However, this can not be guaranteed when too many 

nodes caught failure. 

Therefore, since CPR adaptively chooses the near-optimal 

degree transition points, it collects more data in data collection 

than the original Growth Codes. 

VI. CONCLUSION 

In this paper, we address the specific problem of data col­

lection for distributed surveillance sensor networks in disaster­

hit regions, where the sink send the query-request but the 

storing nodes fail rapidly at unpredictable time, and provide 

a novel coding-based probabilistic routing, called CPR. The 

CPR algorithm maximizes the data collection to recover more 

data and minimizes the total transmission cost. The core 

contribution of CPR can be sUlmnarized in two aspects: 1) it 

exploits an optimal probabilistic routing to choose the optimal 

transmission scheme according to the specific environments to 

decrease the total transmission cost, and 2) it searches for the 

near-optimal degree transition points to avoid the performance 



degradation in the case of node failure. The proposed CPR 

algorithm has been compared analytically and empirically with 

the schemes with using the original Growth Codes and with 

No Coding in random networks, and the comparison results 

have shown the advantages of CPR in both data receiving and 

transmission cost. 
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