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A Novel Game Information Dynamic Model based on Fluid Mechanics: Case
Study using Base Ball Data in World Series 2010
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School of Information Science
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Nomi, Ishikawa, Japan

ABSTRACT

We propose a procedure to form information models
based on equations of fluid mechanics. A novel game
information dynamic model constructed using the pro-
cedure is proposed. This model is derived from a series
of approximate solutions for flow past a flat plate at
zero incidence. The five Base Ball games in the World
Series 2010 are analyzed and the information dynamics is
discussed in the light of the present model. It is found that
the present model properly accounts for ’one-sided game’
where information gradually approaches to the value of
game outcome with increasing the game length near the
end. The modelling of information using fluid mechanics
equations allows application of well known physical
concepts, like velocity, acceleration, momentum, force
and energy, to information. We hope that the proposed
procedure is general and can be applied to different games
and real-world problems.

Keywords: 1, 2, 3, 4, 5.

INTRODUCTION

Information is a long persisting enigma for human beings,
because we still do not fully understand what it is, when it
appears or disappears, who it produces or destroys, where
it comes from or go, and how it behaves.

Somebody says that information flows, while the others
think that information is entropy [6]. The gap between the
two viewing points is not small in practice: The former
considers that information is tractable within physics, but
the latter views that information is beyond physics, even
though there is some relation to it. However, once one
admits the notion that information flows, it may be nat-
ural to consider that motion of information particles hav-
ing mass is governed by the basic equations for fluid me-
chanics. This becomes our strong motivation to use these
equations for modelling game information dynamics. It is,
therefore, hypothesized that information particles flow in
exactly same manner as fluid particles.

It is known that the dependent variables in fluid mechan-
ics are velocity, pressure, temperature and density, all of
which depend on the position and time, and are consid-
ered to be information in flows. However, in information

science the word information represents data such as eval-
uation function scores in chess, scores in baseball, and/or
goals in soccer. Moreover, the information of the game
outcome is the data of solved game uncertainty, for ex-
ample. We consider that information is produced as the
motion of particles arranged within each the infinitesimal
volume, for, stationary particles provide us only trivial in-
formation. In this regard, it has been inferred by [7] that
motion of the visualized fluid particles is detected by the
eye almost instantaneously through the light having the
enormous high speed, 3x1010cm/s, and is mapped on the
retina first. It may be therefore evident that during this pro-
cess, motion of the ”fluid particles” are transformed into
that of the ”information particles” by the light carrying the
images of fluid particles. The eye and brain work together
in collecting the light reflecting from the visualized fluid
particles and processing the information particles, which
flow in our brain.

It may be expected that there are many parallels in the
way the five sensory systems (eye, ear, nose, tongue and
skin) process information. All of the stimuli caused by
these systems are considered to be converted into electro-
chemical signals or information particles, which flow ex-
actly in the same manner as fluid particles and result in the
information. This infers that the perceived intensity due
to a stimulus is nothing but the information. This analogy
has been used by [8] to obtain the relationship between the
magnitude of a physical stimulus(e.g. luminance, weight,
sound pressure) and the corresponding experienced mag-
nitude(brightness, heaviness, loudness). It is sometimes
simply called the power law, which is applied to game-
refinement by [2].

Salge and Mahlmann [4] have demonstrated game me-
chanics evaluation methods using information in games.
The problem for AI (artificial intelligence) in game design,
as Yannakakis and Hallam [10] point out, is not to create a
good AI, but one that is enjoyable to play against, and one
that can be used to improve the game itself. A more empir-
ical way to approach to evaluate game mechanics would be
to model an AI after actual neurological and physiological
data, to stimulate the emotions of a real player [9].

The main purpose of the present study is to propose a
novel information dynamic models for two teams (or play-
ers) based on fluid mechanics and to analyze the five Base



Ball games in World Series 2010 by using the proposed
model.

MODELLING

The modeling procedure of information dynamics based
on fluid mechanics is summarized as follows:

(a) Assume a flow problem as the information dynamic
model and solve it.

(b) Get the solutions, depending on the position and time.

(c) Examine whether any solution of the problem can cor-
respond to game information.

(d) If so, visualize the assumed flow with some means. If
not, return the first step.

(e) Determine the correspondence between the flow solu-
tion and game information.

(f) Obtain the mathematical expression of the information
dynamic model.

The information dynamic model will be constructed by
following the above procedure step by step.

(a) Let us assume flow past a flat plate at zero incidence
as the information dynamic model (Figure 1).

Figure 1: A definition sketch of flow past a flat plate at zero
incidence.

The simplest example of the application of the
boundary-layer equations, which is the simplified Navier-
Stokes equations, is afforded by the flow along a very thin
flat plate with zero incidence. Historically this is the first
example illustrating the application of Prandtl’s boundary-
layer theory [3]; it has been discussed by [1] in his doctor’s
thesis at Göttingen. Let the leading edge of the plate be at
x=0, the plate being parallel to the x-axis and infinitely
long downstream, as shown in Figure 1. We shall consider
steady flow with a free-stream velocity U∞, which is paral-
lel to the x-axis. The boundary-layer equations [5] become

u ·∂u/∂x+v ·∂u/∂y = −1/ρ ·dp/dx+ν ·∂2u/∂y2 (1)

∂u/∂x + ∂v/∂y = 0 (2)

y = 0 : u = v = 0; y = ∞ : u = U∞ (3)

where u and v are velocity components in the x and y
directions, respectively, ρ the density, p the pressure and ν
the kinematic viscosity of the fluid. In the free stream,
U∞ · dU∞/dx = −1/ρ · dp/dx. The free-stream ve-
locity U∞ is constant in this case, so that dp/dx=0, and
dp/dy=0. Since the system under consideration has no pre-
ferred length it is reasonable to suppose that the velocity
profiles at varying distances from the leading edge are sim-
ilar to each other, which means that the velocity curves u(y)
for varying distances x can be made identical by selecting
suitable scale factors for u and y. The scale factors for
u and y appear quite naturally as the free-stream velocity,
U∞ and the boundary-layer thickness, δ(x). Hence the ve-
locity profiles in the boundary-layer can be written as

u/U∞ = f(y/δ) (4)

[1] has obtained the solution in the form of a series ex-
pansion around y/δ = 0 and an asymptotic expansion for
y/δ very large, the two form being matched at a suitable
value of y/δ. The analytical evaluation of the solution is
beyond the scope of present study.

(b) The similarity of velocity profile is here accounted
for by assuming that function f depends on y/δ only, and
contains no additional free parameter. The function f must
vanish at the wall (y = 0) and tend to the value of 1 at the
outer edge of the boundary-layer (y = δ), in view of the
boundary conditions for f(y/δ) = u/U∞.

When using the approximate method, it is expedient to
place the point at which this transition occurs at a finite
distance from the wall, or in other words, to assume a fi-
nite boundary-layer thickness δ(x) in spite of the fact that
all exact solutions of the boundary-layer equations tend
asymptotically to the free-stream associated with the par-
ticular problem. The ”approximate method” here means
all the procedures to find approximate solutions to the ex-
act solution.

When writing down an approximate solution of the
present flow, it is necessary to satisfy certain boundary
condition for u(y). At least the no-slip condition u = 0
at y = 0 and the condition of the continuity when passing
from the boundary-layer profile to the free-stream velocity,
u = U∞ at y = δ, must be satisfied.

The following velocity profile satisfies all of the bound-
ary conditions as the approximate solutions on the flow
past a flat plate at zero incidence,

u/U∞ = [sin(π/2 · y/δ)]n (5)

in the range 0 ≤ y/δ ≤ 1, whereas for y/δ > 1 we
assume simply u/U∞ = 1, where n is positive real number
parameter. The Eq. (5) vanishes at the wall (y/δ = 0) and
takes the value of 1 at the outer edge of the boundary-layer
(y/δ = 1). That is, starting from 0 on the wall, the velocity
u in the boundary-layer should join the free-stream at the
finite distance from the wall y = δ(x). Thus, the Eq. (5)
is considered as the approximate solutions on the flow past
the flat plate at zero incidence. Now, we get the velocity



in the x direction, which is one of the solutions for the
assumed flow.

(c) Let us examine whether this solution is game infor-
mation or not. Such an examination immediately provides
us that the non-dimensional velocity varies from 0 to 1
with increasing the non-dimensional vertical distance y/δ
in many ways as the non-dimensional information, so that
these solutions can be game information. However, va-
lidity of this conjecture will be confirmed by the relevant
data.

(d) Imagine that the assumed flow is visualized with
neutral buoyant particles. Motion of the visualized parti-
cles is detected by the eye almost instantaneously through
the lights and is mapped on our retina first [7], so that dur-
ing these processes, motion of the ”fluid particles” is trans-
formed into that of the ”information particles” by the light
carrying the images of fluid particles. This is why motion
of the fluid particles is intact in the physical space, but only
the reflected lights, or electromagnetic waves consisting of
photons can reach at the retina. The photons are then con-
verted to electrochemical particles and are passed along the
visual cortex for further processing in parts of the cerebral
cortex [7]. The photons and/or electrochemical particles
are considered to be information particles. It is, therefore,
natural to expect that the flow in the physical space is faith-
fully transformed to that in the information space, or brain
including eye. During this transformation, the flow solu-
tion in the physical space changes into the information in
the information space.

(e) Proposed are correspondences between the flow and
game information, which are listed in Table 1.

Table 1: Correspondences between flow and game infor-
mation

Flow Game
u: flow velocity I: current information

U∞: free stream velocity I0: total information
y: vertical co-ordinate t: current game length

δ: boundary layer thickness t0: total game length

(f) Considering the correspondences in Table 1, Eq. (5)
can be rewritten as

I/I0 = [sin(π/2 · t/t0)]n (6)

Introducing the following non-dimensional variables in
(6),

ξ = I/I0 and η = t/t0

we finally obtain the mathematical expression of the in-
formation dynamic model as

ξ = [sin(π/2 · η)]n (7)

where ξ is the non-dimensional current information, η
the non-dimensional current game length, and n is a posi-
tive real number. The greater the value of n is the greater
the strength of both teams (or players) for a game is,
and the smaller the strength difference between numeral
games, where each the game takes a unique value of n. A
similar information dynamic model is derivable as

ξ = ηm (8)

where m is a positive real number. Note that Eq. (8) is
the power law [8].

It is also possible to discuss how the information veloc-
ity and information acceleration vary with the game length
or time. The information velocity can be expressed by

dξ/dη = n · π/2[sin(π/2 · η)]n−1 · cos(π/2 · η). (9)

Information acceleration is expressed by

d2ξ

dη2
= n·(π

2
)2·{(n−1)[sin(

π

2
·η)]n−2·[cos(π

2
·η)]2−[sin(

π

2
·η)]n}

(10)

BASE BALL GAMES IN THE WORLD SERIES
2010

The present model will be applied to five Base Ball games
in World Series 2010. The relevant information is summa-
rized in Table 2. Base Ball is a game of ball played two
sides of nine players each, on a diamond enclosed by lines
connecting four bases, a complete circuit of which must be
made by a player after batting, in order to sore a run.

Table 2: Five Base Ball games in World Series 2010. **
Symbol(x) in this table means that no batting is done in
the second half of the 9th inning, for the second batting
team leads the score(s) at the end of the first half of the 9th
inning.

Score History Final Score
First Game Rangers 110 002 003 7

Giants 002 060 03x 11
Second Game Rangers 000 000 000 0

Giants 000 010 17x 9
Third Game Giants 000 000 110 2

Rangers 030 010 00x 4
Fourth Game Giants 002 000 110 4

Rangers 000 000 000 0
Fifth Game Giants 000 000 300 3

Rangers 000 000 100 1



RESULTS AND DISCUSSION

In this section, the information dynamic model will be pre-
sented then results of the data analysis and the comparison
between the present model and the relevant data will be
presented and discussed.

Figure 2: Non-dimensional information ξ against non-
dimensional game length η for the present model.

Figure 2 shows the relation between the non-
dimensional information ξ against non-dimensional game
length η for the present model. When n < 2, ξ-curves are
convex, while n > 2, ξ-curves are s-shaped. This means
that all of the information for the present model are decel-
erated with increasing η near the end.

Figure 3: Non-dimensional game information ξB against
non-dimensional game length η for the five Base Ball
games in World Series 2010.

Figure 3 shows the relation between the non-
dimensional game information ξB and non-dimensional

game length η for the five Base Ball games in the World
Series.

Non-dimensional game information ξB in Base Ball is
here defined as follows:

When the total score(s) of the two teams at the end of
game St > 0,

ξB =
{

|Sf (η)− Ss(η)|/St for 0 ≤ η < 1,
1 for η = 1,

where Sf (η) is the current score sum for the first batting
team, and Ss(η) the current score sum for the second bat-
ting team. At η = 1, ξB is assigned the value of 1, for at the
end of game information must reach the total information
of game outcome.

When St = 0,

ξB =
{

0 for 0 ≤ η < 1,
1 for η = 1.

Game length is defined as the current number of batting
chances so far. It is normalized by the total game length to
obtain the non-dimensional value η. There are two batting
chances for one inning, for one team makes batting for the
first half, while the other team for the second half. Each
of the Base Ball games has 9 innings except for the extra-
inning games, so that there are a total of 18 batting chances
per game. This means that the total game length for the
present five games is 18.

Figure 3 clearly indicates that non-dimensional informa-
tion for these five games varies with the non-dimensional
game length in different manner from each other. However,
these games can be broadly divided into two groups: The
first group consists of the first, third and fifth games. These
three games have a common character that the information
increases rapidly near the end. It has been suggested by [2]
that games of the first group are accounted for by the power
law (see Eq. (8)). The second group consists of the second
and fourth games. These games have a common distinc-
tive feature that the information gradually approaches to
the full value of game outcome with increasing the game
length near the end. This feature of the information for the
second and fourth games is similar to that for the present
model (see Eq. (7)). However, it may be evident that the
games of the second group cannot be accounted for by the
power law, for the information increases rapidly near the
end in this law.

Refering to Table (2) we see that the second group
games are characteristic in that one team scores no points,
this can be called a one-sided game.

Figure 4 shows the relation between the non-
dimensional information ξ and the non-dimensional game
length η. In this figure, the non-dimensional informa-
tion ξB for the second and fourth games, respectively, has
been plotted and is compared with eight curves for present
model. It may be clear that although the non-dimensional
information for the second and fourth games, respectively,



Figure 4: Non-dimensional information ξ against non-
dimensional game length η: A comparison between the
present model and the second group games.

proceeds in zigzag line, on the whole, the non-dimensional
information for the second game seems to follow the model
curve at n=20, while the non-dimensional information for
the fourth game follows the model curve at n=2. It is,
therefore, considered that the present model can properly
account for the games of second group, or the one-sided
games.

As shown in Figure 5, when n=20, the non-dimensional
information velocity dξ/dη increases exponentially with
increasing non-dimensional game length η from 0 , and
takes the peak value of about 4.3 at η = 0.85. Then, dξ/dη
decreases with increasing η and becomes 0 at η = 1. When
n=2, dξ/dη increases with increasing η from 0 , and takes
the peak value of about 1.6 at η = 0.5. Then, dξ/dη de-
creases with increasing η and becomes 0 at η = 1.

Note that the momentum is defined as the product of the
mass and velocity, so that when the mass of information
particles is constant, the information momentum depends
on the game length in the same way as the information ve-
locity. Thus, it is considered that Figure 5 also shows how
the non-dimensional information momentum varies with
the non-dimensional game length as well as with the pa-
rameter n.

As shown in Figure 6, when n=20, non-dimensional
information acceleration d2ξ/dη2 increases exponentially
with increasing the non-dimensional game length η from 0,
and takes the peak value of about 23 at η = 0.75 and then
decreases and finally becomes about -49 at η = 1. How-
ever, when n=2, d2ξ/dη2 decreases monotonously with in-
creasing η from about 4.9 to -4.9, crossing the abscissa at
η ' 0.5.

It is worth noting here that the force is defined as the

Figure 5: Non-dimensional information velocity dξ/dη
against non-dimensional game length η for the present
model.

product of the mass and acceleration, so that when the
mass of information particles is constant, the information
force depends on the game length in the same way as the
information acceleration. Thus, it is considered that Fig-
ure 6 also shows how the non-dimensional force changes
with non-dimensional game length η as well as with the
parameter n.

CONCLUSION

The new knowledge and insights obtained through the
present investigation are summarized as follow.

A novel information dynamic model based on fluid me-
chanics has been proposed and is expressed by

ξ = [sin(π/2 · η)]n,

where ξ is the non-dimensional information, η the non-
dimensional game length, and n a positive real number.
This model is derived from a series of approximate solu-
tions for the flow past a flat plate at zero incidence.

The five Base Ball games in World Series 2010 have
been analyzed and the information dynamics is discussed
in the light of the present model. The present model makes
it possible to discuss how the information, information ve-
locity, information acceleration, information momentum
and information force vary with the game length or time
in games.



Figure 6: Non-dimensional information acceleration
d2ξ/dη2 against non-dimensional game length η for the
present model.

It is found that the present model properly accounts for
a ”one-sided game” where the information gradually ap-
proaches to the value of game outcome with increasing the
game length near the end. It is realized that the second
and fourth games are one-sided games, but the other three
games, the first, third and fifth games are not.

It is suggested that the first, third, and fifth games, in
which the information increases very rapidly with increas-
ing the game length near the end and takes the maximum
value at the end, are accounted for by the power law.
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