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MicroRNA Expression Profiles for Classification and Analysis of
Tumor Samples∗

Dang Hung TRAN†a), Nonmember, Tu Bao HO††b), Member, Tho Hoan PHAM†c), Nonmember,
and Kenji SATOU†††d), Member

SUMMARY One kind of functional noncoding RNAs, microRNAs
(miRNAs), form a class of endogenous RNAs that can have important reg-
ulatory roles in animals and plants by targeting transcripts for cleavage or
translation repression. Researches on both experimental and computational
approaches have shown that miRNAs indeed involve in the human can-
cer development and progression. However, the miRNAs that contribute
more information to the distinction between the normal and tumor samples
(tissues) are still undetermined. Recently, the high-throughput microarray
technology was used as a powerful technique to measure the expression
level of miRNAs in cells. Analyzing this expression data can allow us to
determine the functional roles of miRNAs in the living cells. In this paper,
we present a computational method to (1) predicting the tumor tissues using
high-throughput miRNA expression profiles; (2) finding the informative
miRNAs that show strong distinction of expression level in tumor tissues.
To this end, we perform a support vector machine (SVM) based method to
deeply examine one recent miRNA expression dataset. The experimental
results show that SVM-based method outperforms other supervised learn-
ing methods such as decision trees, Bayesian networks, and backpropaga-
tion neural networks. Furthermore, by using the miRNA-target information
and Gene Ontology annotations, we showed that the informative miRNAs
have strong evidences related to some types of human cancer including
breast, lung, and colon cancer.
key words: microRNA, gene regulation, cancer, support vector machine,
feature selection

1. Introduction

MicroRNAs (miRNAs) are a class of small functional non-
coding RNAs (20-24nt) that can play important regulatory
roles in animals and plants. They regulate the expression
of target genes by binding to specific sites in the 3’UTR of
the messenger RNAs (mRNAs) [1], [2]. Each miRNA can
bind to many different transcripts and down-regulates pro-
tein expression of multiple target genes. Through exper-
imental approaches and bioinformatics applications, thou-
sands of miRNAs have been identified in complex eukary-
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otic genomes. Together with this, greater than one third
of all human genes have been predicted to be miRNA tar-
gets [3]–[5]. Therefore, miRNAs are an abundant and im-
portant class of regulatory molecules. However, the cellular
function of most mammalian miRNAs is still unknown [6].
Hence, it is necessary to understand biological mechanisms
that miRNAs are involved.

Recent studies have been shown that several miRNAs
were directly involved in human cancers (including lung,
breast, brain, liver, and colon cancer) [7]–[10]. While some
miRNAs play functions as oncogenes, other ones as tumor
suppressors. This is because more than 50% of miRNA
genes are located in cancer-associated genomic regions or
fragile sites [11]. This evidence also suggests that miRNAs
may play a more important role in the human cancers than
was previously thought. However, it is still not clear which
miRNAs contribute the most information to the specific can-
cer diseases.

Recently, the high-throughput microarray technology
is used as a powerful technique to measure the expression
level of miRNAs at biological molecules. While traditional
methods only allow one or a few miRNAs to be examined
at once, the microarray techniques measure the expression
level of thousands of miRNAs simultaneously. Analyzing
this expression data can allow us to determine the functional
roles of miRNAs in the living cells. Furthermore, inves-
tigating of miRNA expression data at the level of biologi-
cal modules, rather than individual genes, is recognized as
an important factor for understanding the cancer regulatory
mechanisms [12].

In 2005, Zheng et al. [13] used a Discrete Function
Learning (DFL) algorithm to find the subset of miRNAs that
shows strong distinction of expression levels in normal and
tumor tissues. The DFL algorithm is based on a theorem of
information theory. The advantage of using the DFL algo-
rithm is to remove the irrelevant and redundant features so
that the induction algorithms may produce better prediction
accuracies. To do this, the algorithm needs to examine all
possible subsets of features, however, it is a NP-hard prob-
lem. Hence, in their paper they proposed several heuristics
to reduce the searching space for the DFL algorithm. It thus
makes their results are unreliable. Other method, proposed
by Kim et al. [14], used a random hypernetwork to identify
the gene modules associated with cancers from miRNA mi-
croarray data. Hypernetwork is a generalization of the hy-
pergraph by assigning weights to its hyperedges. However,
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to construct a hypernework, they faced a combinatorial ex-
plosion problem. In order to solve this problem, they gen-
erated a hypernetwork by repeating a random hypergraph
process. Thus, their hypernetwork was strongly depended
on the initial process of generating a first hypergraph, how-
ever - it is a random process. Though the experimental re-
sults showed that their method provided a competitive per-
formance to BNN and SVM, but they did not proclaim the
value of parameters of SVM classifiers that they used to re-
port the results.

In this paper, we present a computational method to (1)
predicting the tumor tissues using high-throughput miRNA
expression profiles; (2) finding the informative miRNAs that
show strong distinction of expression level in tumor tissues.
To this end, we perform a supervised learning method to
deeply examine one recent miRNA expression dataset [15].
Specifically, we present a support vector machine (SVM)
classifier to predicting and analyzing tumor tissues. An
SVM is one of the most popular machine learning algo-
rithms and it has good performance in classification prob-
lems. In fact, the experimental results show that the SVM-
based method outperforms other methods such as decision
trees, Bayesian networks, and backpropagation neural net-
works.

Moreover, to answer the question of which miRNA
is important for discriminating between normal and tumor
samples, we used a two-step feature selection method to
find a subset of informative miRNAs that have strong rel-
evance to the tumor class. The investigation into the biolog-
ical significance of target genes of informative miRNAs re-
veals strong evidences related to some types of human can-
cer, including breast, lung, and colon cancer.

2. Method

2.1 Support Vector Machines for Binary Classification

The support vector machine (SVM) is a learning technique
based on statistical learning theory, which from a set of
positively and negatively labeled training vectors learns a
classifier that can be used to classify new unlabeled test
samples. SVM learns the classifier by mapping the input
training samples into a possibly high-dimensional feature
space, and seeking a hyperplane in this space which sepa-
rates the positive examples from the negative ones with the
largest possible margin (Fig. 1). If the training set is not lin-
early separable, SVM finds a hyperplane, which optimizes a
tradeoff between good classification and large margin.

The implementation of SVM is as follows. Let (xi, yi),
i = 1, . . . , �, be a training dataset, where xi is a vector and
yi = ±1 is a class attribute. SVM training solves the follow-
ing primal problem:

Fig. 1 An illustration of the SVM training method. Red and green circles
indicate positive and negative samples to be classified.
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(1)

Its dual is a quadratic optimization problem:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
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α
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− eTα

0 ≤ αi ≤ C, i = 1, . . . , �

yTα = 0

(2)

where e is the vector of all ones, C > 0 is an error penalty
parameter, y = {yi}i=1,...,�, Qi j = yiy jK(xi, x j), K(xi, x j) =
φ(xi)Tφ(x j) is a kernel function, and φ(xi) maps xi into a
higher (maybe infinite) dimensional space. So K(xi, x j) is
a symmetric positive definite function that reflects the sim-
ilarity between examples xi and x j. In this research, we
employed a linear function K(xi, x j) = xi.x j, a polynomial
function K(xi, x j) = (xi.x j + 1)d, and a radial basis function
(RBF) K(xi, x j) = exp(−γ(xi−x j)2) as kernel functions. The
SVMs classification function, once trained, has the follow-
ing form:

f (x) =
∑

i

αiyiK(x, xi) + b (3)

where α = {αi}i=1,...,� is the solution of the above dual prob-
lem and b is in the solution of the primal problem. Based on
Karush-Kuhn-Tucker theory [16], the solutions of the primal
and dual problems satisfy the following equation:

αi

{
yi(w

Tφ(xi) + b) − 1 + ξi
}
= 0 (4)

Therefore, if αi � 0 for some i, then yi(wTφ(xi)+b)−1+ξi =
0. In this case, xi is called a support vector (see Fig. 1).

SVMs have a solid theoretical background, a good per-
formance in practice, and a guaranteed global optimum. It
can also handle large datasets and is easier to implement and
train than a neural network. A more detailed description of
SVMs can be found in [17], [18].
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2.2 Ranking Informative Feature Using Fisher Criterion
and Linear SVM

Ranking informative (discriminative) features is of funda-
mental and practical interest in data mining and knowledge
discovery. The aim here is to select a subset of relevant fea-
tures available from the dataset that most contribute to dis-
tinguishing instances from different classes. In this research,
we use two feature ranking methods to select the informative
miRNAs that contribute more information to tumor class.
First, we rank all miRNAs based on their Fisher scores and
then use a SVM-based feature selection method for ranking
miRNAs.

Fisher method. Fisher criterion is one of statistical cri-
teria that is simple, effective and independent of the choice
of classification methods. In this criterion, the discrimina-
tive strength of each feature is defined as follows. Given a
dataset X with two classes, denote instances in class 1 as X1

and those in class 2 as X2. Suppose x̄k
j is the average of the

jth feature in Xk, the Fisher score of the jth feature is:

F( j) =
(x̄1

j − x̄2
j )

2

(s1
j )

2 + (s2
j )

2
(5)

where

(sk
j)

2 =
∑

x∈Xk

(x j − x̄k
j)

2 (6)

The numerator indicates the discrimination between
two classes and the denominator indicates the scatter within
each class. The larger the Fisher score is, the more likely
this feature is more discriminative.

SVM-based method. SVM has been successfully ap-
plied to feature selection [19]–[21]. When SVM uses a
linear kernel, it finds an optimal hyperplane that separates
the positive from the negative class in the original space
(not mapping into a higher dimensional space). This op-
timal hyperplane has then the following form (replacing
K(x, y) = x.y in Eq. (3)):

f (X = ( f1, f2, . . . , fm)) =
m∑

i=1

wi fi + b (7)

We can change the sign of the weights wi, i = 1, . . . ,m,
and b in the above function such that if f (X) > 0 then X
would be classified as a positive example and otherwise, as a
negative example. It can be clearly seen that if wi is positive,
then feature i would support the positive class. Otherwise,
this feature would support the negative class (or prevent the
positive class), and the larger the absolute value of wi, the
stronger feature i supports (or prevents) the respective class.
From this remark, we define the weight wi as the support of
feature i.

2.3 Validating of Target Genes of Informative miRNAs
Using Gene Ontology

With the current knowledge of combinatorial coregulation,

it is hard for us to directly validate the predicted target genes
of the informative miRNAs. Fortunately, using Gene On-
tology (GO) [22] we can validate the target genes of each
miRNA with respect to biological processes, cellular com-
ponents and molecular functions. This validation can be
achieved by searching for statistically significant GO terms
associated with genes.

3. Results and Discussions

3.1 Datasets

In this work, we used a microarray dataset, which con-
tains expression profiles of miRNAs in human. The origi-
nal experimental dataset was obtained from Lu et al. [15].
This includes the expression profiles of 151 miRNAs on
223 samples. Of these 223 samples, 166 samples are nor-
mal samples from six different tissues, including colon, kid-
ney, prostate, uterus, lung, and breast. The remaining 57
samples are tumor samples from the same six different tis-
sues. We used normal samples as positive data and tumor
samples as negative data in our classification problem. To
validate the biological significance of target genes of miR-
NAs, we obtained a set of computationally predicted hu-
man miRNA target genes from Krek et al. [23]. The current
miRNA target prediction methods are mainly based on the
principle of miRNA-target interactions, and the accuracy of
these methods has been confirmed by experimental valida-
tion of randomly selected miRNA targets [24] and by large-
scale gene expression profiling studies [25]. Up to 90% of
the randomly selected miRNA targets from the predictions
by Krek et al. [23] has been validated as true targets [24].

3.2 Prediction Results

In general, a 10-fold cross-validation is good enough for
evaluating the predictive accuracy of classification meth-
ods. However, in case of small data (as the dataset used
in this study), a leave-one-out cross-validation (LOOCV)
performs better than the 10-fold cross-validation. LOOCV
simulates the performance of a classification algorithm on
unseen samples. In LOOCV, the algorithm is repeatedly
retrained, leaving out one sample in each round, and test-
ing each sample on a classifier that was trained without this
sample. In our experiments, we used SVMs with three ker-
nel functions (RBF, Linear, and Polynomial kernels) to per-
form LOOCVs on the miRNA expression dataset (Sect. 3.1).
Three popular criteria of Precision, Recall, and F1 are used
to evaluate the results. They are defined as follows:

Precision = T P/(T P + FP) (8)

Recall = T P/(T P + FN) (9)

F1 = 2 ∗ (Precision ∗ Recall)/(Precision + Recall)

(10)

Where T P, T N, FP, and FN are the number of true pos-
itive, true negative, false positive and false negative exam-
ples, respectively. F1 is the harmonic mean of Precision
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and Recall, it is maximized when Precision and Recall are
maximized at the same time. We also use the area under the
curve (AUC) of a receiver operating characteristic (ROC)
curve for describing classification performance. The AUC
gives a good indication for the overall performance of classi-
fier and whether one classifier performs better than the other
classifiers. The bigger value is the better than small ones.

We used LIBSVM (version 2.84) [26] for training and
test our SVM classifiers. For preprocessing data, we devel-
oped a C++ program to convert the dataset from delimited
file format to the format of the LIBSVM. In the other hand,
we also conducted a simple scaling on the data by trans-
forming each attribute-value to the range of [0, 1]. Three
kernel functions (RBF, Linear, and Polynomial) were used
in our experiments to validate the classification ability of
the SVM. For RBF kernel, we tried several values of C and
γ for finding good parameters. We found that the best ac-
curacy was reached when C = 1.0 and γ = 0.001. The
performance of the method is shown in Table 1. As can be
seen that, in our experiment, we can obtain the highest re-
sult of Precision = 0.92, Recall = 0.98, F1 = 0.95, and
AUC = 0.98 when using SVM with RBF kernel. This indi-
cates that the SVM-based method with RBF kernel is suit-
able for distinguishing the tumor samples from normal sam-
ples when using miRNA expression data.

To make a comparison of the SVM-based method to
other classification methods, we used the Weka (version
3.5) [27] to evaluate the performance of backpropagation
neural network (BNN), decision tree (DT), k-nearest neigh-
bor (kNN), and bayesian network (BN) methods. Accord-

Table 1 The results of SVM classifiers on the miRNA expression
dataset.

Kernel function Precision Recall F1 AUC
RBF kernel (C = 1.0, γ = 0.001) 0.92 0.98 0.95 0.98
Linear kernel 0.95 0.95 0.95 0.97
Polynomial kernel (d = 3) 0.93 0.95 0.94 0.96

Fig. 2 Comparison results of SVMs and conventional methods on the miRNA expression dataset.

ing to making a fair comparison, we carry out all experi-
ments by using LOOCV on the same dataset that mentioned
in Sect. 3.1. We also carefully selected appropriate parame-
ters for each method. The prediction results of all compared
methods, including ours, are shown in Fig. 2. It can be seen
that SVM (RBF kernel) classifier is better than other classifi-
cation methods on all critical measures. For example, SVM
classifier gave the F1 = 0.95 while BNN, DT (C4.5 algo-
rithm), kNN, and BN had the F1 equal to 0.93, 0.85, 0.79,
and 0.75, respectively. The highest results are detected from
the SVM method with F1 = 0.95 and AUC = 0.98. While
the lowest results are detected from BN with 0.2 and 0.09
lower values on F1 and AUC, respectively.

3.3 Informative miRNAs Supporting for Tumor Tissues

In this paper, we used feature selection methods to investi-
gate which might play a more dominant role in tumor tis-
sues. Such methods are then used to improve the perfor-
mance of a classifier and to help understand the problem.
Our intention is to determine which features (miRNAs) con-
tribute more information to the tumor tissue class. As de-
scribed in Sect. 2.2, we used a two-step feature selection
method to find the important miRNAs. In the first step,
we calculated the Fisher score of each feature (miRNA) and
ranked in descending order by their scores. Then, only miR-
NAs, which have a Fisher score equal or greater than 0.1,
were selected for the next step. Those features were evalu-
ated using the SVM classifier with a linear kernel in the sec-
ond step. When applying to the miRNA expression dataset
(see Sect. 3.1), the top 20 contributing features (informative
miRNAs) are shown in Table 2.

Of these informative miRNAs, hsa-miR-205 has the
first rank with a weight of 0.34. Hsa-miR-125b has the sec-
ond rank with a weight of 0.27. Three members of let-7 fam-
ily (hsa-let-7c, hsa-let-7a, and hsa-let-7i) also appear in that
list. Other ones, including hsa-miR-146, hsa-miR-145, hsa-
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Table 2 The top 20 miRNAs contributing to tumor tissues (negative class) obtained from the trained
linear SVM model and their corresponding high-confidence target genes (with PicTar score ≥ 4.5).

Rank miRNA |weight| High-confidence target genes
1 hsa-miR-205 0.34 DYRK1A, EIF4E, LHFPL2, MAPK9, YES1
2 hsa-let-7c 0.27 BZW1, CDC25A, CDC34, ERCC6, MAP3K3, QARS, RGS16
3 hsa-miR-125b 0.24 ANPEP, ATP5G2, DVL3, EDEM1, LNPEP, MLF2,

PHOX2B, PRDM2, PTPN18, ST6GAL1, TAZ, TDG, TNFSF4
4 hsa-miR-181c 0.22 ADAM11, ARHGEF7, ATXN1, FKBP4, LMO1, MAP3K10
5 hsa-miR-183 0.22 BZW1, EPHA4, FGF9, SAFB, SLC35A1, THBS3, TRAM1, UCHL3
6 hsa-miR-182 0.18 ADD3, ARF4, ARHGEF7, BCL2, EIF5, EPAS1, F13A1,

FOXF2, HAS2, HES1, ITPR1, MTM1, PBEF1
7 hsa-miR-146 0.15 NOVA1, TLN2
8 hsa-let-7a 0.12 BZW1, CDC25A, CDC34, ERCC6, MAP3K3, QARS, RGS16
9 hsa-miR-145 0.11 ADD3, AKAP12, FLI1, SEMA3A
10 hsa-miR-222 0.11 CTCF, DYRK1A, INA, MAP3K10, WNT1
11 hsa-miR-33 0.10 CAMK2G, MLLT3, NPY, TSG101, YES1
12 hsa-miR-17-5p 0.10 ATXN1, BCL2L2, EPHA5, HIF1A, KPNA3, MAP3K14,

MTMR3, NPAS2, PKD2, PKIA, SLC2A4, TRIP11, TXNIP
13 hsa-miR-181b 0.10 ADAM11, ARHGEF7, ATXN1, EPS8, FKBP4, LMO1, MAP3K10
14 hsa-miR-152 0.10 CCKBR, DNMT1, EDG1, EPAS1, ITPK1, PPP1R10,

SFRS2IP, TXNIP, WNT1
15 hsa-miR-153 0.09 DOC2A, CLCN5, EPHA4, ADD1, APC, ITPR1
16 hsa-miR-200a 0.09 MAP3K3, ATXN1, MAP2K4, EXOC5, CUL3, MYH10,

UBE3A, TFRC, EPHA7
17 hsa-miR-25 0.08 MAP2K4, LBX1, LHFPL2, HNRPM
18 hsa-let-7i 0.08 BZW1, CDC25A, CDC34, ERCC6, MAP3K3, QARS, RGS16
19 hsa-miR-199b 0.08 NPAS2, ST6GAL1, ZNF238, PXN, EPB41L1, NCOA2,

AKAP1, CDH2, PPP1R2
20 hsa-miR-98 0.08 CDC34, BZW1, CDC25A, RGS16, QARS, MAP3K3, ERCC6

miR-181b, and hsa-miR-7-5p are conserved in some mam-
malian species. Interestingly, we can see that in the top 20
miRNAs contributing to tumor tissues, some of them have
been confirmed to be related to several types of human can-
cer. For example, hsa-miR-205 is located at the region am-
plified in lung cancer. It had a low expression level in the
lung, breast, colorectal, and prostate cancer samples [28].
Besides, Iorio et al. [29] reported that hsa-miR-125b and
hsa-miR-145 were indeed involved in human breast can-
cer. While hsa-miR-125b was down-regulated, hsa-miR-
145 was up-regulated in human breast cancer. Their anal-
ysis suggested that these miRNAs may potentially act as
tumor suppressors. Furthermore, expression of hsa-miR-
145 was found at a low level in lung cancer samples com-
pared to normal samples [28]. Based on the target predic-
tion and expression level of hsa-miR-145 in human cancers,
Akao et al. [30] also suggested that this miRNA may sup-
press genes involved in signal transduction and oncogenesis.
The expression level of hsa-miR-181b was investigated in
the study of Xi et al. [31]. Their analysis revealed that hsa-
miR-181b was strongly associated with the mutation status
of the p53 in tumor.

To determine the biological significance of informative
miRNAs, we analyzed target genes that are regulated by
these miRNAs. Though there are several available miRNA
target prediction methods such as PicTar, miRanda, and Tar-
getScan. A recent study indicated that PicTar had the high-
est success rate in target gene prediction [32]. We thus uti-
lized PicTar algorithm [23] for obtaining predicted target
genes of each informative miRNA. High-confidence target
genes (PicTar score ≥ 4.5) of each informative miRNAs are

listed in the last column of Table 2.
To test if the target genes for each informative miRNA

might be enriched functionally based on arbitrary Gene On-
tology (GO) terms [22], we performed GO annotation and
significance analysis using GOstat [33]. We observed terms
associated significantly with the target genes included in the
GO gene-association database (goa human and Affymetrix
HG U95AV2 Human known genes). In order to find sig-
nificantly overrepresented GO terms, GOstat calculates a p-
value upon assuming hyper-geometric distribution of anno-
tated GO terms. Table 3 shows the shared GO terms of target
genes of two first informative miRNAs (hsa-miR-205 and
hsa-let-7c). We examine the significant terms with p-value
≤ 0.005 and p-value ≤ 0.001 for hsa-miR-205 and hsa-let-
7c, respectively. It can be seen that target genes of hsa-miR-
205 and hsa-let-7c belong to biologically functional cate-
gories, which are related to post-transcription, protein mod-
ification, and regulation of metabolic processes.

Table 4 presents the target genes of hsa-miR-205 and
hsa-let-7c in detail. It shows the functional description of
each target gene. Interestingly, all these genes function as
oncogenes in some types of human cancer. For instance,
DYRK1A is a member of a conserved family of serine ki-
nases which a activated by intramolecular tyrosine phospho-
rylation. Amplification of the DYRK1A has been observed
in several different types of cancer. YES1 is an oncogene
with kinase activity in a number of solid tumors, including
breast and colon [34]. The MAP3K3 gene encodes a trans-
duction protein. More interestingly, the oncogene YES1 and
the transduction protein MAP3K3 are potential targets of
both hsa-miR-145 and hsa-miR-155, which are known as



TRAN et al.: MICRORNA EXPRESSION PROFILES FOR CLASSIFICATION AND ANALYSIS OF TUMOR SAMPLES
421

Table 3 The GO terms associated to target genes of hsa-miR-205 and hsa-let-7c.

GOId Biological processes Genes p-value
hsa-miR-205
GO:0046777 Protein amino acid autophosphorylation DYRK1A, YES1 5.86E-04
GO:0006468 Protein amino acid phosphorylation DYRK1A, YES1, MAPK9 2.24E-03
GO:0016310 Phosphorylation DYRK1A, YES1, MAPK9 3.14E-03
GO:0006793 Phosphorus metabolic process DYRK1A, YES1, MAPK9 4.01E-03
GO:0044267 Cellular protein metabolic process EIF4E, DYRK1A, YES1, MAPK9 4.72E-03
GO:0044260 Cellular macromolecule metabolic process EIF4E, DYRK1A, YES1, MAPK9 4.72E-03
GO:0043687 Post-translational protein modification DYRK1A, YES1, MAPK9 4.72E-03
hsa-let-7c
GO:0050789 Regulation of biological process BZW1, RGS16, CDC34, MAP3K3, CDC25A, ERCC6 9.27E-03
GO:0006283 Transcription-coupled nucleotide repair ERCC6 9.27E-03
GO:0044267 Cellular protein metabolic process BZW1, CDC34, MAP3K3, QARS, CDC25A 9.56E-03
GO:0043283 Biopolymer metabolic process BZW1, CDC34, MAP3K3, QARS, CDC25A, ERCC6 9.56E-03
GO:0044260 Cellular macromolecule metabolic process BZW1, CDC34, MAP3K3, QARS, CDC25A 9.56E-03
GO:0065007 Biological regulation BZW1, RGS16, CDC34, MAP3K3, QARS, CDC25A 9.96E-03
GO:0019538 Protein metabolic process BZW1, CDC34, MAP3K3, QARS, CDC25A 9.96E-03

Table 4 Description of target genes of hsa-miR-205 and hsa-let-7c.

Ensembl ID Gene name Annotation
hsa-miR-205
ENSG00000157540 DYRK1A Dual specificity tyrosine-phosphorylation-regulated kinase 1A
ENSG00000151247 EIF4E Eukaryotic translation initiation factor 4E
ENSG00000145685 LHFPL2 Lipoma HMGIC fusion partner-like 2 protein
ENSG00000050748 MAPK9 Mitogen-activated protein kinase 9
ENSG00000176105 YES1 v-yes-1 Yamaguchi sarcoma viral oncogene homolog 1
hsa-let-7c
ENSG00000082153 BZW1 Basic leucine zipper and W2 domains 1
ENSG00000164045 CDC25A Cell division cycle 25 homolog A
ENSG00000099804 CDC34 Cell division cycle 34 homolog
ENSG00000032514 ERCC6 Excision repair cross-complementing rodent repair deficiency
ENSG00000198909 MAP3K3 Mitogen-activated protein kinase 3
ENSG00000172053 QARS Glutaminyl-tRNA synthetase
ENSG00000143333 RGS16 Regulator of G-protein signaling 16

tumor suppressors in breast cancer [29]. Thus, it is reason-
able for us to conclude that the method presented in this
research can find informative miRNAs that contribute much
information to tumor tissues.

4. Conclusions

We have presented a computational method based on SVMs
to analyze microRNA expression profiles from a wet lab ex-
periment. Our prediction results indicated that support vec-
tor machines are able to classify tissues base on this data
and outperforms other classification methods, such as deci-
sion trees, Bayesian networks, and backpropagation neural
networks.

Furthermore, relied on a two-step feature selection
method using Fisher criterion and SVM with linear kernel,
we found a subset of informative miRNAs which contribute
more information for discriminating between normal and tu-
mor samples. An analysis of predicted target genes of these
miRNAs allowed us to determine the functional roles of
these miRNAs in the living cells. This analysis revealed that
informative miRNA are involved in several types of cancer
and their corresponding target genes indeed share common
roles in biological processes.
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