
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
Study on Extracting Conceptual Structures from

Legal Texts

Author(s) ファム, アンカム　Jr

Citation

Issue Date 2012-03

Type Thesis or Dissertation

Text version author

URL http://hdl.handle.net/10119/10414

Rights

Description
Supervisor: Prof. Akira Shimazu, 情報科学研究科,

修士



 

 

Study on Extracting Conceptual 

Structures from Legal Texts 

 

 

 

By Pham Anh Cam 

 

 

A thesis is submitted to 

School of Information Science, 

Japan Advanced Institute of Science and Technology, 

in partial fulfillment of the requirements 

for the degree of 

Master of Information Science 

Graduate Program in Information Science 

 

 

 

 

Written under the direction of 

Professor Akira Shimazu 

 

 

 

March, 2012  



 

 

Study on Extracting Conceptual 

Structures from Legal Texts 

 

By Pham Anh Cam (1010057) 

 

 

A thesis is submitted to 

School of Information Science, 

Japan Advanced Institute of Science and Technology, 

in partial fulfillment of the requirements 

for the degree of 

Master of Information Science 

Graduate Program in Information Science 

 

 

 

 

Written under the direction of  

Professor Akira Shimazu 

and approved by 

Professor Akira Shimazu 

Associate Professor Kiyoaki Shirai 

Professor Satoshi Tojo 

 

 

 

 

February, 2012 (Submitted)



i 

 

Study on Extracting Conceptual 

Structures from Legal Texts 

by 

Pham Anh Cam (1010057) 

School of Information Science 

Japan Advanced Institute of Science and Technology 

February 06, 2012 

 

Keywords: Japanese laws, conceptual model, UML class 

Abstract 

Law is a system of rules and guidelines which are enforced through social 

institutions to govern behavior, wherever possible. Therefore, to understand and to 

check the correctness and the consistence of a law is very important but normally 

very difficult because of long and difficult texts. Our research aims to take a hand 

in this work by modeling Japanese laws. Such laws can be seen as specifications of 

social systems. Our purpose is to clarify a method for extracting a model 

(conceptual model) of social system which such laws represent.  

Our research is conducted as the study of legal engineering, which aims to exam 

and verify whether a law has been established appropriately according to its 

purpose, whether the law is consistent with related laws, and whether the law has 

been modified, added, and deleted consistently. There are two important goals of 

legal engineering which are to help experts make complete and consistent laws; and 

to design information systems which work based on laws. 

To model the social system represented by Japanese laws, we use a conceptual 

model. The term conceptual model may be used to refer to model which is 

represented by concepts or related concepts which are formed after a 

conceptualization process in the mind. In order to express the result of conceptual 

modeling, we need a modeling language. A modeling language can be graphical or 

textual. There are several elaborate graphical notations that could be used for 

conceptual modeling, ranging from those used in the past for Entity-Relationship 



ii 

 

Model [Chen 1975], conceptual graphs [Sowa 1984] to those presently used for object 

modeling [OMG 1997]. 

 Recently there are some researches about using UML class diagrams to model 

natural language. However, all of them are applied to English language only and all 

methods used a semi-formal language as a medium. Different from these above 

methods, our method is used for Japanese language, concentrate on Japanese legal 

texts; and we directly extract UML classes from dependencies of Japanese legal terms 

which are extracted based on Cabocha parse output. Besides, because of a huge part of 

extracted classes, we don’t represent classes graphically but textually.  

Our model is built by the following way: the common nouns are extracted to 

become the UML classes. These classes have attributes, methods and relations 

extracted correspondingly from the dependencies of legal terms as below. The verbs 

are extracted to become methods of classes. The modifier nouns, verbs and adjectives 

are extracted to become attributes of classes. The relations between nouns are extracted 

to become relations between classes. These classes then are represented textually. 

There are 3 steps to transform Japanese legal texts to UML class components. First, we 

parse Japanese law text corpus using Cabocha. Second, we extract dependencies of 

legal terms from Cabocha output. Third, we transform the dependencies to UML class 

components. 

Our research contribution is that our model can be used as a tool to understand the 

law easily. Instead of reading a difficult law, people can take a look to the model to 

find out the related terms, actions as well as the relations between the objectives of the 

law – legal terms. Moreover, the relations between legal objectives are modeled; the 

logic of the law is also clearly expressed so that we can check the correctness and 

consistence of a law easily. We can also design the information systems based on laws 

using our conceptual model.  

The challenges of this research are how to extract correctly and completely 

relations between Japanese legal terms and how to represent these terms with their 

characteristics and relations clearly. The prior problem is solved by careful analysis 

and extraction of the most important Japanese dependencies. The later problem is 

solved by representing classes with their attributes, methods and relation textually. 

Graphical representation is not used because there is a huge part of classes are 

extracted from each law. 

 



iii 

 

Acknowledgements 

First, I would like to thank my advisor, Professor Akira Shimazu who gave me 

a chance to know and receive Asiajinzai scholarship; supported me in 6 months of 

Japanese studying and 2 years of Master course. Thanks to his encouragement, I 

could begin, continue and finish the study in JAIST. I could study not only the 

knowledge of natural language processing in particular but also the thinking way 

from his kind, guide and experiences in general.  

Second, I would like to thank my co-advisor, Professor Shirai Kiyoaki. His 

comments for my research help me a lot on improving my research and 

communication skills. I also could study a lot from his enthusiasm on research and 

teaching.  

Third, I would like to thank Professor Ochimizu, Tera sensei and all my other 

Japanese and subject teachers who taught me a lot in 2 years and 6 months in 

JAIST. Thanks to the guides of professors, I could obtain some more knowledge 

and thinking ways. 

Forth, I would like to thank Assistant Professor Nguyen Le Minh who helped 

me a lot in researching as long as in the life in JAIST. I will never forget his always 

support from the first day I came to JAIST.    

I also would like to thank Yoshida and Shinkai coordinators, 11 Hokuriku 

companies who taught me a lot about Japanese business manner.    

I also would like to thank the staffs in Student service section and all other 

sections who supported me a lot in student life.  

I also would like to thank all my Vietnamese and foreigner friends in JAIST 

who always beside and encourage me. Thanks to the hearts of all, I have a calm 

and useful time in JAIST. 

Last but not least, I would like to thank my family who are living in Vietnam. 

To be able to see their faces and chat with them every day is my biggest 

encouragement.   

 

  



iv 

 

Contents 

Abstract................................................................................................................................... i 

Acknowledgements .............................................................................................................. iii 

Chapter 1 ............................................................................................................................... 1 

Introduction ........................................................................................................................... 1 

1.1. Motivation ................................................................................................................... 1 

1.2. Introduction ................................................................................................................ 1 

1.2.1. Introduction of legal engineering ....................................................................... 1 

1.2.2. Definition of social system .................................................................................. 2 

1.2.3. Definition of conceptual model ........................................................................... 2 

1.2.3.1. Type and scope of conceptual models .......................................................... 3 

1.2.3.2. Representation of a conceptual model in computer science ....................... 4 

1.2.3.3. Operational model....................................................................................... 10 

1.2.4. Introduction of method ...................................................................................... 12 

1.2.5. Contributions ..................................................................................................... 13 

1.2.6. Challenges .......................................................................................................... 14 

Chapter 2 ............................................................................................................................. 15 

Background .......................................................................................................................... 15 

2.1. SBVR2UML: A Challenging Transformation ......................................................... 16 

2.2. Parsing SBVR-Based Controlled Languages ......................................................... 18 

2.3. An ATL Transformation from Natural Language Requirements Models to 

Business Models of a MDA Project................................................................................. 19 

2.4. Unsupervised Semantic Parsing (USP) .................................................................. 20 

2.4.1. Markov Logic Network ...................................................................................... 20 

2.4.1.1. Markov Logic’s Intuition ............................................................................ 20 

2.4.1.2. Markov Logic’s definition ........................................................................... 20 

2.4.1.3. Markov Logic’s joint probability ................................................................ 21 

2.4.2. Stanford Typed Dependency Parser ................................................................. 21 

2.4.3. Unsupervised semantic parsing (USP) ............................................................ 23 

2.5. CaboCha (Yet Another Japanese Dependency Structure Analyzer) ..................... 24 

Chapter 3 ............................................................................................................................. 25 

Method ................................................................................................................................. 25 

3.1. Data processing ........................................................................................................ 26 

3.2. Cabocha parsing ....................................................................................................... 27 

3.3. Dependency extraction ............................................................................................. 28 



v 

 

3.3.1. dep(noun1_pos, noun2_pos, verb) ..................................................................... 29 

3.3.2. dep(noun_pos, verb) ........................................................................................... 30 

3.3.3. no(noun1_pos, noun2) ........................................................................................ 30 

3.3.4. no(noun_pos, verb) ............................................................................................. 31 

3.3.5. no(noun_pos, adjective) ..................................................................................... 31 

3.4. UML transformation ................................................................................................ 31 

3.5. Transformation result .............................................................................................. 32 

Chapter 4 ............................................................................................................................. 35 

Evaluation ........................................................................................................................... 35 

4.1. Internal evaluation .................................................................................................. 35 

4.2. External evaluation.................................................................................................. 36 

Chapter 5 ............................................................................................................................. 37 

Conclusion ........................................................................................................................... 37 

References ............................................................................................................................ 38 

Publication ........................................................................................................................... 40 

Appendix .............................................................................................................................. 41 

The UML classes result of Japanese national pension law 国民年金法 .......................... 41 

 

  



vi 

 

List of Figures 

Figure 1.1 Red sun-sets and blue skies model ............................................................. 3 

Figure 1.2 An ERM model ............................................................................................. 5 

Figure 1.3 A conceptual graph ...................................................................................... 6 

Figure 1.4 An ORM model ............................................................................................ 8 

Figure 1.5 An OCML relation option ............................................................................ 9 

Figure 1.6 A ConML Model ......................................................................................... 10 

Figure 1.7 Conceptual model: Cloud Streets - Weather Events ................................ 11 

Figure 1.8 Operational Model Forecasts ..................................................................... 11 

Figure 2.1 SBVR to UML Transformation Framework ............................................ 17 

Figure 2.2 Process overview of Parsing SBVR-Based Controlled Languages ......... 18 

Figure 2.3 Markov Logic Network example............................................................... 21 

Figure 2.4 Graph representation of STD ................................................................... 22 

Figure 2.5 The number of correct answers in USP evaluation experiment ............ 23 

Figure 3.1 Japanese law conceptual model extraction system ................................ 25 

  



vii 

 

List of Tables 

Table 1.1 Core elements of class diagram .................................................................... 8 

Table 2.1 The mapping from Natural language to SBVR and UML metamodels .. 18 

Table 3.1: Mapping from POS tagging to UML class components. .......................... 25 

Table 3.2 UML transformation ................................................................................... 32 

Table 3.3 Statistical result of 国民年金法 ................................................................... 33 

  



1 

 

Chapter 1  

Introduction 

1.1. Motivation 

The law is a social system which determines our society. From this point, it is 

necessary to understand laws clearly. Unfortunately, because of long and difficult texts, 

laws are normally difficult to understand for most of us. Because the models have giant 

power in helping us understand many phenomena easily and clearly, we should model 

the social systems laws represent in some ways to make laws clearer and thus easier to 

understand by using a conceptual modeling language. Modeling legal text is even more 

valuable if it is also used to check the correctness and the consistence of a law or to 

generate information systems based on laws. Considering all above arguments, to 

extract a conceptual model of a law is a useful and feasible research. However; 

according to our study, there are some approaches to extract conceptual model (for 

example, UML class diagrams) from natural language but there are no researches in 

extracting from Japanese language, especially, Japanese legal texts. Therefore, we 

proposed a new method to extract a conceptual model of a social system which 

Japanese laws represent. We will extract the conceptual model which includes legal 

terms go along with their characteristics and relations between them. Our research is 

conducted as the study of legal engineering.   

1.2. Introduction 

The purpose of my research is to clarify a method for extracting a conceptual 

model of a social system which Japanese laws represent.  

In the next parts of this chapter, I will explain an introduction of legal engineering 

in the 1.2.1 section, a definition of a social system in the 1.2.2 section, a definition of a 

conceptual model in section 1.2.3, a brief introduction of my method in section 1.2.4, 

my main contributions in section 1.2.5 and challenges in section 1.2.6.  

1.2.1.  Introduction of legal engineering 

Legal engineering aims to exam and verify whether a law has been established 

appropriately according to its purpose, whether the law is consistent with related laws, 

and whether the law has been modified, added, and deleted consistently. There are two 



2 

 

important goals of legal engineering which are to help experts make complete and 

consistent laws; and to design an information system which works based on laws 

[1][2].   

1.2.2.  Definition of social system  

Although Vilfredo Pareto had used the term, "social system" earlier but only as 

a sketch and not as an overall analytical scheme, the first who formulated a 

systematic theory of social system was Talcott Parsons where it was a part of his 

AGIL paradigm yet the social system is only a subsystem (I - subsystem) of what 

Parsons calls action theory [3]. He proposed that societal action systems are 

composed of four interrelated and interpenetrating subsystems: the behavioral 

systems of its members (A), the personality systems of those members (G), the 

society as a system of social organization (I) and the cultural system of that society 

(L). According to his definition, “a social system consists in a plurality of 

individual actors interacting with each other in a situation which has at least a 

physical or environmental aspect, actors who are motivated in terms of a tendency 

to the "optimization of gratification" and whose relation to their situations, 

including each other, is defined and mediated in terms of a system of culturally 

structured and shared symbols. “.  

1.2.3. Definition of conceptual model  

A short example of conceptual model can help better define them. We all know 

that the models have giant power in helping us understand many phenomena easily 

and clearly. People process information every time. This processing turns out to be 

a conceptual model of how things in our surrounding environment work. For 

example, why red sun-sets and blue skies can be explained by following model: 

 



3 

 

 Figure 1.1 Red sun-sets and blue skies model 

The figure on the left shows that the perceived color of light reaching your eyes in 

this position is blue. The reason for this is that the atmospheric scattering of blue light 

away from the forward direction is much stronger than for red light. The figure on the 

right shows that the perceived color of light reaching your eyes when looking at the 

sun near sunset is red for essentially the same reason; much less of the red light is 

scattered out of the direct beam compared to the larger scattering for blue. The sunlight 

has the deepest color of red right at sunset when the rays travel through the greatest 

amount of air before reaching your eyes. Red sunsets are also enhanced by particulate 

matter in the atmosphere. 

In the most general sense, a model is anything used in any way to represent 

anything else. Some models are physical objects, for instance, a toy model which may 

be assembled, and may even be made to work like the object it represents. They are 

used to help us know and understand the subject matter they represent.  

The term conceptual model may be used to refer to models which are represented 

by concepts or related concepts which are formed after a conceptualization process in 

the mind [4]. Conceptual models represent human intentions or semantics. 

Conceptualization from observation of physical existence and conceptual modeling are 

the necessary means which human employ to think and solve problems.  

1.2.3.1. Type and scope of conceptual models 

Conceptual models (models that are conceptual) range in type from the more 

concrete, such as the mental image of a familiar physical object, to the formal 

generality and abstractness of mathematical models which do not appear to the mind as 

an image. Conceptual models also range in terms of the scope of the subject matter that 

they are taken to represent. A model may, for instance, represent a single thing (e.g. the 

Statue of Liberty), whole classes of things (e.g. the electron), and even very vast 

domains of subject matter such as the physical universe. The variety and scope of 

conceptual models is due to the variety of purposes had by the people using them.  

i) Models in philosophy and science 

- Metaphysical models 

- Epistemological models 

ii) Models in systems architecture: System models 



4 

 

iii) Models in information system design 

- Conceptual models of human activity systems 

- Logico-linguistic models 

iv) Data models: Domain model 

1.2.3.2. Representation of a conceptual model in computer science 

Conceptual modeling is needed to form a description of the domain of 

application at hand. In order to express the result of conceptual modeling, we need 

a modeling language.  

A modeling language is any artificial language that can be used to express 

information or knowledge or systems in a structure that is defined by a consistent 

set of rules. A modeling language can be graphical or textual. Graphical modeling 

languages use a diagram technique with named symbols that represent concepts 

and lines that connect the symbols and represent relationships and various other 

graphical notations to represent constraints. Textual modeling languages typically 

use standardized keywords accompanied by parameters to make 

computer-interpretable expressions. [5] 

There are several elaborate graphical notations that could be used for 

conceptual modeling, ranging from those used in the past for Entity-Relationship 

Model [ERM 1976], conceptual graphs [Sowa 1982] to those presently used for 

object modeling [UML 1997] or [ORM 1998], [OCML 1998], [ConML2011].  

i) Entity - Relationship Model (ERM) 

According to Peter Chen's 1976 research [6], in software engineering, an 

entity-relationship model (ER model for short) is an abstract and conceptual 

representation of data. Entity-relationship modeling is a database modeling method, 

used to produce a type of conceptual schema or semantic data model of a system, 

often a relational database, and its requirements in a top-down fashion. Diagrams 

created by this process are called entity-relationship diagrams or ER diagrams. 

The building blocks of this model are entities, relationships, and attributes. 

Example of an ERM model 



5 

 

 

   Figure 1.2 An ERM model 

ii) Conceptual graphs (CGs) 

Conceptual graphs (CGs) are a system of logic proposed by Sowa, 1984 [3] based 

on the existential graphs of Charles Sanders Peirce and the semantic networks of 

artificial intelligence. They express meaning in a form that is logically precise, 

humanly readable, and computationally tractable. With a direct mapping to language, 

conceptual graphs serve as an intermediate language for translating computer-oriented 

formalisms to and from natural languages. With their graphic representation, they 

serve as a readable, but formal design and specification language. CGs have been 

implemented in a variety of projects for information retrieval, database design, expert 

systems, and natural language processing.  

Example of a conceptual graph: 

“John is going to Boston by bus” 

Figure 3 shows a conceptual graph with four concepts: [Go], [Person: John], [City: 

Boston], and [Bus]. It has three conceptual relations: (Agnt) relates [Go] to the agent 



6 

 

John, (Dest) relates [Go] to the destination Boston, and (Inst) relates [Go] to the 

instrument bus.  

 

Figure 1.3 A conceptual graph 

iii) OMG's Unified Modeling Language™ (UML®)  

The OMG's Unified Modeling Language™ (UML®) [8] helps specify, 

visualize, and document models of software systems, including their structure and 

design, in a way that meets all of these requirements. (UML can be used for 

business modeling and modeling of other non-software systems too.) Using any 

one of the large number of UML-based tools on the market, we can analyze our 

future application's requirements and design a solution that meets them, 

representing the results using UML 2.0's thirteen standard diagram types.  

We can model just about any type of application, running on any type and 

combination of hardware, operating system, programming language, and network, 

in UML. We can do other useful things with UML too: For example, some tools 

analyze existing source code (or, some claim, object code!) and reverse-engineer it 

into a set of UML diagrams; execute UML models interpretively or generate 

program language code from UML; generate Test and Verification Suites from 

UML models.  

UML 2.0 defines thirteen types of diagrams, divided into three categories: Six 

diagram types represent static application structure; three represent general types of 

behavior; and four represent different aspects of interactions. The key element in a class 

model is class. Below are core elements of class diagram. 

 

 

http://www.uml.org/


7 

 

 

 

Construct Description Syntax 

class 

a description of a set of objects that share the 

same attributes, operations, methods, 

relationships and semantics. 

 

interface 
a named set of operations that characterize the 

behavior of an element. 

 

component 

a modular, replaceable and significant part of 

a system that packages implementation and 

exposes a set of interfaces.  

node 

a run-time physical object that represents a 

computational resource. 

 

constraint 

a semantic condition or restriction 

 

association 

a relationship between two or more classifiers 

that involves connections among their 

instances. 

 

aggregation 

A special form of association that specifies a 

whole-part relationship between the aggregate 

(whole) and the component part.  

generalization 
a taxonomic relationship between a more 

general and a more specific element.  

«interface»



8 

 

dependency 

a relationship between two modeling 

elements, in which a change to one modeling 

element (the independent element) will affect 

the other modeling element (the dependent 

element).  

 

realization 
a relationship between a specification and its 

implementation. 

 

Table 1.1 Core elements of class diagram 

iv) Object Role Modeling (ORM) 

Object Role Modeling (ORM) [9] is a method for designing and querying 

database models at the conceptual level, where the application is described in terms 

easily understood by non-technical users. In practice, ORM data models often 

capture more business rules, and are easier to validate and evolve than data models 

in other approaches 

 

 

 

 

 

Figure 1.4 An ORM model 

This is a fact-oriented modeling approach for specifying, transforming, and 

querying information at a conceptual level. Unlike Entity-Relationship modeling 

and Unified Modeling Language class diagrams, fact-oriented modeling is 

attribute-free, treating all elementary facts as relationships. For information 

modeling, fact-oriented graphical notations are typically far more expressive than 

other notations. 

v) Operational Conceptual Modeling Language (OCML) 

The OCML modeling language [10] supports the construction of knowledge 

models by means of several types of constructs. It allows the specification and 



9 

 

operationalization of functions, relations, classes, instances and rules. It also includes 

mechanisms for defining ontologies and problem solving methods, the main 

technologies developed in the knowledge modeling area. About a dozen projects in 

KMi are currently using OCML to provide modeling support for applications in areas 

such as knowledge management, ontology development, e-commerce and knowledge 

based system development. OCML modeling is also supported by a large library of 

reusable models, providing a useful resource for the knowledge modeling community. 

This library can be accessed through the WebOnto editor. 

 

Figure 1.5 An OCML relation option 

vi) Conceptual modeling languages (ConML) 

Conceptual modeling languages (ConML) [11] is easily usable by non-experts in 

information technologies; this, in turn, imposes certain implications with regard to 

simplicity and independence of implementation details. It is capable of expressing 

information related to these following aspects without putting a burden on the user: 

subjectivity and temporality, rarely taken into account by conventional modeling 

languages. It is also understandable and familiar to external parties as possible, aiding 

to the transfer of knowledge and expertise between domains.  

The characteristics of the Conceptual Modelling Language (ConML) are presented 

below. It is capable of representing static (i.e. structural) models, using the 

object-oriented paradigm. It is oriented towards conceptual modeling rather than 

implementation. It extends the conventional object-oriented paradigm in order to 

accommodate temporality and subjectivity aspects. It is easily affordable to 

non-experts in information technologies. This means that it must exhibit high syntactic, 

semantic and notational simplicity. The associated notation is easily used by hand (on 

paper or whiteboard, for instance), as well as on a computer (on screen or hard copy). 



10 

 

As long as it is viable, it keeps syntactic, semantic and notational compatibility 

with UML.  

 

   Figure 1.6 A ConML Model 

1.2.3.3. Operational model 

In contrast of conceptual model, operational models are models that represent 

problems for the operational level of management. 

The difference between conceptual model and operational model can be seen 

by following example of weather forecast. The operational model is a detail, exact 

model, not in a concept level as a conceptual level  



11 

 

 

Figure 1.7 Conceptual model: Cloud Streets - Weather Events 

 

Figure 1.8 Operational Model Forecasts  



12 

 

1.2.4. Introduction of method 

We propose a method to extract conceptual model of a social system which 

laws represent. Our model consists of classes. Each class has attributes, methods 

and some relations with other classes. There are 3 steps to transform Japanese legal 

texts to UML class components. First, we parse Japanese law text corpus using 

Cabocha [12]. Second, we extract dependencies of legal terms from Cabocha 

output. Third, we transform the dependencies to UML class components. 

We started the experiment from parsing legal text using Cabocha. We will use 

token information: token base, pos, ctype in the next phase to extract the 

dependencies between tokens. 

The next phase is dependency extraction.  

Nouns, verbs and adjectives in the sentences are extracted in phrases. For 

example, “労働保険”, “開催された”, “必要な” phrases are extracted. The POS 

tagging of the first token in the noun phrase is extracted as the POS tagging of this 

phrase. The POS tagging of the verb/adjective token in the verb/adjective phrase is 

extracted as the POS tagging of this phrase.  

According to the representation of Stanford parser [13][14], we extracted five 

types of dependencies: dep(noun1_pos, noun2_pos, verb), dep(noun_pos, verb), 

no(noun1_pos, noun2), no(noun_pos, verb) and no(noun_pos, adjective).  

The dep dependency shows the relation between nouns through a verb. In the 

sentence which has two or three noun components: subject, direct object or indirect 

object, we extract the dependency dep(noun1, noun2, verb) in which the nouns are 

the corresponding components. In the sentence which only has only one noun 

component (either subject or direct object or indirect object), we extract the 

dependency dep(noun, verb).  

The no dependency is the relation between a noun and its characteristic. The 

characteristic may be a modifier noun, verb or adjective. 

   The last phase is the transformation from Japanese dependencies to UML classes. 

The class names are extracted from the noun phrases.  

The attributes of the class are extracted from noun1の noun2 dependency and  

compound nouns. With the noun1の noun2 dependency, noun2 is the attribute of 



13 

 

noun1. For example, from the phraseエネルギーの使用, we can extract 使用 as the 

attribute of エネルギー. With the compound noun, the adjective modifier or verb 

modifier also can become the attribute of the main noun. For example, in 必要な時 

compound noun, adjective modifier必要な becomes the attribute of noun 時 or in 

開発された日 compound nount, verb modifier 開始された becomes the attribute of 

noun 日.  

The methods of the class are extracted from the verbs corresponding to the noun – 

class name. In our research, in a sentence, because the nouns can act as subjects, direct 

objects or indirect objects, the verbs of the sentence become the method of all subjects, 

direct objects and indirect objects. For example, in the sentence, この法律は、平成十

八年四月一日から施行する, 施行する becomes the method of法律 and平成十八

年四月一日 classes. 

The relations of the class are also extracted from the verbs. We define the binary 

dependency of subject - direct object, subject – indirect object and direct object – 

indirect object in each sentence by the following way: Class Name: エネルギー

Relation: めぐる with class 法律. The unary dependency of subject, direct object and 

indirect object with it self is represented by: Class Name: エネルギーRelation: 使用

する,消費する with class エネルギー. 

1.2.5. Contributions 

There are some ways our model can be used 

i) To help users understand law easily 

Instead of reading a difficult law, people can take a look to my model to find out 

the related terms and actions of a legal term (using attributes and methods information) 

and the relations between the objectives of the law – legal terms. 

ii) To help users check the correctness and consistent of the law 

My model can be used to check that whether the law expresses the social system 

correctly and consistently or not. The logic of the law is clearly expressed in the model 

so that we can check the correctness and consistence of a law. The relations between 

objectives are modeled so that we can clearly see the conflicts of objectives if existin.  

iii) To become a core part of an information system based on laws 



14 

 

An information system (IS) is any combination of information technology and 

people's activities that support operations, management, and decision making. The 

laws define the rules determine the actions of human: People can do what and 

cannot do what. Therefore, the laws are good conceptual structure which forms the 

core part of an information system. From this point, we can develop an information 

system based on laws using our model. 

1.2.6. Challenges 

The challenges of this research are on dependency extraction and UML class 

representation steps. The most difficult thing is how to extract correctly and 

completely relations between Japanese legal terms. This is not a simple work 

because it is difficult for me whose Japanese is not the mother language to capture 

all important Japanese grammar rules, especially in the condition that the corpus is 

legal sentences which are long ones with complicated grammar structures. Our 

work needs careful analysis of Japanese grammar in general and Japanese legal 

structures in particular to extract good dependency rules. As a result, 5 

dependencies between nouns: dependencies between subject, direct object and 

indirect object and dependencies between nouns and modifiers are extracted. The 

other challenge is that there are hundreds of nouns in a law to be extracted to 

classes and thus there are a huge part of classes be extracted. Therefore, instead of 

representing these classes graphically, we represent them textually but very 

clearly. 

The remainder of this thesis is organized as follows. 

   Chapter 2 introduces some related works. We will introduce some natural language 

to UML class diagrams transformation researches; Unsupervised Semantic Parsing 

approach to get clusters and relations of clusters using Markov Logic network; and 

Cabocha, a Japanese dependency parser. 

   Chapter 3 describes our method in three steps: Cabocha parsing, Dependency 

extraction and UML transformation. The result is also reported. 

Chapter 4 is the evaluation part which includes internal and external evaluation. 

Chapter 5 is the conclusion which summarizes our research.  



15 

 

Chapter 2   

Background 

As we proposed before, in our research, there are 3 steps to transform Japanese 

legal texts to UML class components. First, we parse Japanese law text corpus using 

Cabocha. Second, according to Stanford representation, we extract dependencies of 

legal terms from Cabocha output. Third, we transform the dependencies to UML class 

components. Related to this approach, there are some researches introduced below. 

The first type of related researches is natural language to UML class diagrams 

transformation researches. The authors transform natural language to a semi-formal 

language and then to UML class diagrams. Mathias Kleiner et al [15] and Imran 

Sarwar Bajwa et al [16] are the typical researchers of transformation of text to SBVR 

(Semantic of Business Vocabulary and Rules) and then from SBVR to UML approach. 

In another approach, Narayan Debnath [17] proposed five transformation rules for 

defining the UML class diagram from ATL model. 

Different from these above methods, our method is used for Japanese language and 

instead of using a semi-formal language as a medium; we directly extract UML classes 

from dependencies of Japanese legal terms which are extracted based on Cabocha 

parse output. Besides, because of a huge part of extracted classes, we don’t represent 

classes graphically but textually.  

The second type of related researches is Unsupervised Semantic Parsing [18] using 

Stanford Dependency Parsing [13] [14] as the input and Markov Logic Network [19] 

to create the network of related clusters.  

Because Stanford Dependency Parsing is only for English language, we build 

Japanese Dependency Parsing by ourselves according to Stanford representation. Also, 

we don’t use logical form as a medium of raw legal text to legal term relation 

representation. At the first time, we intended to use Unsupervised Semantic Parsing as 

a tool to extract legal terms and their relations by the following way: The classes are 

extracted as clusters of syntactic variation of the same meaning legal phrases. The 

relations of classes are extracted from the relation of above clusters using Markov 

Logic Network learned by Unsupervised Semantic Parsing. However; while USP is 

developed for English language, though we already generated the input 



16 

 

correspondingly by extracting Japanese dependencies according to Stanford 

Dependency Parse, USP cannot run appropriately with Japanese dependencies. 

Some errors occurred with long Japanese legal sentences and then USP cannot 

create cluster of the same meaning legal phrases. Moreover, the relations which are 

represented by Markov Logic Network is not clear. Therefore, we decided to 

extract directly the relations between legal terms directly from our Japanese 

dependencies we made before which were intended to use as the input of USP.  

The next parts of this chapter are structured as below. The first part which 

includes Section 2.1, Section 2.2, Section 2.3 is an introduction of 3 natural 

language to UML class diagrams transformation approaches. The second part, 

Section 2.is an introduction of Markov Logic Network, Stanford Typed 

Dependency Parser and Unsupervised Semantic Parsing. The third part, Section 2.5 

is an introduction of Cabocha, a Japanese dependency parser. 

2.1. SBVR2UML: A Challenging Transformation 

In this paper, they proposed that UML is a de-facto standard used for generating 

the software models. UML supports visualization of the software artifacts. To 

generate a UML diagram, a software engineer has to collect software requirements 

in a natural language (such as English) or a semi-formal language (such as SBVR), 

manually analyze the requirements and then manually generate the class diagrams in 

an available CASE tool. However, by automatically transforming SBVR Software 

requirements to UML can seriously share burden of a system analyst and can 

improve the quality and robustness of software modeling phase. Therefore, they 

presented the challenging aspect of model transformation from SBVR to UML. The 

presented approach takes input the software requirements specified in SBVR syntax, 

parses the input specification, extracts the UML ingredients such as classes, 

methods, attributes, associations, etc and finally generate the visual representation of 

the extracted information. The presented approach is fully automated. The presented 

approach is explained via an example. 

i) SBVR Specification 

A typical SBVR representation is based on SBVR business vocabulary and 

SBVR business rules. In SBVR, all the specific terms and definitions of concepts 

used by an organization or community in course of business are treated as 

vocabulary. Common examples of SBVR vocabulary are object types, individual 

concepts, characteristics, fact types, etc. In SBVR, a formal representation under a 



17 

 

business jurisdiction is called a SBVR rule. SBVR rules can be of two types: Structural 

Rule (used to expresses structure or operation of a particular business entity) and 

Behavioral Rule (used to express the conduct of a business entity). 

ii) Transformation model from SBVR to UML 

This section explains the used approach to automatically map SBVR representation 

i.e. SBVR business rules to a UML class model. To map SBVR to a UML class model, 

they have to extract SBVR vocabulary from given SBVR rules and then map the 

SBVR vocabulary to basic elements of a UML class model (such as classes, 

associations, etc.) and finally generate a graphical representation of class model. The 

used approach works in following 5 phases: 

 

Figure 2.1 SBVR to UML Transformation Framework 

Their models can be summarized in the following table. 

Natural Language SBVR Metamodel 

Element 

UML Metamodel 

Element 

Common nouns Object Types Class 

Proper nouns Individual Concepts Object 

Auxiliary + Action verbs Verb Concepts Class Method 

Noun + Verb / Noun + Verb + Noun / 

Associative, Pragmatic Relations 

Unary / Binary / 

Associative Fact 

Types 

Association 



18 

 

Is-property-of, Possessed nouns Characteristic Class Attribute 

Indefinite articles, plural nouns and 

cardinal numbers 

Quantifications Cardinalities 

“is-part-of”, “included-in”, “belong-to” Partitive Fact Type Generalization 

“is-category-of”, “is-typeof”, 

“is-kind-of” 

Categorization Fact 

Types 

Aggregation 

Table 2.1 The mapping from Natural language to SBVR and UML metamodels 

2.2. Parsing SBVR-Based Controlled Languages 

In this article, they proposed an original method for extracting a SBVR 

terminal model out of a controlled English text and then transform it into a UML 

class diagram. They describe a model-driven engineering approach in which 

constraint-programming based search is combined with model transformation. The 

use of an advanced resolution technique (configuration) as an operation on models 

allows for non-deterministic parsing and language flexibility. In addition to the 

theoretical results, preliminary experiments on a running example are provided. 

 

Figure 2.2 Process overview of Parsing SBVR-Based Controlled Languages 



19 

 

Syntactical Categorization constraints 

Each verb phrase for which the heading verb is transitive is composed of at least 

one noun phrase. This constraint applies to the relation isComposedOf of a category: 

A verb phrase is always preceded by a noun phrase. The constraint applies to the 

attributes “begin” and “end” of categories, which are obtained from their associated 

word(s): 

i) The subject of an active verb occurs before the verb phrase: 

ii) The head of a verb’s subject shares the same plural: 

iii) A transitive verb expresses a fact type.: 

iv) The head of a subject of a verb expresses either an object type or an individual 

concept. 

2.3. An ATL Transformation from Natural Language Requirements 

Models to Business Models of a MDA Project  

MDA is a software development framework where the core is a set of automatic 

transformations of models. One of these models, the CIM (Computer Independent 

Model), is used to define the business process model. Though a complete automatic 

construction of the CIM is not possible, they have proposed the integration of some 

natural language requirements models and they have defined a strategy to derive a 

CIM from these models. In this paper, they present an ATL transformation that 

implements this strategy to obtain a UML class diagram representing a preliminary 

CIM from requirements models. This transformation fits with MDA approach. 

They proposed five ATL transformation rules for defining the UML class diagram. 

i) Transformation Subject to Class 

ii) Transformation Object to Class 

iii) Transformation Subject Behavioral Response to Method 

iv) Transformation Subject Information to Method Parameter 

v) Transformation LELRelationships to Class Relationships 



20 

 

2.4. Unsupervised Semantic Parsing (USP) 

2.4.1. Markov Logic Network 

2.4.1.1. Markov Logic’s Intuition 

Problem of uncertainty 

In most real world scenarios, logic formulas are typically but not always true. 

For example, the statement “Every bird flies” is not true with the case of ostrich. 

The same phenomenon occurs with the statement “Every predator of a bird is a 

bird”. The lion is the predator of an ostrich but it is not a bird. The statement 

“Every prey has a predator” is also not true when predators are extinct. Therefore, a 

world failing to satisfy even a single formula would not be possible. There could be 

no possible world satisfying all formulas. 

Markov Logic’s intuition is to handle uncertainty. We can relax the hard 

constraint assumption on satisfying all formulas. A possible world not satisfying a 

certain formula will simply be less likely. The more formula a possible world 

satisfies, the more likely it is. Each formula can have a weight indicating how 

strong a constraint it should be for possible worlds. Higher weight indicates higher 

probability of a world satisfying the formula. 

2.4.1.2. Markov Logic’s definition 

A Markov Logic Network (MLN) is a set of pairs (F, w) where F is a formula in 

first-order logic and w is a real number. Together with a set of constants, it defines 

a Markov network with one node for each grounding of each predicate in the MLN, 

one feature for each grounding of each formula F in the MLN, with the 

corresponding weight w [16] 



21 

 

 

Figure 2.3 Markov Logic Network example 

2.4.1.3. Markov Logic’s joint probability 

A ground MLN specifies a joint probability distribution over possible worlds (i.e. 

truth value assignments to all ground atoms). The probability of a possible world x is 

 

 

where: The sum ranges over formulas in the MLN (i.e. clique templates in the Markov 

Network) 

2.4.2. Stanford Typed Dependency Parser 

The Stanford typed dependencies representation was designed to provide a simple 

description of the grammatical relationships in a sentence that can easily be understood 

and effectively used by people without linguistic expertise who want to extract textual 

relations. In particular, rather than the phrase structure representations that have long 

dominated in the computational linguistic community, it represents all sentence 

relationships uniformly as typed dependency relations. That is, as triples of a relation 

between pairs of words, such as the “subject of distributes is Bell”. Their experience is 

that this simple, uniform representation is quite accessible to non-linguists thinking 

about tasks involving information extraction from text and is quite effective in relation 

extraction applications. 

Here is an example sentence: 

Bell, based in Los Angeles, makes and distributes electronic, computer and building 









 



)(exp
1

)(
1

x
Z

xp nw i

F

i
i



22 

 

products. 

For this sentence, the Stanford Dependencies (SD) representation is: 

nsubj(makes-8, Bell-1) 

nsubj(distributes-10, Bell-1) 

partmod(Bell-1, based-3) 

nn(Angeles-6, Los-5) 

prep in(based-3, Angeles-6) 

root(ROOT-0, makes-8) 

conj and(makes-8, distributes-10) 

amod(products-16, electronic-11) 

conj and(electronic-11, computer-13) 

amod(products-16, computer-13) 

conj and(electronic-11, building-15) 

amod(products-16, building-15) 

dobj(makes-8, products-16) 

dobj(distributes-10, products-16) 

These dependencies map straightforwardly onto a directed graph representation, in 

which words in the sentence are nodes in the graph and grammatical relations are edge 

labels. Figure 2.4 gives the graph representation for the example sentence above. 

 

 

Figure 2.4 Graph representation of STD 



23 

 

2.4.3. Unsupervised semantic parsing (USP) 

In Unsupervised semantic parsing (USP) [17], Hoifung Poon and Pedro Domingos 

presented the first unsupervised approach to the problem of learning a semantic parser, 

using Markov logic. Their USP system transforms dependency trees into quasi-logical 

forms, recursively induces lambda forms from these, and clusters them to abstract 

away syntactic variations of the same meaning. The MAP semantic parse of a sentence 

is obtained by recursively assigning its parts to lambda-form clusters and composing 

them. The results of their methods are clusters of syntactic variation of the same 

meaning phrases, Markov Logic Network of clusters and MAP semantic parse. 

Experimental results 

They evaluate on an end task: Question answering by applying USP to extract 

knowledge from text and answer questions. The gold logical forms are not predefined. 

They evaluate their method by counting number of answers and accuracy and have 

following result: 

 

Figure 2.5 The number of correct answers in USP evaluation experiment 

Their method gets three times as many correct answers as second best and the 

highest accuracy: 88% 



24 

 

2.5. CaboCha (Yet Another Japanese Dependency Structure Analyzer) 

CaboCha is a Japanese dependency parser based on Support Vector Machines. 

To our best knowledge, Cabocha is the most accurate statistical Japanese 

dependency parser system (it reaches to 89.29% accuracy). In addition, because it 

is a Cascaded Chunking Model using a non-backtracking definitive analysis 

algorithm, the parse can be performed relatively efficient. 

Features 

   Based on Support Vector Machines (SVMs) method, it is a high-performance 

dependency analyzer. 

    Use a fast SVM method which is called PKE (presented at ACL 2003).  

Use a definitive analysis algorithm (Cascaded Chunking Model) which is a 

high-efficiency analysis one. 

     Consider dependency relations as "dynamic features" that significantly 

contribute to improve the accuracy. 

     Use definition of IREX so that it can analysis specific expression. 

     Flexible input format. All types of raw sentences, as well as morphological parsed 

data, segment pre-separated data or given data which is related in part can be parsed. 

   The feature which uses the identification of the dependency can be redefined by the 

users. 

     Only if the data is provided, the learning can be performed by the user. 

     Use Double-Array which contains the high-speed structure Trie in the internal 

dictionary,      

Provision of C / C + + / Perl / Ruby library. 

 

  



25 

 

Chapter 3  

Method 

Our model is built by the following way: the common nouns are extracted to 

become the classes. These classes have attributes, methods and relations extracted 

correspondingly from the dependencies of legal terms like in table 1. These classes then 

are represented textually. 

 

POS Tagging UML class component 

Noun Class 

Verb Method of Class 

Modifier Noun, Verb Adjective Attribute of Class 

Relation between Nouns Relation between Classes 

 

Table 3.1: Mapping from POS tagging to UML class components. 

There are 3 steps to transform Japanese legal texts to UML class components: 

Cabocha parsing, dependency extraction and UML class transformation. Our system is 

presented in Figure 3.1 

 

 

 

     

 

 

Figure 3.1 Japanese law conceptual model extraction system 

Japanese 
legal texts 

Cabocha 
parsed text 

Japanese 
dependencies 

UML classes 



26 

 

3.1. Data processing 

The legal text is processed by the following way: 

Each line ends with 。is a sentence. 

The numbers and the spaces in the first position of the sentences are removed. 

For example, the sentence 

２  前項の財政均衡期間（第十六条の二第一項において「財政均衡期間」という。）

は、財政の現況及び見通しが作成される年以降おおむね百年間とする。  

is processed to: 

前項の財政均衡期間（第十六条の二第一項において「財政均衡期間」という。）は、財

政の現況及び見通しが作成される年以降おおむね百年間とする。 

The sub parts of the act are combined to become a sentence, separated by a comma 、

by the following way: All continuous lines without  。ending is combined to the above 

nearest sentence ends with  。. 

For example, 

第五条  この法律において、「被用者年金各法」とは、次の各号に掲げる法律をいう。  

一  厚生年金保険法 （昭和二十九年法律第百十五号）  

二  国家公務員共済組合法 （昭和三十三年法律第百二十八号）  

三  地方公務員等共済組合法 （昭和三十七年法律第百五十二号）  

四  私立学校教職員共済法 

     Becomes 

第五条  この法律において、「被用者年金各法」とは、次の各号に掲げる法律をいう

一  厚生年金保険法 （昭和二十九年法律第百十五号）、二  国家公務員共済組合法 （昭

和三十三年法律第百二十八号）、三  地方公務員等共済組合法 （昭和三十七年法律第百

五十二号）、四  私立学校教職員共済法 

 



27 

 

3.2.  Cabocha parsing 

We started the experiment from parsing legal text using Cabocha [8]. CaboCha is a 

Japanese dependency parser based on Support Vector Machines. To our best 

knowledge, Cabocha is the most accurate statistical Japanese dependency parser 

system (it reaches to 89.29% accuracy). In addition, it is a Cascaded Chunking Model 

using a non-backtracking definitive analysis algorithm so that the parse can be 

performed relatively efficient.  

Here is an example of Cabocha parse for 

労働保険の保険料の徴収等に関する法律 

<sentence> 

 <chunk id="0" link="1" rel="D" score="1.05433" head="1" func="2"> 

  <tok id="0" read="ロウドウ" base="労働" pos="名詞 -サ変接続" ctype="" 

cform="" ne="O">労働</tok> 

  <tok id="1" read="ホケン" base="保険" pos="名詞-一般" ctype="" cform="" 

ne="O">保険</tok> 

  <tok id="2" read="ノ" base="の" pos="助詞-連体化" ctype="" cform="" ne="O">

の</tok> 

 </chunk> 

 <chunk id="1" link="2" rel="D" score="1.80505" head="4" func="5"> 

  <tok id="3" read="ホケン" base="保険" pos="名詞-一般" ctype="" cform="" 

ne="O">保険</tok> 

  <tok id="4" read="リョウ" base="料" pos="名詞-接尾-一般" ctype="" cform="" 

ne="O">料</tok> 

  <tok id="5" read="ノ" base="の" pos="助詞-連体化" ctype="" cform="" ne="O">

の</tok> 

 </chunk> 

 <chunk id="2" link="3" rel="D" score="0" head="7" func="8"> 

  <tok id="6" read="チョウシュウ" base="徴収" pos="名詞-サ変接続" ctype="" 

cform="" ne="O">徴収</tok> 

  <tok id="7" read="トウ" base="等" pos="名詞-接尾-一般" ctype="" cform="" 

ne="O">等</tok> 

  <tok id="8" read="ニカンスル" base="に関する" pos="助詞-格助詞-連語" 

ctype="" cform="" ne="O">に関する</tok> 

 </chunk> 



28 

 

 <chunk id="3" link="-1" rel="O" score="0" head="9" func="9"> 

  <tok id="9" read="ホウリツ" base="法律" pos="名詞-一般" ctype="" cform="" 

ne="O">法律</tok> 

 </chunk> 

</sentence> 

We will use token information: token base, pos, ctype… in the next phase to 

extract the dependencies between tokens.  

On implementation, we store a law text in 2 dimensions - dynamic array 

inputArray[i][j]. This array keeps the useful information of tokens extracted from 

Cabocha parsing. The useful information of each line in Cabocha parsing is stored 

in inputArray[i]. Each token line is transformed to a row started by sentenceID, 

chunkID, tokenID and followed by token base, token pos, ctype, token and ctype if 

having. Following is the input array of above Cabocha parsing text.  

001 労働名詞-サ変接続労働 

002 保険名詞-一般保険 

003 の助詞-連体化の 

014 保険名詞-一般保険 

015 料名詞-接尾-一般料 

016 の助詞-連体化の 

027 徴収名詞-サ変接続徴収 

028 等名詞-接尾-一般等 

029 に関する助詞-格助詞-連語に関する 

0310 法律名詞-一般法律 

3.3. Dependency extraction 

According to the representation of Stanford parser [8], we extracted five types 

of dependencies: dep(noun1_pos, noun2_pos, verb), dep(noun_pos, verb), 

no(noun1_pos, noun2), no(noun_pos, verb) and no(noun_pos, adjective). 

Nouns, verbs and adjectives in the sentences are extracted in phrases. For 

example, “労働保険”, “開催された”, “必要な” phrases are extracted. The POS 



29 

 

tagging of the first token in the noun phrase is extracted as the POS tagging of this 

phrase. The POS tagging of the verb/adjective token in the verb/adjective phrase is 

extracted as the POS tagging of this phrase.  

The dep dependency shows the relation between nouns through a verb. In the 

sentence which has two or three noun components: subject, direct object or indirect 

object, we extract the dependency dep(noun1, noun2, verb) in which the nouns are the 

corresponding components. In the sentence which only has only one noun component 

(either subject or direct object or indirect object), we extract the dependency dep(noun, 

verb). 

The no dependency is the relation between a noun and its characteristic. The 

characteristic may be a modifier noun, verb or adjective.  

3.3.1. dep(noun1_pos, noun2_pos, verb) 

This dependency is extracted by the following way: the nouns are either subject, 

direct object or indirect object and thus in general, we have 3 dependencies: 

dep(subj_pos, dobj_pos, verb), dep(subj_pos, iobj_pos, verb) and dep(dobj_pos, 

iobj_pos, verb).  

A noun phrase followed by は/が/とは is defined as a subject. 

A noun phrase followed by を is defined as a direct object. 

A noun phrase followed by で/から/に/について/により/において is defined as 

an indirect object. 

In the case of there are many continuous noun phrases separated by a comma or 

some conjunction words (for example, また/及び/と…), all nouns are extracted. 

We used pos of the first word for compound nouns, considering the use of the word 

meaning. 

For example, from the sentence  

事業者は労働者に給料を払う。  

We extract three dependencies:  

dep(事業者_名詞-一般, 労働者_名詞-サ変接続, 払う)  

dep(事業者_名詞-一般, 給料_名詞-一般, 払う) 



30 

 

dep(労働者_名詞-サ変接続, 給料_名詞-一般, 払う) 

   

3.3.2. dep(noun_pos, verb) 

Depend on the type of the noun, we extract one of three dependencies: 

dep(subj_pos, verb), dep(dobj_pos, verb) and dep(iobj_pos, verb).  

For example, from the sentence  

労働者は働く。 

We have the dependency:  

dep(労働者_名詞-サ変接続, 働く) 

3.3.3. no(noun1_pos, noun2) 

This dependency is extracted from the following structures:  

noun1 は/が/とは… noun2 です/である”/をいう 

noun1 <space>…noun2 をいう 

For example, from the sentence:  

事業者 事業を行う者で、労働者を使用するものをいう。 

We extract the dependency no(事業者_名詞-一般, もの). 

This dependency also can be extracted from “noun1 の noun2” structure. If 

before and after の、there are many continuous nouns separated by a comma or 

conjunction words, all the pairs are extracted.  

For example, from the structure:  

工場又は事務所の輸送、建築物、機械器具 

We can extract these following dependencies:  

no(工場_名詞-一般, 輸送), no(工場_名詞-一般, 建築物) 

no(工場_名詞-一般, 機械器具) 

no(事務所_名詞-一般, 輸送) 



31 

 

no(事務所_名詞-一般, 建築物) 

no(事務所_名詞-一般, 機械器具). 

3.3.4. no(noun_pos, verb) 

This dependency is extracted from structure “verb noun”. The verb is extracted in 

full form of core form along with its tense.  

For example, from phrase 

働いた労働者  

We extract the dependency no (労働者_名詞-サ変接続, 働いた) 

3.3.5. no(noun_pos, adjective) 

This dependency is extracted from following structures  

adjective noun 

noun は/が adjective です/である 

For example, from phrase 

必要な事項 

we extract dependency no(事項_名詞-一般, 必要な) 

3.4. UML transformation 

In this step, the extracted dependencies in above phases are transformed into UML 

classes. All noun phrases go with the pos is ”名詞-一般” or ”名詞-サ変接続” are 

transformed to classes. The dep dependencies are transformed to methods and relations 

of the class. The no dependencies are transformed to attributes of classes. The detail 

transformations are presented in Table 3.2. 

  



32 

 

Dependency Class Attribute Method Relation 

dep(noun1, noun2, 

verb) 

noun1, noun2  verb noun1 verb 

noun2 

dep(noun, verb) noun  verb noun verb 

noun 

no(noun1, noun2) noun1, noun2 noun2   

no(noun, verb) noun verb   

no(noun, adjective) noun adjective   

Table 3.2 UML transformation 

3.5. Transformation result 

We run our model in 108 Japanese laws [20]. A law is parsed using Cabocha 

parser and then Japanese Dependencies are extracted. At last, these dependencies 

are transformed to UML classes. The classes go along with their attributes, 

methods and relations are represented textually. This representation is the 

conceptual structure we would like to extract.  

Below is some sample of extracted dependencies from 国民年金法. 

no(実施_名詞-サ変接続, 円滑な_名詞-形容動詞語幹) 

dep(dobj_実施_名詞-サ変接続, verb_図る) 

no(百一条_名詞-数, 二_名詞-数) 

no(国民年金制度_名詞-一般, 目的_名詞-一般) 

dep(subj_国民年金制度_名詞-一般, iobj_二項_名詞-数, verb_規定する) 

dep(subj_国民年金制度_名詞-一般, dobj_こと_名詞-非自立-一般, verb_連

帯する) 

Table 3.3 is the statistical result of 国民年金法 

 



33 

 

Index Count 

The number of raw sentences 3.055 

The number of processed sentences 2.185 

The number of Japanese dependencies 32.723 

The number of classes 2.069 

The number of Attributes 3.506 

The number of Methods 3.528 

The number of Relations 8.646 

Table 3.3 Statistical result of 国民年金法 

Below is the sample of extracted UML class of 国民年金法 

5. Class Name: 積立金 

     Attribute:  

        運用 

        管理 

        積立て 

        額 

        規定する 

        係る 

     Method:     

        なる 

        留意し 

        行う 

        寄託する 

        預託する 

        積み立てなければならない 

      



34 

 

Relation:   

        なる with class 一部 

        行う with class 効率的 

        寄託する with class 運用 

        預託する with class 財政融資資金 

        積み立てなければならない with class 基金 

  



35 

 

Chapter 4  

Evaluation 

We evaluated our model internally and externally. 

Internal evaluation was taken to evaluate the accuracy of our result itself.  

External evaluation was taken by comparing the conceptual model built by human 

with our result.  

The most important advantage of our model is that our model can capture a huge 

part of common nouns with their characteristics and transform them to classes go along 

with attributes with the high accuracy while human work frequently fails to extract 

some terms and their characteristics or relations. We even can extract more legal terms 

with their characteristics and relations if we relax the dependency extraction by adding 

some new extraction rules.  

We applied external evaluation to 国民年金法 and internal evaluation to 108 

Japanese laws [] and get the good result as well. 

4.1. Internal evaluation 

   Because our dependency based on the basic structures of Japanese grammar, the 

terms with their characteristics and dependencies are extracted with relatively high 

accuracy. 

   However, the extracted terms and their characteristics and relations include useless 

words (for example ため, もの, こと…), 

There are also some relations which are meaningless, for example, from the phrase:  

第百五条第三項の規定による届出 

The extracted dependency no(届出, よる) actually is not very meaningful. 

   Besides, there are some relations still are not captured. For example, relation in 

sentences included parentheses like following: 

一  厚生年金保険法 （昭和二十九年法律第百十五号） 



36 

 

The other type of relations which still not be captured is the relation between the 

acts and their sub parts in which the sub parts end with 。. For example, the relations 

between legal terms in the first sentence and the legal terms in the next three 

sentences in the following example are still not captured. 

第四十条  遺族基礎年金の受給権は、受給権者が次の各号のいずれかに

該当するに至つたときは、消滅する。 

一  死亡したとき。 

二  婚姻をしたとき。 

三  養子となつたとき（直系血族又は直系姻族の養子となつたときを除

く。）。 

4.2. External evaluation 

We took external evaluation by comparing our result with the human work of 

national pension law 国民年金法. 

 From 国民年金法, human extracted legal terms in 7 levels in which legal 

terms in next level are the characteristics of legal terms in the prior level. While the 

human work gets 19 legal terms in level 1, 115 legal terms in level 2, 155 legal 

terms in level 3, 175 legal terms in level 4, 169 legal terms in level 5, 101 legal 

terms in level 6 and 1 legal term in level 7, in total, 723 legal terms are captured.   

Our model capture 2069 nouns as classes with 3506 attributes, 3528 methods 

and 8646 relations. In which, 436/723 (62.74%) legal terms which are captured in 

human work are captured in our work.  

There are some terms which appeared in human work cannot be captured in our 

work because they are complicated phrases which actually don’t appear in the law 

(for example, 10 月の前月までの分 or 支給を停止するものとされた年金給

付_A20P1 or第九十条の二第一項の規定によりその一部の額につき保険料を

納付することを要しないものとされている者). (The experts created these 

terms by themselves). 

  



37 

 

Chapter 5  

Conclusion and Future Work 

5.1. Conclusion 

In this study, we proposed the method to extract conceptual model of Japanese 

laws. Our model uses Cabocha parsed information to extract the dependencies of legal 

terms and then transform them to UML classes with attributes, methods and relations. 

We presented the classes textually. The advantage of our research is the ability to 

capture a huge part of legal terms go along with their characteristics and other related 

terms. This conceptual model not only is able to be used to understand the law clearly 

but also to check the correctness and consistence of the law. It is also able to use to 

develop an information system based on laws. On studying this research, we met some 

challenges on how to extract Japanese Typed Dependencies enough and correctly and 

how to represent UML classes effectively. After deeply analyzing, we decided to 

extract Japanese Typed Dependencies from basis Japanese grammar structures, based 

on the relations between Subjects, Direct Objects and Indirect Objects of the 

sentence. The relations between nouns and their modifiers are also captured. 

According to our knowledge, this is the first Japanese Typed Dependency developed. 

This tool aims to develop for Japanese legal texts but it can be improved furthermore 

easily for general Japanese texts. Although there are some relations still not captured 

and some relations are meaningless, this is a useful tool. To represent UML classes, 

because there are a huge part of noun phrases in legal text, graphical representation is 

impossible. Therefore, we represented UML classes textually. 

5.2. Future work 

   In the future work, we will improve current dependency rules and develop some 

others to better capture relations in Japanese legal texts. Moreover, we will expand this 

Dependency tool for general Japanese texts. Besides, we also evaluate our model using 

large data. In the longer plant, we will use this conceptual structure as a basis to develop 

information system based on laws. 

 

 

  



38 

 

References 

[1] T. Katayama, 2005. “The current status of the art of the 21
st
 COE programs in the 

information sciences field”. Verifiable and evolvable e-society – realization of 
trustworthy e-society by computer science – (in Japanese). In IPSJ (Information 
Processing Society of Japan) Journal, 46(5), pp.515-521. 

[2] T.Katayama, 2007. “Legal engineering – an engineering approach to laws in 
e-society age”. In Proceedings of the 1

st
 International Workshop on JURISIN. 

[3] John Sowa, 1984. “Conceptual Structures”. Information Processing in Mind and 
Machine. Reading, MA. Addison-Wesley. ISBN 978-0201144727. 

[4] Yucong Duan, Christophe Cruz, 2011. “Formalizing semantic of natural language 
through conceptualization from existence”. International Journal of Innovation, 
Management and Technology (2011) 2 (1), pp. 37-42. 

[5] Xiao He, 2007. “A metamodel for the notation of graphical modeling languages”. 
Computer Software and Applications Conference, 2007. COMPSAC 2007. Vol.1. 31st 
Annual International, Volume 1, 24–27 July 2007, pp 219-224. 

[6] Peter Pin-Shan Chen, 1975. “The Entity Relationship Model: Toward a unified view 
of data”. Journal of ACM Transactions on Database Systems (TODS) - Special issue: 
papers from the international conference on very large data bases. Volume 1 Issue 1, 
March 1976 September 22–24, 1975, Framingham, MA.  

[8] http://www.uml.org 

[9] Terry Halpin, 1998. “Object-Role Modeling (ORM/NIAM)”. In Handbook on 

Architectures of Information Systems, edited by P. Bernus, K. Mertins & G. Schmidt, 

Springer-Verlag, Berlin, 1998, pp. 81-101. 

[10] Enrico Motta, 2011. “An Overview of the OCML Modelling Language”. In 

Proceedings of 8th Workshop on Knowledge Engineering Methods & Languages, 

KEML'98. 

[11] Gonzalez-Perez, Cesar; Parcero-Oubiña, César, 2011. “A Conceptual Model for 

cultural heritage definition and motivation”, 39th Annual Conference on Computer 

Applications and Quantitative Methods in Archaeology, CAA 2011.  

[12] http://www.code.google.com/p/cabocha/ 

[13] http://nlp.stanford.edu/software/lex-parser.shtml 

[14] Marie-Catherine de Marne_e, Christopher D. Manning, “Stanford typed 

dependencies manual”. September 2008.  

[15] Mathias Kleiner, Patrick Albert, Jean Bézivin, 2009. “Parsing SBVR-Based 
Controlled Languages”. In Model Driven Engineering Languages and Systems. 

[16] Imran Sarwar Bajwa, Ali Samad and Shahzad Mumtaz. 2009. “Object Oriented 
Software Modeling Using NLP Based Knowledge Extraction”. European Journal of 

http://www.uml.org/
http://www.code.google.com/p/cabocha/
http://nlp.stanford.edu/software/lex-parser.shtml


39 

 

Scientific Research, Vol.35 No.1, ISSN 1450-216X, pp. 22-33. 

[17] Narayan Debnath et al, 2011. “An ATL Transfo- rmation from Natural Language 
Requirements Models to Business Models of a MDA Project”. Security Workshop, 
2011 11th International Conference on ITS Telecommunications. 

[18] Hoifung Poon and Pedro Domingos. 2009. “Unsupervised Semantic Parsing”. In 

Proceedings of the 2009 Conference on Empirical Methods in Natural Language 

Processing, EMNLP.  

[19] Matt Richardson and Pedro Domingos. 2006. “Markov logic networks”. Machine 

Learning, Vol.62, Iss.1-2, ISSN: 08856125, pp.107-136. 

[20] http://www.japaneselawtranslation.go.jp/ 

 

  

http://www.japaneselawtranslation.go.jp/


40 

 

Publication 

[1] Pham Anh Cam, Minh Le Nguyen, Akira Shimazu, 2012. Study on extracting 
conceptual structures from legal texts. Natural Language Processing Conference, 
Hiroshima, March, 2012. Accepted. 

 

 

  



41 

 

Appendix 

The UML classes result of Japanese national pension law国民年金法 


