
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title Java 言語における非同期通信の抽象化

Author(s) 阿部, 修

Citation

Issue Date 1997-03

Type Thesis or Dissertation

Text version author

URL http://hdl.handle.net/10119/1046

Rights

Description Supervisor:渡部 卓雄, 情報科学研究科, 修士



Abstraction for asynchronous message passing

on Java

Osamu Abe

School of Information Science,

Japan Advanced Institute of Science and Technology

February 14, 1997

Keywords: programming language, object-oriented concurrent model, future, Java,

distributed computation.

Purpose and background

In this research, we extend Java to the language that can treat concurrent computations

more abstractly and execute our language on the Java virtual machine.

Computer network gains in popularity rapidly and the range of the application of

concurrent computations has increased rapidly now, too. However, most of these devel-

opments still rely on the paradigm of sequential computations. Especially in computer

languages. For instance, most of the language that is used to develop the application

actually combines mechanisms of process, thread or coroutine with the language that is

developed for sequential computations.

However, the paradigm of sequential computations has several problems when it ap-

plied to concurrent computations. For instance, there are problems of the synchronization,

the data sharing, and the exclusive control of critical sections. It is di�cult to treat these

problems in the paradigm. If you write the program with a concurrent computation using

the language designed for the paradigm of sequential computations, the program is not

intuitively understandable for man.

Java is an object-oriented language that designed for distributed environment used

with Web browser. Java is a superior language for this reason. However Java is not a

language suitable for concurrent computations either. Though, the system that treats

distributed objects abstractly on Java named RMI and HORB has been developed. But

there is no system that can treat concurrent computations abstractly. The mechanism of

treating concurrent computations easily is important in the distributed computation.

Copyright c 1997 by Osamu Abe

1



Object-oriented concurrent language MILK

We designed and implemented a language called MILK, which is an extension of Java.

MILK combines an object-oriented concurrent model with Java to treat concurrent com-

putations abstractly. Each object can be operated independently and concurrently in the

object-oriented concurrent model. Therefore, it is possible to consider by personifying the

object. It is easy for man to think about the concurrency intuitively, and programs can

be easily designed by this model.

In the object-oriented concurrent model, computations are done by passing the asyn-

chronous message between objects. We adopt two kinds of ways of asynchronous message

passing in MILK. These ways are called: a past type and a future type. The past type

is that the sender continues the computation without waiting for the process termination

in the receiver when a message passing is done between objects. After a sending message,

the value is not returned from the receiver. As the case of the future type, the place

holder that is called a future is passed from the sender to the receiver with the message

and the sender continues the computation at once as well as the past type. The receiver

delivers the result of the process to the future. In the case that the sender needs the

result, the future is examined. If the result returns, the sender uses the value. If not, the

sender waits until the value returns.

MILK can be converted into Java by the translator we made in this research. First, the

translator divides the source code into a sequence of tokens by the scanner. The sequence

of tokens is passed to the parser and the syntax tree is made by the parser. Each node of

the tree is constructed from objects that maintain necessary information on each syntax.

Then, the translator traces this syntax tree. When the translator detects the syntax that

is extended from Java, the syntax is translated to the code that can be operate by Java.

Finally, the translator makes a character string from the syntax tree, and outputs the

strings to a �le.

The de�nition of the future and basics of concurrent objects are prepared beforehand

as class libraries. Syntax that is di�erent from the syntax of Java is replaced with the

codes that can be operated by Java. The class libraries that are prepared beforehand are

used in this codes. All concurrent objects are derived from the class de�ned in the class

library. Concurrent objects have a message queue and a thread as components. These

components are de�ned in the class de�ned in the library. The asynchronous message

passing is done by using these components. The class de�nition of the future is designed

that the synchronization is correctly done.

In the distributed environment, these class libraries are additionally made beforehand

for each distributed system that is used with MILK. The translation is done by selecting

the class library for the distributed system. Any distributed object that the distributed

system treats can be used at once as a concurrent object by doing so.

Evaluation and prospect

The concurrent object and the asynchronous message passing of the past type and the

future type were put into Java byMILK. As a result, one can intuitively express concurrent

2



computations. MILK succeeds to the merits that Java has because MILK is the extension

of Java. So Milk is superior to Java in programming easily.

However, there are many limitations according to the limit of the translator. The

translator solves the only reference of the name that is de�ned in the same class de�nition.

For instance, the reference to the future de�ned in other class �les is not able to be

solved, so it is prohibited. Moreover, because of the incompleteness of the object of Java

the information of the concurrent object is not encapsulated perfectly. These problems

cannot be solved by the method translating the target code into the Java source code.

However, such a problem can be technically solved by making the compiler that gen-

erates the Java class �le directly. The way achieved by the compiler is not restricted by

the syntax of Java. Therefore the concurrent computation can be expressed more exible

way.

The VM of Java is not yet implemented on a parallel machine. Therefore, the con-

current object cannot demonstrate the real value in the meaning of the truth. However,

when thinking about the speed of advancement and the popularization of the hardware

in recent years, it can be thought that the day when parallel machine gains in popularity

is not so far. If becoming so, the scene that the object-oriented concurrent language like

MILK acts might also increase.

3


