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PAPER Special Section on Information Theory and Its Applications

Generalized Analysis on Key Collisions of Stream Cipher RC4∗∗

Jiageng CHEN†a), Nonmember and Atsuko MIYAJI†∗, Member

SUMMARY The fact that the stream cipher RC4 can generate collid-
ing key pairs with hamming distance one was first discovered by Matsui
in FSE 2010. This kind of weakness demonstrates that two different secret
keys have the same effect on the cipher’s encryption and the corresponding
decryption procedure. In this paper, we further investigate the property of
RC4 key collisions and achieved the following results:
1. We show that RC4 can generate colliding key pairs with various ham-
ming distances, which cannot be generated by Matsui’s pattern. We also
give concrete examples of colliding key pairs with hamming distances
greater than one.
2. We formalize RC4 colliding key pairs into two large patterns, namely,
Transitional pattern and Self-Absorbing pattern. All the currently known
colliding key pairs can be categorized into either two patterns.
3. We analyze both patterns and clarified the relations among the proba-
bility of key collision, key length and hamming distances which yield the
colliding key pairs.
4. We demonstrate the vulnerability of key collisions by showing collisions
of RC4-Hash function proposed in INDOCRYPT 2006. Some concrete ex-
perimental results of RC4-Hash collision are also given in this paper.
key words: RC4, key collisions, KSA, hamming distance, RC4-Hash

1. Introduction

The stream cipher RC4 is one of the most famous ciphers
widely used in real world applications such as Microsoft Of-
fice, Secure Socket Layer (SSL), Wired Equivalent Privacy
(WEP), etc. Due to its popularity and simplicity, RC4 has
become a hot cryptanalysis target since its specification was
made public on the Internet in 1994 [4]. Various general
weaknesses of RC4 have been discovered in some previous
works including [5]–[7], etc. Another popular cryptanalysis
direction of RC4 is in the WEP environment. Such works
include [8]–[11], etc.

This paper specifically investigates the weakness of
RC4 key collisions, namely, the existence of secret key pairs
that generate the same initial states after the key schedul-
ing algorithm. Needless to say, any secure cipher designs
should not have such properties since two different keys will
have the same effect on the encryption and the correspond-
ing decryption, and also the key space is reduced which can
help improve the brute force attack. The study of “collid-
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ing keys” of RC4 can be dated back to 2000. Grosul and
Wallach [1] first pointed out that RC4 can generate near col-
lisions when the key size is close to the full 256 bytes. In
[2] first colliding key pairs with hamming distance one were
discovered, where hamming distance one means that the two
keys differ from each other at one position.

We further investigate this area, and pointed out that
RC4 can generate far more colliding key pairs with differ-
ent properties other than the ones given in [2]. We clarify
that all the currently known RC4 colliding key pairs can be
organized into two patterns, according to the behavior dur-
ing the KSA. We analyze these two generalized patterns and
formalize the RC4 key collisions. Collision probability is
also estimated, and we point out that it is mainly affected by
key length and hamming distances between the two keys.
We prove this fact in the theorems, and also some concrete
results are shown.

The collision patterns demonstrate that the direct use of
KSA as a compression function to build the hash function is
not secure by showing concrete examples of RC4-Hash [14].
Structure of the paper. In Sect. 2, we briefly describe the
RC4 algorithm, followed by some previous works on RC4
key collisions. Sect. 3 shows the formalized RC4 colliding
key patterns and how they work. The probability evalua-
tions and the simulations are given in Sect. 4 followed by the
vulnerability of key collisions in Sect. 5 with experimental
collision results on RC4-Hash. Also concrete RC4 colliding
key pairs and a fast searching technique for searching col-
lisions in Self-Absorbing pattern are given in Appendix B
and Appendix D.

2. Preparation

2.1 Description of RC4

The internal state of RC4 consists of a permutation S of the
numbers 0, · · · ,N − 1 and two indices i, j ∈ {0, · · · ,N − 1}.
The index i is determined and known to the public, while
j and permutation S remain secret. RC4 consists of two
algorithms: The Key Scheduling Algorithm (KSA) and
the Pseudo Random Generator Algorithm (PRGA). The
KSA generates an initial state from a random key K of k
bytes as described in Algorithm 1. It starts with an array
{0, 1, · · · ,N − 1} where N = 256 by default. At the end,
we obtain the initial state S N−1. Once the initial state is cre-
ated, it is used by PRGA. The purpose of PRGA is to gen-
erate a keystream of bytes which will be XORed with the

Copyright c© 2011 The Institute of Electronics, Information and Communication Engineers
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plaintext to generate the ciphertext. PRGA is described in
Algorithm 2.

Algorithm 1. KSA
1: for i = 0 to N − 1 do
2: S [i]← i
3: end for
4: j← 0
5: for i = 0 to N − 1 do
6: j← j + S [i] + K[i mod k]
7: swap(S [i], S [ j])
8: end for

Algorithm 2. PRGA
1: i← 0
2: j← 0
3: loop
4: i← i + 1
5: j← j + S [i]
6: swap(S [i], S [ j])
7: keystream byte zi = S [S [i] + S [ j]]
8: end loop

In this paper, we mainly focus on KSA algorithm.

2.2 Previous Research on RC4 Key Collisions

Two important previous studies on RC4 key collisions are
[1], [2]. In [1], the authors pointed out that it’s possible for
two secret keys with length close to 256 bytes to generate
similar internal state after KSA, and thus they will generate
similar hundred byte output during PRGA. The reason for
this is that for two keys K1,K2, if we assume K1[i] = K2[i]
except when i = t, then when t is close to 255, the two
internal states will be substantially similar. However, this
idea cannot generate strict key collisions, and this result only
works for key lengths close to 256.

In [2], RC4 key collision was first discovered. The key
pattern is almost the same as in [1], namely, two keys differ
at only one byte position (K1[i] = K2[i] except i = t) and the
value difference is 1(K1[t] = K2[t]−1). The intuition behind
the collision is that from the first time i touches the different
position t, the pattern ensures that there are always only two
differences in the internal state as the key scheduling process
continues. The difference is absorbed when i touches t for
the last time. Please refer to [2] for the detailed description.

3. Generalized RC4 Colliding Key Pairs

We show that RC4 can generate many other colliding key
pairs with different key relations, which cannot generated
by using the techniques in [2]. We formalize all the cur-
rently known colliding key pairs into two patterns. We de-
scribe them in the following section by first giving the key
relations, and then explaining how the two keys with these
relations can achieve collisions.

3.1 Notation

• K1,K2: a secret key pair with some differences between
them.

• S 1,i, S 2,i: S -Boxes corresponding to the secret key pair
at time i before the swap operation.

• i, j1,i, j2,i: internal states of RC4. When j1,i = j2,i, we
use ji to denote.

• k: the lengths (bytes) of the secret keys.
• h: hamming distances between the two keys (number

of different positions where two keys differ from each
other).

• d: the first index of the key differences.
• Γ: the set of indices at which two keys differ from each

other, |Γ| = h, Γ = {γ0, · · · , γh−1} and d = γ0.
• ni: the number of times the key difference γi appears

during the KSA. ni = � 256+k−1−γi

k � for i = 0, · · · , h − 1.

3.2 Transitional Pattern

Key relations in Transitional pattern:

K2[i] = K1[i] + 1, i ∈ Γ
Namely, two keys differ from each other at h places,

and the value differences at these positions all equal 1.
Transitional pattern has the property that after the first

internal state differences are generated, which is due to the
key difference, the internal state differences are transferred
to the later indices of the S -Box, and these differences ex-
ist before the last key difference comes into play during the
KSA.

Figure 1 illustrates the case in which the secret keys
are short, so they will appear several times during the KSA.
When i first touches the key difference, j difference and two
S -Box differences are generated. Notice that the Transi-
tional pattern requires that one j equal i. Thus the two S -
Box differences generated at the beginning are located next
to each other, and meanwhile, we require that S -Box value
differences also be one. The dotted line area in the figure
shows the three internal state differences generated by the
first key difference. The next two j return to the same value,

Fig. 1 Transitional pattern.
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Table 1 Transitional pattern, h = 3, n = 2(k = 128).

Internal State Difference
i K1[i]/K2[i] j1,i/ j2,i 0 1 2 3 4 5 6 7 8 · · · 129 130 131 132 133 134 135 136
0 K1[0] * 1 2 Same

K2[0] = K1[0] * 1 2
1 K1[1] 1 1 2 j, S -Box

K2[1] = K1[1] + 1 2 2 1
2 K1[2] 4 1 2 S -Box

K2[2] = K1[2] 4 2 1
4 K1[4] 8 1 2 S -Box

K2[4] = K1[4] + 1 8 2 1
8 K1[8] 129 1 2 S -BoX

K2[8] = K1[8] + 1 129 2 1
129 K1[1] 132 1 2 S -Box

K2[1] = K1[1] + 1 132 2 1
132 K1[4] 135 1 2 S -Box

K2[4] = K1[4] + 1 135 2 1
134 K1[6] 1 1 2 S -Box

K2[6] = K1[6] 1 2 1
135 K1[7] 135 1 2 j

K2[7] = K1[7] 134 1 2
136 K1[8] * 1 2 Same

K2[8] = K1[8] + 1 * 1 2

due to the effects of previous j difference (�) and one S -
Box difference (�). Meanwhile, the S -Box difference (�)
is transferred to the next key difference index, and this trans-
fer will repeat each time when i touches the next key differ-
ence index. The situation for the last appearance of the key
is a little bit different. In order to achieve a collision, we re-
quire that the two S -Box differences �,� be in consecutive
positions just before the last key difference index. The two
S -Box differences are absorbed by each other and generate
a j difference (�). Finally, the last key difference is there
to absorb the previous j difference and the internal states
become the same.

The colliding key pairs found in [2] demonstrate a spe-
cial case of this pattern, where the hamming distance be-
tween two keys can only be one (|Γ| = h = 1). In our
generalized Transitional pattern, two keys can have various
hamming distances as the probability allows. Table 1 shows
an example with concrete numbers on how a 128-byte col-
liding key pair with hamming distance three can achieve a
collision. Two keys differ from each other at indices 1, 4 and
8. The S -Box in Table 1 denotes the state after the swap op-
eration at each step. Notice that when i = 134, one of the
S -Box differences should be swapped to the index 134, but
not necessarily from index 1, as shown in the example. The
first S -Box difference can be touched by j before 134, to be
swapped to other positions. As long as this S -Box difference
appears in index 134 when i = 134, the pattern works.

3.3 Self-Absorbing Pattern

In addition to the above Transitional pattern, we investigate
that some of the other RC4 colliding key pairs have the fol-
lowing properties: the internal state differences are gener-
ated and absorbed within one key appearance, namely, the
differences will not be transferred to the later parts of the
S -Box.

In [12], the authors pointed out that by setting the two
keys as

K2[d] = K1[d] + 1,K2[d + 1] = K1[d + 1] − 1

collisions might be achieved. [12] assumes that j1,d = d,
and j1,d+1 = d + 1, then after i = d + 1, the two S -Box
becomes the same. However, at step i = d + 1 after the
swap, j1,d+1 � j2,d+1, and two S -Box will differ from each
other again due to the j difference, thus a collision can not be
achieved as they expected. It seems that by adding another
key differential K2[d+2] = K1[d+2]+1, the j difference will
be absorbed and a collision can be achieved. However this
is only the case for long keys whose key differential indices
don’t repeat. For short keys which appear more than once
during KSA, collisions can not be achieved.

To explain, let’s see the conditions we need to satisfy
for the first and second key appearances. According to the
key pattern, we need S 1,d[d + 1] = S 1,d[d] + 1(S 2,d[d + 1] =
S 2,d[d]+1) and S 1,d+k[d+k+1] = S 1,d+k[d+k]+1(S 2,d+k[d+
k+1] = S 2,d+k[d+k]+1). Let’s assume S 1,d[d] = S 2,d[d] = a,
and S 1,d+k[d+k] = S 2,d+k[d+k] = b. Then in order to achieve
a collision according to [12], during the first key appearance,
we need j1,d = d, j1,d+1 = d + 1 and j2,d = d + 1, j2,d+1 = d,
thus we have:

j1,d+1 = j1,d + a + 1 + K1[d + 1]⇒ K1[d + 1] = 256 − a

j2,d+1 = j2,d + a + K2[d + 1]⇒ K2[d + 1] = 255 − a

For the second key appearance, we will need j1,d+k = d +
k, j1,d+k+1 = d + k+ 1 and j2,d+k = d + k+ 1, j2,d+k+1 = d + k,
thus we have:

j1,d+k+1= j1,d+k + b + 1 + K1[d + 1]⇒ K1[d + 1] = 256 − b

j2,d+k+1= j2,d+k + b + K2[d + 1]⇒ K2[d + 1] = 255 − b

Now we can observe a contradiction since it is impossible
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Fig. 2 Self absorbing pattern 1.

Fig. 3 Self absorbing pattern 2.

for value a to be at index d + k when i = d + k, namely,
a � b.

As we will show later that in order to achieve collisions
in Self-Absorbing pattern, the second key differential has to
be used to absorb the j difference instead of absorbing the
S -Box difference in [12]. We point out that Self-Absorbing
pattern can be further divided into two sub-patterns, which
are shown in Figs. 2 and 3. Due to the self absorbing prop-
erty, only one key appearance needs to be illustrated, since
the others are the same.
Key relations in Self-Absorbing pattern 1:

K2[d] = K1[d] + t

K2[d + 1] = K1[d + 1] − t

K2[i] = K1[i] + t, i ∈ Γ \ {γ0, γ1}.
The value difference t ≥ 2 is the same for all h different
positions.

Figure 2 illustrates the case of hamming distance 4
(h = 4) and t = 2. The first key difference generates three
internal differences (dotted line area). In this illustration,
the key value difference is t = 2, so the interval between two
S -Box differences is also required to be t. The second key
difference is there to absorb the previous j difference. The
third key difference makes the S -Box difference (�) jump
to the index just before the last key difference within this key
appearance. S -Box difference � should be swapped to the

index two intervals from� when i touches that index. Then
when i touches the S -Box difference �, two S -Box differ-
ences absorb each other and generate a j difference (solid
line area). Finally the last key difference is there to absorb
the previous j difference, so that the internal states become
the same. Table 2 demonstrates one example of 128-byte
colliding key pair with hamming distance 4. Two keys dif-
fer from each other at indices 1, 2, 3 and 8.
Key relations in Self-Absorbing pattern 2:

K2[d] = K1[d] + t

K2[d + 1] = K1[d + 1] − t

K2[i] = K1[i] + t, i ∈ Γ \ {γ0, γ1, γh−2, γh−1}
K2[γh−2] = K1[γh−2] + t

′
, t
′
= γ2 − γh−2

K2[γh−1] = K1[γh−1] + t
′′
, t
′′
= γh−2 − γ0

For the previous h−2 different positions, the value difference
t ≥ 2 is the same. The last two value differences t

′
and

t
′′
, which are determined by the specific Γ values, can be

different values other than t.

Self-Absorbing pattern 2 is almost the same as Self-
Absorbing pattern 1, except that in addition to using S -Box
differences themselves, it also depends on key differences
to absorb the S -Box differences (shown in solid line area in
Fig. 3) at the final stage. This will allow a more flexible way
on how the key value difference can vary, namely, the value
difference can choose different values instead of a fixed
value, as in the Transitional pattern and Self-Absorbing pat-
tern 1. The relation between t

′
, t
′′

and Γ can be easily derived
from Fig. 3. At step i = γh−2, we have j1,γh−2 = j1,γh−2−1 +

γ2 + K1[γh−2] and j2,γh−2 = j2,γh−2−1 + γ0 + K2[γh−2]. And a
collision requires that j1,γh−2−1 = j2,γh−2−1 and j1,γh−2 = γh−2,
j2,γh−2 = γ0, thus K2[γh−2] = K1[γh−2]+ (γ2 − γh−2). For step
i = γh−1, we need the key difference to absorb the previous
j difference. We have j1,γh−1 = j1,γh−2 + S 1[γh−1] + K1[γh−1],
and j2,γh−1 = j2,γh−2 + S 2[γh−1] + K2[γh−1], and the collision
requires S 1[γh−1] = S 2[γh−1], j1,γh−1 = j2,γh−1 , j1,γh−2 = γh−2

and j2,γh−2 = γ0, we derive the relation K2[γh−1] = K1[γh−1]+
(γh−2 − γ0).

Table 3 shows a 128-byte colliding key pair example
with hamming distance 5. The two keys differ from each
other at indices 1, 2, 3, 5 and 6. The relation between the
t
′
, t
′′

and Γ can be verified by K2[5] = K1[5] + (3 − 5) =
K1[5] − 2, and K2[6] = K1[6] + (5 − 1) = K1[6] + 4, which
matches the example in Table 3.

Three concrete colliding key pairs with key length 128
and hamming distances 3, 4 and 5 in Transitional pattern,
Self-Absorbing pattern 1 and 2 are given in the Appendix B.

4. Probability Evaluation

In this section, we evaluate the existence probabilities of
RC4 colliding key pairs, and give approximate statistics on
the scale and distribution of these keys.
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Table 2 Self-absorbing pattern 1, h = 4, n = 2(k = 128).

Internal State Difference
i K1[i]/K2[i] j1,i/ j2,i 0 1 2 3 4 5 6 7 8 · · · 129 130 131 132 133 134 135 136
0 K1[0] * 1 3 Same

K2[0] = K1[0] * 1 3
1 K1[1] 1 1 3 j, S -Box

K2[1] = K1[1] + 2 3 3 1
2 K1[2] * 1 3 S -Box

K2[2] = K1[2] − 2 * 3 1
3 K1[3] 7 1 3 S -Box

K2[3] = K1[3] + 2 7 3 1
5 K1[5] 1 1 3 S -Box

K2[5] = K1[5] 1 3 1
7 K1[7] 7 1 3 j

K2[7] = K1[7] 5 1 3
8 K1[8] * 1 3 Same

K2[8] = K1[8] + 2 * 1 3
129 K1[1] 129 129 131 j, S -Box

K2[1] = K1[1] + 2 131 131 129
130 K1[2] * 129 131 S -Box

K2[2] = K1[2] − 2 * 131 129
131 K1[3] 135 129 131 S -Box

K2[3] = K1[3] + 2 135 131 129
133 K1[5] 129 129 131 S -Box

K2[5] = K1[5] 129 131 129
135 K1[7] 135 129 131 j

K2[7] = K1[7] 133 129 131
136 K1[8] * 129 131 Same

K2[8] = K1[8] + 2 * 129 131

Table 3 Self-absorbing pattern 2, h = 5, n = 2(k = 128).

Internal State Difference
i K1[i]/K2[i] j1,i/ j2,i 0 1 2 3 4 5 6 · · · 129 130 131 132 133 134
0 K1[0] * 1 3 Same

K2[0] = K1[0] * 1 3
1 K1[1] 1 1 3 j, S -Box

K2[1] = K1[1] + 2 3 3 1
2 K1[2] * 1 3 S -Box

K2[2] = K1[2] − 2 * 3 1
3 K1[3] 5 1 3 S -Box

K2[3] = K1[3] + 2 5 3 1
5 K1[5] 5 1 3 j

K2[5] = K1[5] − 2 1 1 3
6 K1[6] * 1 3 Same

K2[6] = K1[6] + 4 * 1 3
129 K1[1] 129 129 131 j, S -Box

K2[1] = K1[1] + 2 131 131 131
130 K1[2] * 129 131 S -Box

K2[2] = K1[2] − 2 * 131 129
131 K1[3] 133 129 131 S -Box

K2[3] = K1[3] + 2 133 131 129
133 K1[5] 133 129 131 j

K2[5] = K1[5] − 2 129 129 131
134 K1[6] * 129 131 Same

K2[6] = K1[6] + 4 * 129 131

4.1 Transitional Pattern

For most of the key lengths, they cannot divide 256 except
lengths 256, 128, 64, 32, 16 (ignore the rest smaller ones
which are not used for practical reasons). Thus part of the
key will repeat � 256

k � times while the rest part will repeat
� 256

k � + 1 times. Due to this phenomenon, the probability

will vary depending on the exact locations of the hamming
distances, which brings in a lot of unnecessary parameters.
For the simplicity of the description without loosing the rig-
orous evaluation, we compute the upper bound and lower
bound of the colliding key pairs with only two input param-
eters, namely, the key length k and the hamming distance
h. The upper bound probability can be computed by chop-
ping the tail part 256 − k × � 256

k � of the S -Box and treat the
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key as it repeats only � 256
k � times during KSA. The lower

bound, on the other hand, can be computed by adding length
k − 256+ k × � 256

k � to the end of the S -Box and treat the key
as it repeats � 256

k � + 1 times during KSA. Then for a given
hamming distance h, we can compute the collision proba-
bility which is not related to the locations of the hamming
distance anymore, and finally we sum up the probability for
all cases of the hamming distances. Note that for the key
lengths dividing 256, the exact evaluation is given (the up-
per bound is equal to the lower bound).

From the previous analysis, we know that colliding key
pairs have the property that the key value difference is fixed
at one, and the hamming distance can vary. We divide the
whole process into three phases as shown in Fig. 1, namely,
the starting phase (first appearance of the key), the ending
phase (last appearance of the key) and the repeating phase
(middle repeating parts).

Starting Phase. First, before i touches γ0, j can not
touch γ0 or γ0 + 1 with probability ( 254

256 )γ0 . When i touches
γ0, we need j1 = γ0 and j2 = γ0 + 1 with probability 1

256 .
When i = γ0 + 1, the S -Box difference at index i needs
to be swapped to the next key difference index γ1, namely,
j1,γ0+1 = j2,γ0+1 = γ1 with probability 1

256 .
For each of the other key difference indices γn ∈ Γ, we

will pay the probability 1
256 each to let the S -Box difference

at γn mod h swap to γn+1 mod h when i = γn. This gives us a to-
tal probability ( 1

256 )h−1. When i is between two consecutive
key difference indices, the pattern requires that j does not
touch the later key difference index, otherwise i will never be
able to touch the later S -Box difference again. This will add
( 255

256 )γ1−γ0−2( 255
256 )γ2−γ1−1 · · · ( 255

256 )γh−1−γh−2−1( 255
256 )k+γ0−γh−1−1 =

( 255
256 )k−h−1 to the total probability cost. Thus, the total prob-

ability in the starting phase is ( 1
256 )h+1( 254

256 )γ0 ( 255
256 )k−h−1.

Repeating Phase. For upper bound, key will appear
� 256

k � − 2 times, and for lower bound, it will appear � 256
k � − 1

times during the repeating phase. For each key appearance,
the procedure is as follows. When i touches one key dif-
ference index, 1

256 probability will be paid, ( 1
256 )h in total.

When i is between two difference indices, it is not allowed
to touch the later one (same as starting phase), this will add
probability ( 255

256 )k−h in the repeating phase. Thus, the prob-
ability that one key appearance must pay is ( 1

256 )h( 255
256 )k−h.

The total probability is (( 1
256 )h( 255

256 )(k−h))�
256

k �−1 for the lower

bound, and (( 1
256 )h( 255

256 )(k−h))�
256

k �−2 for the upper bound.

Ending Phase. When i touches {γ0 + k × (� 256
k � −

1), · · · , γh−3 + k × (� 256
k � − 1)} (upper bound), or {γ0 + k ×

(� 256
k �), · · · , γh−3 + k × (� 256

k �)} (lower bound), with proba-
bility 1

256 each, j will touch the next key difference. When
i = γh−2 + k × (� 256

k � − 1) (upper bound), or i = γh−2 +

k× (� 256
k �) (lower bound), with 1

256 , j should touch the index
γh−1−1+k×(� 256

k �−1) (upper bound), or γh−1−1+k×(� 256
k �)

(lower bound). When i = γh−1 − 2 + k × (� 256
k � − 1) (up-

per bound), or i = γh−1 − 2 + k × (� 256
k �) (lower bound),

another S -Box difference should be swapped to here with
probability 1

256 . And when i = γh−1 − 1 + k × (� 256
k � − 1)

(upper bound), or i = γh−1 − 1 + k × (� 256
k �) (lower bound),

it is required that j = γh−1 − 1 + k × (� 256
k � − 1) (upper

bound), or j = γh−1 − 1 + k × (� 256
k �) (lower bound). Up to

now, this gives us the successful probability ( 1
256 )h+1. And

as before, when i is between two key differences, j should
not touch the latter key difference index. This will add
( 255

256 )γ1−γ0−1 · ( 255
256 )γ2−γ1−1 · · · ( 255

256 )γh−1−γh−2−2 = ( 255
256 )γh−1−γ0−h

to the probability. Thus the probability for the Ending Phase
is ( 1

256 )h+1( 255
256 )γh−1−γ0−h.

By multiplying them together, we have the following
theorem.

Theorem 1: Given key length k and hamming distance h ≥
1, the probability of two keys with relations in Transitional
pattern forming a colliding key pair, PT (k, h, γh−1), can be
approximated as follows:

PT (k, h, γh−1) ∈ [( 1
256 )h·(� 256

k �+1)+2 × ( 255
256 )(k−h)·� 256

k �+γh−1−2,

( 1
256 )h·� 256

k �+2 × ( 255
256 )(k−h)·(� 256

k �−1)+γh−1−2]

In order to give the total number of the colliding key
pairs, we need to sum up the probability for all the possible
different hamming distance locations, and multiply the total
number of the keys (28×k). Transitional Pattern requires that
γ1−γ0 ≥ 2 and γh−1−γh−2 ≥ 3 when h ≥ 2. Then for a given
key length k and a hamming distance h, the legal number of
all the possible different hamming distance combinations is(
γh−1−3

h−1

)
. Then we can derive the number of colliding key

pairs given k and h, which is given in Theorem 2.

Theorem 2: The number of colliding key pairs with key
length k and hamming distance h ≥ 1 can be computed by
the following formula:

PairsT (k, h)

=

⎧⎪⎪⎨⎪⎪⎩
28k ×∑h+2

γh−1=k−1 PT (k, h, γh−1) ×
(
γh−1−3

h−1

)
, h ≥ 2

28k ×∑0
γh−1=k−1 PT (k, h, γh−1), h = 1

Theorem 2 covers all the general cases of the colliding
key pairs in Transitional Pattern. For h = 1, it is the spe-
cial case shown in [2], and our evaluation matches the data
provided in [2] very well.

4.2 Self-Absorbing Pattern 1

Compared with the Transitional Pattern, Self-Absorbing
patterns have even more parameters, namely, value differ-
ences. In order to exploit the relation in a clear way, we
again restrict the input parameters to only k and h as in the
Transitional Pattern by giving the upper and lower bound of
t.

We only need to evaluate the probability of one key
appearance, because the other parts just repeat the first key
appearance procedure. Different from Transitional Pattern,
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Self-Absorbing Patterns require all the key differences to re-
peat the same time during the KSA, otherwise collision can-
not be achieved. For any given key length k, indices between
[0, 256−k×� 256

k �−1] will repeat � 256
k �+1 times, and indices

between [256− k× � 256
k �, k− 1] will repeat themselves � 256

k �
times. Thus all the key differences can only exist in either
of these two internals at the same time.

First we compute the probability for the first key ap-
pearance. Before i touches index d, we need S d[d] + t =
S d[d + t] with probability 255

256 × ( 254
256 )d−1 + 1

256 (Refer to
Lemma 1 in the Appendix A for the proof). When i touches
d, we require jd = d with probability 1

256 . We need one
of the differences (� in Figure 2) to appear at indices
{Γ⋃{γh−1 − 1}} \ {γ0, γ1, γh−1} when i touches them, and j
cannot touch the later key difference position when i is be-
tween the consecutive two of them. The probability can be
calculated in the same way as in the repeating phase in Tran-
sitional pattern, namely, ( 1

256 )h−3( 255
256 )γh−1−γ0−h+1. Also we

need the S -Box difference (�) to be at position γh−1 − t − 1
and it cannot be touched when i is between γh−1 − t − 1
and γh−1 − 1. So this will give us probability 1

256 ( 255
256 )t−1.

Finally, when i touches index γh−1 − 1, we need jγh−1−1 =

γh−1 − 1 with probability 1
256 . By multiplying them to-

gether, we can derive the probability of one key appearance
( 1

256 )h( 255
256 )γh−1−γ0−h+t( 255

256 ( 254
256 )γ0−1 + 1

256 ), which can be fur-
ther approximated as ( 1

256 )h × ( 255
256 )γh−1−h+t. γh−1 will disap-

pear in the final evaluation formula since we will sum up
the probabilities for all the locations. However, t is still not
fixed. Since ( 1

256 )h is the dominant part, one way to approx-
imate is just to eliminate the t parameter. Here in order to
be more accurate, we give the upper and lower bound of t.
According to the pattern, t ≥ 2. Given γh−1, h, the max t can
be denoted as t ≤ γh−1 − h + 2.

Theorem 3: Given hamming distance h ≥ 3, γh−1 and t,
the probability of two keys with relations in Self-Absorbing
pattern 1 to achieve collision for one key appearance,
PS 1(h, γh−1, t), can be approximated as follows:

PS 1(h, γh−1, t) =

(
1

256

)h

×
(

255
256

)γh−1−h+t

where t ∈ [2, γh−1 − h + 2].

Next is to compute the combinations of the hamming
distances. The rule here is that due to the value t, we have
t − 1 positions that key differences cannot be placed, and
γ1 − γ0 = 1. For the first interval [0, 256 − k × � 256

k � − 1],
γh−1 ∈ [3, 256−k×� 256

k �−1] (make sure that all the hamming

distances are inside the interval), we have
(
γh−1−t

h−2

)
different

ways to place the h− 2 key differences (exclude γh−1 and γ0

and γ1 can be treated as one). For the latter interval, γh−1 ∈
[256 − k × � 256

k � + 3, k − 1], and we have
(
γh−1−t−(256−k×� 256

k �)
h−2

)
different ways. Now we are ready to have the following
theorem.

Theorem 4: For Self-Absorbing pattern 1, the number of
colliding key pairs with key length k and hamming distance

h ≥ 3 can be computed by the following formula:

PairsS 1(k, h) =

28k × (
∑256−k×� 256

k �−1
γh−1=h−1 (PS 1(h, γh−1, t))�

256
k �+1 ×

(
γh−1−t

h−2

)
+

∑k−1
γh−1=256−k×� 256

k �+h−1
(PS 1(h, γh−1, t))�

256
k �×

(
γh−1−t−(256−k×� 256

k �)
h−2

)
)

for t ∈ [2, γh−1 − h + 2].

4.3 Self-Absorbing Pattern 2

The way we evaluate Self-Absorbing Pattern 2 is very simi-
lar to Self-Absorbing pattern 1 due to the similarity between
the two patterns. We point out the differences here. First,
we don’t need the S-Box difference (�) to be at position
γh−1 − t − 1 any more, since the key difference at index γh−2

will adjust to absorb the S -Box differences. This will cut
the probability 1

256 ( 255
256 )t−1. Also, the pattern requires one of

the S -Box difference at index γ0 remain unchanged until it
is swapped to index γh−2 at this step. This makes us to add
probability ( 255

256 )γh−1−γ0−2. To sum up, PS 2(h, γh−1, γ0) can be
approximated as

PS 2(h, γh−1, γ0) = (
1

256
)h−2 × (

255
256

)2γh−1−γ0−h−3

Notice that compared with the Self-Absorbing pattern 1,
the dominant part of the probability increases to ( 1

256 )h−2,
while we only save one 1

256 due to the unnecessary S -Box
swap. This is because Self-Absorbing pattern 2 can be seen
as a Self-Absorbing pattern 1 with one extra key differential
added to the index γh−1−1, and this new added key differen-
tial does not contribute to the probability cost. The number
of colliding key pairs is shown in Theorem 5.

Theorem 5: For Self-Absorbing pattern 2, the number of
colliding key pairs with key length k and hamming distance
h ≥ 5 can be computed by the following formula:

PairsS 2(k, h) =

28k × (
∑256−k×� 256

k �−1
γh−1=h−1 (PS 2(h, γh−1, γ0))�

256
k �+1 ×

(
γh−1−γ0−1

h−2

)
+∑k−1

γh−1=256−k×� 256
k �+h−1

(PS 2(h, γh−1, γ0))�
256

k �

×
(
γh−1−γ0−1−(256−k×� 256

k �)
h−2

)
)

for γ0 ∈ [0, γh−1 − h + 1].

One thing to notice is that from the theoretical evalu-
ation, we can observe that the collision probability (com-
plexity) of Self-Absorbing pattern 1 with hamming distance
h is almost equal to the one of Self-Absorbing pattern 2 with
hamming distance h + 2 given the same k.

We can conclude that the probabilities of both Tran-
sitional pattern and Self-Absorbing patterns are mainly af-
fected by hamming distance h and length of the secret key
k. The probability decreases as the hamming distance h be-
comes larger or the key length k becomes shorter (n be-
comes larger). Note that to achieve a collision in Tran-
sitional pattern, Self-Absorbing pattern 1 and 2, the cor-
responding hamming distances are required to be h ≥ 1,
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Fig. 4 Colliding key pairs for transitional pattern.

Fig. 5 Colliding key pairs for self-absorbing pattern 1.

h ≥ 3 and h ≥ 5, respectively. This can be easily seen
from Fig. 1 and Fig. 2 for Transitional pattern and Self-
Absorbing pattern 1. For Self-Absorbing pattern 2, it seems
that h could start from 4. In this case, according to the pat-
tern, we have j1,γh−2 = j1,γh−2−1 + γh−2 + K1[γh−2], j2,γh−2 =

j1,γh−2−1 + γ0 + K2[γh−2] and j1,γh−2−1 = j2,γh−2−1. And also
j1,γh−2 = γh−2, j2,γh−2 = γ0. As a result, K1[γh−2] = K2[γh−2],
namely the key differential at index γh−1 − 1 disappears and
it becomes the Self-Absorbing pattern 1 with h = 3. That’s
why for Self-Absorbing pattern 2, we require h ≥ 5.

Figures 4, 5 and 6 give the number of colliding key
pairs for different key lengths and hamming distances ac-
cording to the previous theorems. The data shown in the
figures are the averages of the upper and lower bound of the
estimation.

4.4 Experimental Evaluation

To confirm that our previous theoretical analysis is correct,
we give the experimental evaluation here. Our goal is to
evaluate the average collision probability for each of the
three patterns given some k and h. For short key size with
large h value, the collision probability is so small that it is
impossible to carry out the experiment. For example, for
Transitional pattern with h as small as 2, even the key is
repeated only twice during KSA such as k = 128, the esti-
mated probability is about 2−48 which is too small to evalu-

Fig. 6 Colliding key pairs for self-absorbing pattern 2.

ate the average probability (we can hardly collect sufficient
data). Thus we target full length key with k = 256, and
select h such that the estimated probability is around 2−32

which falls into the practical implementation scope. The
theoretical collision probability can be easily computed by
taking the average value of PT (k, h, γh−1), PS 1(h, γh−1, t) and
PS 2(h, γh−1, γ0) for each of the three patterns. And once we
confirm the correctness of these three collision probabilities,
the number of colliding key pairs PairsT (k, h), PairsS 1(k, h)
and PairsS 2(k, h) can be trivially confirmed since they are
derived directly from the collision probabilities. The corre-
sponding theoretical probabilities are shown as follows.

Transitional Pattern (k = 256, h = 2). During the KSA,
all the hamming distance will appear once, and the proba-
bility is equivalent to the upper bound of the PT (k, h, γh−1).
Thus the theoretical collision probability can be computed
by taking the average value of PT (k, h, γh−1) for each γh−1 ∈
[4, 255], which can be denoted as Ave(PT (k, h, γh−1)) as fol-
lows:

Ave(PT (k, h, γh−1)) ≈
∑255
γh−1=4( 1

256 )4 × ( 255
256 )γh−1−2

252
= 2−32.6619

Self-Absorbing Pattern 1 (k = 256, h = 4). For k = 256,
all the key differentials locate within the same interval, thus
the theoretical probability can be computed by taking the
average value of PS 1(h, γh−1, t) for each (t, γh−1) ∈ [2, γh−1 −
2]× [3, 255], which can be denoted as Ave(PS 1(h, γh−1, t)) as
follows:

Ave(PS 1(h, γh−1, t)) ≈
∑255
γh−1=3

∑γh−1−2
t=2 ( 1

256 )4 × ( 255
256 )γh−1−4+t

31878
= 2−33.3234

Self-Absorbing Pattern 2 (k = 256, h = 6). Same as Self-
Absorbing pattern 1, all the key differentials locate within
the same interval, thus the theoretical probability can be
computed by taking the average value of PS 2(h, γh−1, γ0) for
each (γ0, γh−1) ∈ [0, γh−1] × [5, 255], which can be denoted
as Ave(PS 2(h, γh−1, γ0)) as follows:
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Fig. 7 Experimental result for transitional pattern.

Fig. 8 Experimental result for self-absorbing pattern 1.

Table 4 Collision probability comparison.

Pattern k h Theoretical Probability Average Experimental
Probability

Tran 256 2 2−32.6619 2−32.6253

Self1 256 4 2−33.3234 2−32.9144

Self2 256 6 2−33.3017 2−33.3571

Ave(PS 2(h, γh−1, γ0)) ≈
∑255
γh−1=5

∑γh−1−5
γ0=0 ( 1

256 )4×( 255
256 )2γh−1−γ0−9

31626
=2−33.3017

For the experiment, we fix the k and h according to
the ones we choose previously. Then we randomly gener-
ate related key pairs and hamming locations Γ according
to the three patterns until a collision is found. The exper-
imental collision probability is one over the number of gen-
erated related key pairs. 100 experimental results are col-
lected for each of the three patterns on parallel computer
SGI Altix4700 with 20 cores used (Dual Core Intel Itanium
Series 9000 1.67 GHz), which takes around one week time.
The simulation results are shown in Figs. 7, 8 and 9, and the
comparison between the theoretical and experimental prob-
ability is summarized in Table 4, which confirms the cor-
rectness of our evaluation.

Fig. 9 Experimental result for self-absorbing pattern 2.

5. Vulnerability Inducing by RC4 Key Collision

In this section, we demonstrate how the key collision can
influence the security of a hash function using RC4 pro-
posed in INDOCRYPT 2006. The “RC4-Hash” followed
the “wide pipe” hash function design principle proposed
by Lucks [13] and was claimed to be as efficient as some
widely-used hash functions, such as SHA-family and MD-
family, while also ruling out all possible generic attacks
against those famous hash functions. First hash collision
was found in [16] by exploiting the idea of Finney States
[15]. We first briefly describe the RC4-Hash algorithm, and
then we give the collision analysis based on RC4 key colli-
sion. For a more detailed description of the hash function,
please refer to [14].

5.1 RC4-Hash

{0, 1}<264
denotes the set of all messages whose length is at

most 264 − 1. l is the output length of the RC4 hash func-
tion, 16 ≤ l ≤ 64. RC4-Hash function can be described as
{0, 1}<264 → {0, 1}8l.
Padding Rule: pad(M) = bin8(l)||M||1||0k ||bin64(|M|) =
M1|| · · · ||Mt, where Mt is the last 512-bit block. bin64(|M|) is
the 64-bit binary representation of the number of bits of M.
k is the least non-negative integer such that 8+ |M|+ 1+ k+
64 ≡ 0 mod (512) and |Mi| = 512.
Iteration Phase: Let (S 0, j0) = (S IV , 0) be an initial value.
The compression function C is invoked iteratively as fol-
lows:

(S 0, j0)
M1→ (S 1, j1)

M2→ · · · (S t−1, jt−1)
Mt→ (S t, jt)

where (S , j)
X→ (S ∗, j∗) denotes C((S , j), X) = (S ∗, j∗).

Post-Processing: Let (S t, jt) be the internal state after the
classical iteration. Compute S t+1 = S 0 ◦ S t and jt+1 = jt.
Then compute HBGl(OWT (S t+1, jt+1)).
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C((S , j), X)
for i = 0 to 255

j← j + S [i] + X[r(i)]
Swap(S [i],S [j]);

Return (S ,j)

OWT ((S , j))
Temp1 = S
for i = 0 to 511

j← j + S [i]
Swap(S [i], S [ j])

Temp2 = S
S = Temp1 ◦ Temp2 ◦ Temp1
Return (S , j)

HBGl((S , j))
for i = 1 to l

j← j + S [i]
Swap(S [i], S [ j])
Out = S [S [i] + S [ j]]

◦ denotes the composition of the permutations. Func-
tion r : [256] → [64] reorders the 64-byte message block.
There are four r mapping functions(r0, r1, r2, r3) correspond-
ing to the four iteration processes for each message block.
In other words, each message block is reordered three times
(r0 is the identity permutation) during one iteration process.
Refer to appendices for S IV and ri.

5.2 Collisions for RC4-Hash Function

Let’s look at the iteration phase carefully. After message
is padded, it is cut into 64-byte blocks, and each block is
processed by the compression function C four times. The
compression function C is actually the KSA in RC4, and
the input message block can be seen as a 64-byte secret
key, except for two differences. First, the message block
is reordered by using ri functions three times (instead of
using the same 64-byte key which appears 4 times during
KSA) and second, instead of the identity permutation used
at the beginning of KSA, a shuffled S -Box S IV is used as
the initial S -Box. The similarities between the compres-
sion function and the KSA give us the intuition that we can
make use of the RC4 key collision to find collisions for
RC4-Hash. Now let’s take a look at how these two differ-
ences can affect the collision search. In both Transitional
pattern and Self-Absorbing pattern, when i touches the first
different position, we need S d[d] + t = S d[d + t]. This is
very easy to achieve when the initial S -Box is an identity
permutation ( j does not touch index d or index d + t be-
fore i touches index d). But still we can make this hap-
pen with S IV (Several candidates are available by check-
ing S IV carefully, and we use one of them in the follow-
ing example). For the transitional pattern, the reordering
of the message will not have much effect on finding colli-
sions, because even though the different positions between

Fig. 10 RC4-Hash collision using transitional pattern.

the two messages change three times, we do not have to pay
extra probabilities because there are no restrictions among
these different message positions. Thus it works just the
same as finding key collisions in the Transitional pattern.
However, there are strict relations between the different po-
sitions in Self-Absorbing pattern (Self-Absorbing pattern
1: K2[d] = K1[d] + t, K2[d + 1] = K1[d + 1] − t and
K2[i] = K1[i] + t for i ∈ Γ \ {γ1, γ2}), and the reordering
of the message breaks those relations at the later rounds in
the compression function, thus making it difficult to find a
collision by using this pattern.

Here we give a concrete collision example by making
use of the Transitional pattern. Since the initial S -Box S IV

is not an identity permutation, we need to first make two
consecutive indices have the value difference one. There are
several candidates we can use, by examining the S IV care-
fully, we choose to let S IV [24] = 53 appear in index 27 when
i touches it, and S IV [28] = 54 should not be touched by j be-
fore. Then we have two values, 53 and 54, next to each other
at indices 27 and 28 when i touches index 27. The four iter-
ations of the 64-byte message block during the compression
function C can be seen as a KSA procedure with a 64-byte
key. Since the message will be reordered three times, we
need to check the mapping function ri to identify the differ-
ent positions. According to the Transitional pattern, in order
to achieve a collision, two messages should differ from each
other at index 27, and the value difference should be one.
According to the r1, r2 and r3 in the Appendix C, the dif-
ferences between two messages will appear at indices 125,
179 and 213. After i touches 213, the two internal states be-
come the same. Figure 10 describes the above collision by
using Transitional pattern during one compression function
C (63-byte message plus one padded byte).

Several message modifications will help to reduce the
collision complexity, which are described as follows, assum-
ing M2[27] = M1[27] + 1, and M2[i] = M1[i] for i � 27. In
the first round, by modifying message M1[24] = 27 − j23 −
S 23[24], M1[27] = 230 − j26 and M[28] = 44, all the first
round conditions can be satisfied. We also assume that after
two S -Box differences are introduced by the message differ-
ence at index 27, one of the S -Box difference at index 27
is not touched by j until i = 211. This means j211 = 27,
and pattern requires j212 = 212 = j211 + 54 + M1[44], thus
we can also set M1[44] = 131 in the first round, which will
guarantee in the last round that j212 = 212 is satisfied with
probability 1 as long as j211 = 27 is passed. The rest of
the conditions j125 = 179, j179 = 212 and j211 = 27 are
determined in the probabilistic way (28). This gives us an
approximate complexity at around 224. Both our result and
[16] (with complexity 29) can give a practical time collision.
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Here suppose we have an piece of input message, which af-
ter padding, will result in more than one message block.
Collision is achieved for the first message block, and we
give the first two input message blocks after padding, and
the output intermediate states S 1, j1. We use l = 16 and the
collision is found on an Intel Core Duo CPU notebook PC
within less than one minute.

Message1(Message2): 10 3C 6F 3A 67 55 2A 60 81 10 73
F0 5E D1 04 F4 C7 77 57 22 88 6B F4 3E 7D 28 9F 0C(0D)
2C E3 12 F2 83 CF 5E CB A4 55 F2 A4 94 3B A2 FB 83
F8 83 E4 91 BD 6E 2B 7A A5 44 48 CF 43 A3 68 24 22 0E
7C
S1 : F3 E1 CB 22 3C 1A F7 A2 A6 07 7C A7 BD 4D 0C 02
5D 86 04 38 30 D2 53 03 FB 21 D1 24 A8 DF 83 68 F9 8F
43 D3 B3 C4 B6 D9 F0 39 78 0B DD 26 23 AE CC E8 4E
3E 8A E7 18 E5 FF 7B A9 4C A4 88 41 92 D5 14 82 E0
8C 98 61 C5 65 AB 06 46 6F EA 4F E9 BB A0 ED 00 97
49 D8 F2 63 E6 D7 89 45 48 2D B8 C9 01 3F 59 0A C1 C7
E3 EC 62 96 9F AC 52 C3 16 72 FD 7E B4 8E 25 5E 27 67
A3 B7 CA 09 37 33 99 57 DC 2E 42 69 B 2 CF EF F5 70
A5 1F BA 94 58 B9 56 B5 5F 2C 11 EB 3A 2B 9E C0 32
28 7D FE 5C F4 08 34 5B F1 64 0F D6 4A 2A 40 C6 BC
71 2F 50 10 B0 91 A1 DE D4 FA 90 12 84 5A 3B AD 7A
73 AF 05 9D 87 8B 79 BF C8 D0 FC C2 51 E4 1C 66 74 7F
44 31 55 0E 35 36 6 A 9B 77 95 6B 85 54 DA 81 76 13 47
75 8D 15 B1 CD 19 CE DB 20 4B 1E 93 17 1D 80 1B 9C
60 F8 AA 6D 0D EE 3D F6 9A E2 6C BE 29 6E
j1 : 8E

5.3 Design Principle Discussion

From the above analysis, we can see that the design of the
compression function even by modifying the KSA using S IV

and mapping function ri cannot eliminate the KSA collision
property. Here we propose one method to mitigate the at-
tack that caused by the RC4 key collision property. The
repair only requires us to reduce the length of the message
block from 512-bit to 128-bit, than the collision can be com-
pleted eliminated. This is because after reducing to 128-bit
(16-byte), each message block will be scrambled 16 times,
and this has been proved by Theorem 2 that no collision is
possible any more under this setting. In other words, we pro-
vide, to some degree, a provable-collision-resistance repair
to the problem. However, we must point out that the effi-
ciency suffers from this modification and thus leaves space
for designing efficient and secure RC4-based compression
function as future work.

6. Conclusion

In this paper, we have shown that RC4 has a vulnerability
that generates many colliding key pairs with various ham-
ming distances. We analyze the behavior of these colliding
key pairs and formalized them into two patterns, which in-
clude the newly discovered colliding key pairs we found,
and also the ones found in previous research. We further

estimate the numbers for all the RC4 colliding key pairs,
and clarify the relations among the number of colliding key
pairs, key length and hamming distances. Finally, we show
how the RC4 key collision patterns can be used to find
hash collisions for RC4-Hash which was proposed at IN-
DOCRYPT 2006.
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Appendix A: Probability Proof

Lemma 1: Event A: S d+pk[d + pk] + t = S d+pk[d + pk + t]
for p = 0, 1, · · · , n − 1
The probability of Event A is
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P(Ad,k,p) =
255
256
×(

254
256

)d+pk−1+
1

256
for p = 0, · · · , n−1

Proof 1: There are two cases that could lead to S d+pk[d +
pk] + t = S d+pk[d + pk + t].
Case 1(Event B): S d+pk[d+pk] and S d+pk[d+pk+t] have not
been swapped before. The probability for this case(Event B)
is ( 254

256 )d+pk−1.
Case 2(Event C): S d+pk[d + pk] and S d+pk[d + pk + t]
have been touched before i touches d + pk. The proba-
bility of Event C is the complement of Event B, namely,
1 − ( 254

256 )d+pk−1.
According to the law of total probability, we have

P(A) = P(A|B)P(B) + P(A|C)P(C)
= 1 × ( 254

256 )d+pk−1 + 1
256 × (1 − ( 254

256 )d+pk−1)
= 255

256 × ( 254
256 )d+pk−1 + 1

256

Appendix B: RC4 Colliding Key Pairs

Transitional Pattern, h=3, k=128. K1(K2)

47 B9(BA) 01 3F C0(C1) CE A1 84 72(73) 0C 45 13 A0
7D 2C 4E 1A 77 3B 12 C8 DD 82 D7 9D D0 CD D2 A5 60
63 2C 44 11 92 A1 E3 BC 7B DA AC 9A 64 63 5C CD EB
4E B3 08 05 01 8E 73 1F F5 97 AA 8C 8C 68 C6 80 BD 91
A3 2A B2 71 DF 87 15 F3 EC 5A 8D 46 4E 60 08 C8 08
A1 7B 70 39 BE E0 B3 C4 29 57 18 69 E7 29 54 0C 8B 6B
52 E4 82 17 94 26 C4 03 EE A4 02 E9 16 29 B6 82 C9 5F
D3 8C 0B F8 BD 06 6D 1B 5C 01

Self-Absorbing Pattern 1, h=4, k=128. K1(K2)

29 D7(D9) 3C(3A) C5(C7) 4E A3 5E 9F FD(FF) 4C 54 E4
AE 9F D6 56 34 92 18 EB 82 62 5B 75 17 2C 9B 37 88 2E
B6 4C 37 C8 14 19 AB 3B B8 F0 06 B2 AD 1D 21 7E 31
97 C8 B9 DA DB 3C BC 0E 31 33 D7 7B 3A 1A DE 1A 60
B1 0E 0D AF 09 5A 6A B3 39 B7 67 B7 37 33 28 A3 C1
5D BB 97 D1 91 2A 0A 46 A6 B3 88 A6 CE 99 15 64 F1
E2 78 A5 4A 9F 7D 12 0E 4D 97 4F 81 C9 13 17 6D 4B 0E
1D 60 76 57 4B E1 1F 1C F8 7E A1 94

Self-Absorbing Pattern 2, h=5, k=128. K1(K2)

DE 22(24) 62(60) 9D(9F) AE 4B(49) E7(EB) 09 DD 9A 87
D7 AF A6 1B 3A 5B E2 FC E1 07 A4 7C C6 41 84 DE 84
CD B8 C4 15 56 29 7C 79 73 8A 6C 02 1A 89 37 E0 2E 5C
6D 3F 0F 9C 68 90 65 03 29 E0 62 0F B9 C6 98 E2 94 6F
02 88 23 45 9F D3 FA 2F 82 28 C8 13 61 CD FA E2 22 F3
2D 78 56 AF 34 9D 91 D6 8A 6B B6 32 F7 14 79 14 90 28
AC EC 96 4D C4 C8 9E C6 2C CE 49 5A A9 40 98 01 52
A3 C0 EB F6 18 79 B9 EA 9E 30 C8

Appendix C: RC4-Hash (ri Functions and SIV)

r1: 00 37 2E 25 1C 13 0A 01 38 2F 26 1D 14 0B 02 39 30
27 1E 15 0C 03 3A 31 28 1F 16 0D 04 3B 32 29 20 17 0E
05 3C 33 2A 21 18 0F 06 3D 34 2B 22 19 10 07 3E 35 2C

23 1A 11 08 3F 36 2D 24 1B 12 09

r2: 00 39 32 2B 24 1D 16 0F 08 01 3A 33 2C 25 1E 17 10
09 02 3B 34 2D 26 1F 18 11 0A 03 3C 35 2E 27 20 19 12
0B 04 3D 36 2F 28 21 1A 13 0C 05 3E 37 30 29 22 1B 14
0D 06 3F 38 31 2A 23 1C 15 0E 07

r3: 00 2F 1E 0D 3C 2B 1A 09 38 27 16 05 34 23 12 01 30
1F 0E 3D 2C 1B 0A 39 28 17 06 35 24 13 02 31 20 0F 3E
2D 1C 0B 3A 29 18 07 36 25 14 03 32 21 10 3F 2E 1D 0C
3B 2A 19 08 37 26 15 04 33 22 11

S IV :
91 39 85 21 41 31 53 3D 71 AB 3F 9B 4A 32 84 F8 EC DA
C0 D9 17 24 4F 48 35 D2 26 3B 36 D0 B9 0C E9 BD 9F
A9 F0 9C B8 C8 D1 AD 14 FC 60 D3 8F 65 2C DF 76 01
E8 23 EF 09 72 6D A1 B7 58 42 DB 4E 9D AE BB C1 C7
63 34 78 59 A6 12 4C F1 0D E1 06 92 97 CF B1 67 2D 94
20 1D EA 07 10 13 5B 6C BA 74 3E CB 9E B4 95 43 69
F7 03 80 D7 79 7F B3 AF FB 68 F6 62 8C 0B 86 DD 18 45
BE 9A FD A8 44 E6 3A 99 BC E0 64 81 7C A2 0F 75 E7
96 ED 40 16 98 A5 EB E3 8B C9 54 D5 4D 50 C5 FA 7E
CA 27 00 5E 2A F3 E4 57 52 1B 8D 3C A0 2E 7D 70 B5
F2 A7 5C C6 AC AA 37 73 1E 6B 11 38 1F 87 E5 28 6F
25 DE B6 19 2B 77 F4 BF 7A 66 15 5D 61 83 A4 0A 82 2F
B0 EE D4 90 29 0E F9 DC 22 88 47 30 8E 49 7B CC CE
04 D8 C4 D6 89 FF C3 1A 08 33 B2 02 8A FE 5A C2 51
F5 6A 5F 4B 56 A3 CD 46 E2 1C 93 55 05 6E

Appendix D: Fast Searching Technique for Self-
Absorbing Pattern

The special property of Self-Absorbing pattern allows us
to make an efficient colliding key search under this pat-
tern. In order to explain in a simply way, let’s assume
we want to search for a colliding key pair with parameters
d, t and h = 3 (it can be applied to general case). In the
first round, we have to meet jd = d, jd+t = d + t which
gives us the equation t =

∑d+t
i=d+1 K1[i] +

∑d+t
i=d+1 S i[i]. And

also we have to satisfy S d[d + t] − S d[d] = t. Due to
the property of Self-Absorbing pattern, this works exactly
the same way for the rest of the rounds. In other words,∑d+t

i=d+1 S i[i] = · · · = ∑d+t+nk
i=d+1+nk S i[i] = t − ∑d+t

i=d+1 K1[i], and
S d[d+ t]−S d[d] = · · · = S d+nk[d+ t+nk]−S d+nk[d+nk] = t.
Then we can satisfy these conditions in the first round by
swapping the right values to the corresponding locations,
and hope they will not be touched by j before i touches
them. By using this technique, a 39-byte colliding key pair
with h = 3, d = 22, t = 2 is found within 5 seconds on an
Intel Core Duo CPU notebook PC.

K1(K2) : C2 30 B3 54 07 D8 A5 D4 DF 25 C7 5B 1B 59 27
2F C9 75 77 B8 C5 5E 4F(51) C2(C0) 11 0C(0E) 0D C0
0B 08 09 BC 07 04 D2 EB E1 C8 D1



2206
IEICE TRANS. FUNDAMENTALS, VOL.E94–A, NO.11 NOVEMBER 2011

Jiageng Chen received the B.Sc. in com-
puter science from Huazhong University of Sci-
ence and Technology (HUST), Wuhan, China in
2004, and the M.Sc. in information science from
Japan Advanced Institute of Science and Tech-
nology (JAIST), Nomi, Japan in 2007. He is
now a Ph.D. candidate of School of Information
Science, Japan Advanced Institute of Science
and Technology (JAIST). He is supported by the
Graduate Research Program (GRP) within the
School of Information Science at JAIST. His re-

search areas mainly include cryptanalysis on symmetric key cryptography,
especially on stream ciphers.

Atsuko Miyaji received the B.Sc., the
M.Sc., and the Dr. Sci. degrees in mathematics
from Osaka University, Osaka, Japan in 1988,
1990, and 1997 respectively. She joined Pana-
sonic Co., LTD from 1990 to 1998 and engaged
in research and development for secure commu-
nication. She was an associate professor at the
Japan Advanced Institute of Science and Tech-
nology (JAIST) in 1998. She has joined the
computer science department of the University
of California, Davis since 2002. She has been

a professor at the Japan Advanced Institute of Science and Technology
(JAIST) since 2007 and the director of Library of JAIST since 2008. Her
research interests include the application of number theory into cryptogra-
phy and information security. She received Young Paper Award of SCIS’93
in 1993, Notable Invention Award of the Science and Technology Agency
in 1997, the IPSJ Sakai Special Researcher Award in 2002, the Standardiza-
tion Contribution Award in 2003, Engineering Sciences Society: Certificate
of Appreciation in 2005, the AWARD for the contribution to CULTURE
of SECURITY in 2007, IPSJ/ITSCJ Project Editor Award in 2007, 2008,
2009, and 2010, the Director-General of Industrial Science and Technol-
ogy Policy and Environment Bureau Award in 2007, Editorial Committee
of Engineering Sciences Society: Certificate of Appreciation in 2007, Do-
CoMo Mobile Science Awards in 2008, Advanced Data Mining and Appli-
cations (ADMA 2010) Best Paper Award, and The chief of air staff: Letter
of Appreciation Award. She is a member of the International Associa-
tion for Cryptologic Research, the Institute of Electronics, Information and
Communication Engineers, the Information Processing Society of Japan,
and the Mathematical Society of Japan.


