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Abstract—concatenated source channel coding for binary
Markov sources over AWGN channels. To exploit the memory
structure inherent within the sequence output from the source,
modifications are made on the BCJR algorithm. To decode the
outer code, the modified version of the BCJR algorithm is used,
while the inner code by the standard version of the algorithm.
Since optimal design of serially concatenated convolutional code
falls into the problem of curve matching between the extrinsic
information transfer (EXIT) curves of the inner and outer codes,
we first evaluate the EXIT curve of the outer code decoded by
the modified BCJR algorithm. It is then shown that the EXIT
curve obtained by the modified BCJR algorithm is better matched
with short memory inner convolutional code, which significantly
reduces coding/decoding complexity. Numerical results demon-
strate significant gains over the systems in which source statistics
are not exploited (i.e., the standard BCJR algorithm is used
for the both codes), and thereby narrowing the performance
gap to the Shannon limit. We also compare in this paper the
performance of the proposed design with the algorithm presented
in [1], designed also for transmission of binary Markov source
using parallel concatenated convolutional code (the authors of
Ref. [1] refer the technique as Joint Source Channel Turbo Code
(JSCTC)). It is shown that our proposed system is superior in
both system complexity and BER performance to the JSCTC
technique presented in [1].

I. INTRODUCTION

The fundamental problem of future ubiquitous commu-
nication systems is how to transmit information data ef-
ficiently and reliably from source to destination over the
channels suffering from various impairments such as fading,
interference, and/or distortions due to practical limitations.
In traditional communication systems, source and channel
coding are performed separately: the source coding removes
the redundancy of the data sequence for the source, while
channel coding adds redundancy to correct errors cause by the
noise in the communication channel. The global optimality of
separately optimizing the source and channel coding scheme
is guaranteed by the Shannon separation theorem, with the
assumption that the source entropy is lower than the chan-
nel capacity. However, there are three drawbacks of seeking
separately for the optimality based on the separation theorem:
(1) if the source have memory structure, such as speech and
image/video, there may be still redundancy left after source
encoder; (2) it needs infinite code length, which usually incurs
unacceptable large latency of communications; (3) the system

tends to break down completely when the channel quality falls
under a certain threshold, which means the channel code is no
longer capable of correcting the errors [2].

As a remedy to those fundamental drawbacks, joint source-
channel coding (JSC) has gained considerable attention over
the last decade. In many approaches to JSC coding, the
memory structure of the source or the implicit redundancy
after source encoding is additionally used to enhance the error
correcting capability of the joint decoder. In 1995, Hagenauer
[3] proposed a JSC coding scheme with Viterbi decoding
for PCM transmission used in the full rate GSM speech
codec, where modifications are made to the Viterbi decoding
algorithm to take the redundancy after source encoder into
account.

Discovery of the turbo codes, followed by the re-discovery
of the LDPC codes, has invoked a new concept of the JSC
code design. In [1], [4], [5], Turbo code is used as JSC
code while LDPC code in [6]–[9], where source statistic is
exploited in the decoding process, and hidden markov model
is used to describe the source. Instead of making modifications
on the decoding algorithms, [10]–[13] modifies the encoder
based on the source statistics and use standard maximum a
posteriori probability (MAP) algorithm (it is well known that
for convolutional code, MAP decoding can be efficiently per-
formed by the BCJR algorithm) at the receiver. Quite recently,
Multiple Label Mapping (MLM) is investigated in [14] to
eliminate the boundary problem due to the variable length
source coding, and the use of Burrows-Wheeler Transform
(BWT) is investigated in [15], both with the aim of achieving
efficient JSC code design.

In our proposed system, the source memory is utilized
during the decoding process, in the same way as in [1], [4], [5].
Especially, [1] presents a JSC coding scheme using turbo code
for binary markov source which achieves considerable gains
over standard turbo code. However, the technique presented in
[1] requires relatively large memory length constituent codes
for the turbo code used. Furthermore, the extrinsic information
obtained by the second decoder needs to be modified before
feeding it back to the first constituent decoder, which requires
higher decoding complexity than that with the standard BCJR
algorithm.

In this paper, we propose a JSC coding technique using



Fig. 1. symmetric state emitting Markov source. For state Si, i is transmitted,
i ∈ {0, 1}.

Fig. 2. Block diagram of the system.

serially concatenate convolutional code, where, since the code
optimality is the issue of the EXIT curve matching, not the
strength of the code itself, it is shown through EXIT analysis
that very short memory codes can achieve almost equivalent
or even better performance than the technique shown in [1].
More specially, memory-1 outer code and memory-2 inner
code are used in this paper. The standard BCJR algorithm
is modified to take into account the memory structure of the
Markov source, and used for decoding the outer code, while
the standard BCJR algorithm is used for decoding inner code,
which enables directly exchange of the extrinsic information
between the inner and outer decoders without requiring any
modifications. As a whole, the decoding complexity of the
proposed JSC technique is much lower than that required by
[1].

The reminder of this paper is organized as follow. In section
II, we present a brief description of the system model. Section
III makes modifications on the BCJR algorithm to exploit the
memory structure of the Markov source. Section IV shows
results of simulations conducted to demonstrate the superiority
of the proposed technique. Finally, Section V concludes this
paper with some concluding remarks.

II. SYSTEM MODEL

The source we considered in this paper is a stationary state
emitting binary Markov source {Ut}, 1 ≤ t ≤ T , with the
property that the current binary value is determined only by
its previous value, as

Pr{Ut|Ut′ , 1 ≤ t′ < i} = Pr{Ut|Ut−1}, (1)

of which can be conveniently described by using the transition
matrix:

A = [ai,j ] =

[
p1 1− p1

1− p2 p2

]
, (2)

with the transition probability defined by

ai,j = Pr{Ut = j|Ut−1 = i}, i, j ∈ {0, 1}. (3)

If p1 = p2 = p, the source is referred to as symmetric Markov
source, as shown in Fig. 1, where S0 is the state that emits ”0”
and S1 the state that emits ”1”. The entropy rate of stationary
Markov source [16] is

H(S) = −
∑

i,j∈{0,1}

µiai,j log ai,j , (4)

where {µi} is the stationary distribution. For symmetric
Markov source, µ0 = µ1 = 0.5 holds, which yields

H(S) = −p log p− (1− p) log(1− p). (5)

If p1 6= p2, the source is referred to as asymmetric Markov
source. The entropy rate can also be easily obtained by (4).
For the sake of simplicity, we only consider symmetric Markov
source in this paper, and the result can easily be extended to
the asymmetric case [1].

The block diagram of our proposed JSC coding scheme is
illustrated in Fig. 2. At the transmitter side, a rate r1 = 1/2
outer code C1 and a rate r2 = 1 inner code C2 are serially
concatenated, yielding a overall rate r (= r1r2 = r1).
The information bits from the binary Markov source are fed
directly to C1. The output of C1, including systematic bits
and parity bits, are then bit-interleaved by π and encoded by
C2. Since C2 is a rate 1 code, only the encoded bits of C2,
not including its systematic input, are BPSK modulated and
then transmitted over the channel suffering form zero mean
Additive White Gaussian Noise (AWGN) with variance σ2.

At the receiver side, iterative decoding is invoked between
two soft input soft output (SISO) decoders D1 and D2, accord-
ing to the turbo decoding process, where the standard BCJR
decoding algorithm and its modified version, as described
in the next section, are performed for decoding of C2 and
C1, respectively. Extra gains in terms of extrinsic mutual
information can be achieved by utilizing the modified BCJR
algorithm in decoder D1 that exploits knowledge about the
Markovianity of the source.

III. DECODER DESIGN FOR BINARY MARKOV SOURCE

The goal of this section is to derive the modified version of
the BCJR algorithm that takes into account the source memory.
Hence, in this section, we ignore momentarily the serially
concatenated structure, even though it is the core topic of this
paper, and only focus on the decoding process of one decoder
using the BCJR algorithm. For the sake of notation simplicity,
the same notations to describe the transmitted and the received
symbols, Xk and Yk, respectively, are used as in Fig. 2.



A. Standard BCJR algorithm

First of all, we briefly describe the standard BCJR decoding
algorithm, originally developed to perform the MAP algorithm
[17] for convolutional code (CC). For a CC with memory
length v, there are 2v states in its trellis diagram, which
is indexed by m, m = 0, 1, · · · , 2v − 1. The input to the
encoder is denoted as {Ut}, of which length is L. Let’s
assume that r1 = 1/2 for the simplicity. Then, the output of
the encoder is denoted as {Xt} = {Xp1

t , Xp2
t }. The coded

binary sequence is BPSK mapped, i.e, logical ”0” → +1
and logical ”1” → −1, and is transmitted over a AWGN
channel. The received signal is a noise corrupted version of
the BPSK mapped sequence, denoted as {Yt} = {Y p1

t , Y p2
t }.

The received sequence during time duration from t1 to t2
is denoted as Y t2

t1 = Yt1 , Yt1+1, . . . , Yt2 . When summarizing
and making modifications on the BCJR algorithm, we do not
assume that the code is either systematic or non-systematic.
Because the BCJR decoder can calculate the extrinsic log-
likelihood ratio (LLR) of coded and uncoded (information)
bits by giving labeling properly in the trellis diagram of the
code corresponding to its input-output relationship [18].

The BCJR algorithm evaluates the conditional LLR for
{Xp1

t } based on the whole received sequence Y L
1 , which is

defined by

L(Xp1
t ) = log

Pr{Xp1
t = 1|Y L

1 }
Pr{Xp1

t = 0|Y L
1 }

= log
Pr{Xp1

t = 1, Y L
1 }

Pr{Xp1
t = 0, Y L

1 }
.

(6)

To compute the LLR of Xp1
t , we use the joint probability

σt(m
′,m) = Pr{St−1 = m′, St = m,Y L

1 }, (7)

and rewrite (6) as

L(Xp1
t ) = log

Pr{Xp1
t = 1, Y L

1 }
Pr{Xp1

t = 0, Y L
1 }

= log

∑
(m′,m)∈B1

t

σt(m
′,m)∑

(m′,m)∈B0
t

σt(m′,m)
,

(8)

where Bj
t denotes the set of transitions St−1 = m′ → St =

m such that the output on that transition is Xp1
t = j, j ∈

(0, 1). In order to compute (7), three parameters indicating
the probabilities defined as below have to be introduced:

αt(m) = Pr{St = m,Y t
1 },

βt(m) = Pr{Y L
t+1|St = m},

γt(m
′,m) = Pr{St = m,Yt|St−1 = m′},

(9)

Now we have

σt(m
′,m) = αt−1(m

′)γt(m
′,m)βt(m). (10)

It is easy to show that αt(m) and βt(m) can be computed via
the following recursive formulae

αt(m) =
∑
m′

αt−1(m
′)γt(m

′,m),

βt(m) =
∑
m′

βt+1(m
′)γt+1(m,m′).

(11)

Since the encoder always starts form zero state, the appropriate
boundary condition for α is α0(0) = 1 and α0(m) = 0, m 6=
0. The boundary conditions for β depends on whether the
trellis diagram is terminated by transmitting the tail bits or
not. If we leave the encoder unterminated, the corresponding
condition for β is βL(m) = 1/2v, m = 0, 1, · · · , 2v − 1;
otherwise, βL(0) = 1 and βL(m) = 0, for all m 6= 0. In our
system, we use long and random enough interleaver, so that
LLRs can be regarded as statistically independent.

From the above descriptions, it is found that γ plays a
crucial role in computing the LLRs. Because Y p1

k and Y p2
k

are statistically independent, γ can be computed by

γt(m
′,m) = Pr{St = m|St−1 = m′}Pr{Y p1

t |Xp1
t = xp1

t }
Pr{Y p2

t |Xp2
t = xp2

t }, (12)

The first term Pr{St = m|St−1 = m′} is determined by the
statistic information of the both input and output bits, as:

Pr{St = m|St−1 = m′} = Pr{Ut = ut}Pr{Xp1
t = xp1

t }
Pr{Xp2

t = xp2
t }, (13)

where the input/output bits, ut/(x
p1
t , xp2

t ), are associated with
trellis branch of St−1(m′) → St(m). It should be mentioned
that Pr{Ut = 1} = Pr{Ut = 0} = 1/2. Then we can rewrite
(8) as

L(Xp1
t ) = Lap(X

p1
t ) + Lch(X

p1
t ) + Lex(X

p1
t ), (14)

where

Lap(X
p1
t ) = log

Pr{Xp1
t = 1}

Pr{Xp1
t = 0}

, (15)

Lch(X
p1
t ) = log

Pr{Y p1
t |Xp1

t = 1}
Pr{Y p1

t |Xp1
t = 0}

, (16)

and Lex(X
p1
t ) is defined as (17) at the top the next page,

which are called the a priori LLR, the channel LLR, and the
extrinsic LLR, respectively. If the decoder is not connected
to the channel such as outer code of the serially concatenated
code, it can not get any information about coded bits from the
channel, which means Lch = 0 and L(Xp1

t ) = Lap(X
p1
t ) +

Lex(X
p1
t ). The same result can be obtained for Xp2

t .
In iterative decoding, Lex(X

p1
t ) and Lex(X

p2
t ) are rear-

ranged by the interleaver and fed into another decoder.

B. Modified BCJR Algorithm

In the original BCJR algorithm, the information bits are
assumed to be memoryless. With the presence of the source
correlation, the BCJR algorithm can well be modified to best



Lex(X
p1
t ) = log

∑
(m′,m)∈B1

t

αt−1(m
′) Pr{Ut = ut}Pr{Xp2

t = xp2
t }Pr{Y p2

t |Xp2
t = xp2

t }βt(m)∑
(m′,m)∈B0

t

αt−1(m′) Pr{Ut = ut}Pr{Xp2
t = xp2

t }Pr{Y p2
t |Xp2

t = xp2
t }βt(m)

(17)

L′
ex(X

p1
t ) = log

∑
(m′,m)∈B1

t

∑
i′,i

αt−1(m
′, i′)ai′,i Pr{Ut = i}Pr{Xp2

t = xp2
t }Pr{Y p2

t |Xp2
t = xp2

t }βt(m, i)∑
(m′,m)∈B0

t

∑
i′,i

αt−1(m′, i′)ai′,i Pr{Ut = i}Pr{Xp2
t = xp2

t }Pr{Y p2
t |Xp2

t = xp2
t }βt(m, i)

(27)

ultilize the redundancy inherent within the Markov source. To
achieve this goal, variables α, β and γ have to be modified as

αt(m, i) = Pr{St = m,Ut = i, Y t
1 },

βt(m, i) = Pr{Y L
t+1|St = m,Ut = i},

(18)

γt(m
′, i′,m, i)

= Pr{St = m,Ut = i, Yt|St−1 = m′, Ut−1 = i′}, (19)

with which α and β can also be calculated in the same way
as in the standard BCJR algorithm, as

αt(m, i) =
∑
m′,i′

αt−1(m
′, i′)γt(m

′, i′,m, i),

βt(m, i) =
∑
m′,i′

βt+1(m
′, i′)γt+1(m

′, i′,m, i),
(20)

Then the joint probability σ can then be derived as

σt(m
′,m) =

∑
i′,i

αt−1(m
′, i′)γt(m

′, i′,m, i)βt(m, i). (21)

Next we show how to compute γt(m
′, i′,m, i). It can be

decomposed as

γt(m
′, i′,m, i)

= Pr{St = m,Ut = i, Yt|St−1 = m′, Ut−1 = i′}
= Pr{St = m,Ut = i|St−1 = m′, Ut−1 = i′}

Pr{Y p1
t |Xp1

t = xp1
t }Pr{Y p2

t |Xp2
t = xp2

t },

(22)

The first term is a ”joint” probability reflecting the two factors:
input/output relationship corresponding to the state transition
St−1 → St, specified by the encoder structure, of which
influence appears in the statistics of the a priori information,
and the other the transition probability depending on memory
structure of the Markov source. We approximate this term by

Pr{St, Ut|St−1, Ut−1} u Pr{Ut = i|Ut−1 = i′}
Pr{Ut = i}Pr{Xp1

t = xp1
t }Pr{Xp2

t = xp2
t }. (23)

Now, let us compare (22) and (23) with (12) and (13). It is now
found that the transition probability Pr{Ut = i|Ut−1 = i′} is
invoked in the computation of γ. Thereby, we can now obtain
the LLR for {Xp1

t } as

L′(Xp1
t ) = L′

ap(X
p1
t ) + L′

ch(X
p1
t ) + L′

ex(X
p1
t ) (24)

with

L′
ap(X

p1
t ) = log

Pr{Xp1
t = 1}

Pr{Xp1
t = 0}

, (25)

L′
ch(X

p1
t ) = log

Pr{Y p1
t |Xp1

t = 1}
Pr{Y p1

t |Xp1
t = 0}

, (26)

and L′
ex(X

p1
t ) is defined as (27), located at the top of this

page.
Comparing the expressions described above with the stan-

dard BCJR algorithm, it is found that with the modified BCJR
algorithm, the a priori LLR and the channel LLR (actually
this term is 0 for the outer code of serially concatenated
codes) stay the same as in the standard BCJR algorithm,
respectively. The statistical structure of the source is exploited
inherently within forward-backward calculations, resulting in
improved extrinsic LLR in the presence of source memory,
which can be fed directly into the other constituent decoder
via interleaver without involving any other computations. It
should be noticed that if we apply this modified algorithm
for memoryless source, since ai′,i = 0.5, for i′, i ∈ (0, 1),
the extrinsic LLR of the modified BCJR algorithm, given by
(27), is the same as that of the standard BCJR. Moreover,
as the source correlation becomes larger, the extrinsic LLR
will also becomes larger, which will help the decoder recover
the information bits even at lower Signal to Noise Ratio
(SNR) value range. The expected impact of using the modified
BCJR algorithm is verified in next section through computer
simulations.

IV. NUMERICAL RESULTS

In this section, we present results of EXIT analysis [19],
[20] conducted to identify the impact of source correlation
on outer coder, as well as the convergence property of the
proposed system. Then the BER performance of our scheme is
evaluated and compared with the JSC coding technique shown
in [1] in terms of the gap in Eb/N0 to the theoretical limit
derived from the Shannon capacity.

A. EXIT Analysis

1) Outer Coder: From the description in Section III-B,
we know that the source memory helps increase the output
extrinsic information of outer decoder. As described in Section
II, the correlation of the source can be parameterized by
the Markov state transition probability p, 0 < p < 1.
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Fig. 3. Extrinsic information transfer characteristic of outer coder, (Gr, G) =
(3, 2)8

p = 0.5 indicates the memoryless source while p > 0.5 (or
equivalently p < 0.5) indicates source with memory. Since
the correlation is symmetric on p, we only consider the case
0.5 ≤ p < 1. The EXIT curves with standard BCJR and
with modified BCJR exploiting source with different transition
probabilities are illustrated in Fig. 3. The code we used in the
simulations is memory-1 recursive systematic convolutional
code with the generator polynomial (Gr, G) = (3, 2)8.

As shown in Fig 2, the decoder D1 of C1 exploits a
priori LLR A(X1). By using the modified BCJR algorithm,
it generates extrinsic LLR E(X1). Hence the EXIT function
of D1 is defined as:

IE(X1) = TX1(IA(X1)), (27)

where function TX1(·) was obtained by the histogram mea-
surement [20].

For the source with p = 0.5, the EXIT curves with the
standard BCJR decoder and our modified BCJR decoders are
the same. For the Markov sources with different p (p =
0.6, 0.7, 0.8, 0.9), the EXIT curves obtained by using the mod-
ified BCJR decoder are pushed down and shifted to the right as
p increase, indicating that larger extrinsic information can be
obtained. These results are consistent with the consideration
provided in Section III-B. It is also worth noticing that the
contribution of source memory represented by the increase
in extrinsic mutual information is larger when a priori input
IA < 0.5 than when IA > 0.5, and the contribution becomes
negligible when IA > 0.9. It can also bee seen that for
p = 0.6, the improvement is quite limited. Thus we will not
consider this case in the following discussion.

2) Inner Code: D2 calculates its extrinsic LLR int the
same way as D1, except that it has a direct connection to
the Channel. Hence, its EXIT function is defined as:

IE(U2) = TU2(IA(U2), Eb/N0). (28)
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Fig. 5. BER performance of proposed system for Markov sources with
different correlation

Here we used memory-2 recursive convolutional code with
the generator polynomial (7, 4)8 for numerical evaluation. To
obtain TU2(·), we also use the LLR histogram measurement.

B. Trajectory

Because the mutual information does not change after
interleavering/deinterleavering, the following equality holds

I
(l)
A (X1) = I

(l−1)
E (U2), (29)

I
(l)
A (U2) = I

(l−1)
E (X1), (30)

where l is the iteration index, i.e., the extrinsic information
generated by the first decoder is used as the a priori informa-
tion for the second decoder. In the chain simulation, we eval-
uated the extrinsic mutual information, iteration-by-iteration,
and plotted the obtained mutual information, according to (29)
and (30).

The EXIT chart and trajectory of our system for Markov
source with different p values as a parameter are shown in Fig.
4 for (2, 3)8 and (7, 4)8 outer and inner codes, respectively. It
is found from Fig. 4(a) that with p = 0.7 and Eb/N0 = 0.1
dB, the convergence tunnel is still open until a point very close
to (1, 1) mutual information point, and the trajectory reaches
the convergence point. The convergence behavior with p = 0.7
and Eb/N0 = 0 dB is presented in Fig. 4(b), where Eb/N0

is only 0.1 dB lower than the case shown in Fig. 4(a). It is
found that the trajectory gets stuck with Eb/N0 = 0 dB. This
observation suggests that the convergence threshold is 0.1 dB
for p = 0.7. The same observation can be drawn with p = 0.8
and p = 0.9, where the convergence threshold is −1.1 dB and
−3.4 dB, respectively.

C. BER Performance Evaluation

A series of simulations were conducted to evaluate bit error
rate (BER) performance of our proposed technique. The length
of the bit sequence transmitted through the channel is 10000
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(b) p = 0.7, Eb/N0 = 0 dB
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(d) p = 0.8, Eb/N0 = −1.2 dB
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(e) p = 0.9, Eb/N0 = −3.4 dB
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(f) p = 0.9, Eb/N0 = −3.5 dB

Fig. 4. EXIT chart of proposed system for Markov source with different p values.



bits, and 1000 different blocks were transmitted for the sake of
keeping reasonable accuracy. From the convergence analysis
provided in the previous subsection, we can see that when
the Eb/N0 is even a little larger than the threshold, narrow
convergence tunnel opens until a point very close to the (1,1)
mutual information point, as shown in Fig. 4(e). The iteration
times were determined, depending on the trajectory simulation
results shown in Fig. 4.

BER performance of the proposed JSC coding technique for
Markov source with different correlation over AWGN channel
is shown in Fig. 5. It can be seen that there are no error floors.
Furthermore, the Eb/N0 value, with which the turbo cliff
happens, is exactly consistent with the convergence threshold
presented in the previous subsection.

For the source without memory, the threshold Eb/N0 for
the serially concatenated codes with the same code parameters
((3, 2)8 inner and (7, 4)8 outer codes) is 0.94 dB [19], if it
is decoded by the standard BCJR algorithm. For the source
with memory, the limit (Eb/N0)lim is determined from the
condition H(S)R ≤ C, where with the source-channel sepa-
ration assumption, R specifies the code rate, H(S) the entropy
of the source, and C = 1

2 log2(1 + 2EbR
N0

) is the capacity of
the AWGN channel in bits per channel use. These conditions
yields

(
Eb

N0
)lim =

22H(S)R − 1

2R
. (31)

Using (31), we can obtain the Shannon limit for p =
0.7, 0.8, 0.9 and R = 1/2, which are −0.75 dB, −1.88 dB,
and −4.16 dB, respectively. These limits are also depicted in
Fig. 5.

It can be clearly observed from the threshold analysis
shown in Fig. 4(e) that when p = 0.9, our system offers a
gain of 4.34 (= 0.94 − (−3.4)) dB over the concatenated
convolutional code with the same parameter decoded by the
standard BCJR algorithm (Threshold is Eb/N0 = 0.94 dB,
as described above). The gap to the Shannon limit described
above is 0.76 (= −3.4 − (−4.16)) dB. It should be noticed
that the gains from the standard BCJR decoder and the gaps to
the Shannon limits are different, depending on the correlation
parameter p. The results are provided in Table I, togather with
the results of JSCTC [1]. It can be found from the table that
substaintial gains can be achieved for different p values for
both systems over original parallel/serial concatenated codes,
proposed in [1] and in this paper, respectively, indicating that
exploiting the source memory in JSC scheme provides us
with significant advantage. Intuitively, if the correlation of the
source is stronger (p is larger), the gains will also becomes
larger. This observation is consistent with Table I. However,
for JSCTC, as p increase, the gaps to the Shannon limits
also become larger, reflecting the fact that JSCTC can not
fully exploit the source memory structure when the source
correlation is strong. While our proposed system is more
suitable in such high correlation scenarios. In general, besides
the gap in the case of p = 0.7, our system outperforms JSCTC
in terms of both gains over the standard BCJR decoding and

TABLE I
COMPARISON BETWEEN PROPOSED SYSTEM AND JSCTC FOR BER

PERFORMANCE

Source Correlation JSCTC Our system
Gain(dB) Gap(dB) Gain(dB) Gap(dB)

p=0.7 0.45 0.73 0.84 0.85
p=0.8 1.29 0.94 2.04 0.78
p=0.9 3.03 1.36 4.34 0.76

gaps to the Shannon limits.
It should also be noticed here that our system employs

a memory-1 outer code and a memory-2 inner code, and
the extrinsic information obtained by the decoders can be
exchanged directly between two decoder, while JSCTC shown
in [1] uses two memory-4 constituent codes and extrinsic LLR
obtained by the decoders have to be modified before being fed
into another decoder. Hence, our proposed system requires
much less complexity compared with the JSCTC technique
shown in [1].

V. CONCLUSION

In this paper we have investigated the design of serially
concatenated JSC codes for symmetric binary Markov source.
To fully exploit the Markov source memory, the standard
BCJR algorithm is modified, and the modified version of
the BCJR algorithm is used in the outer decoder, while the
standard BCJR algorithm is used in the inner decoder. The
extrinsic LLR obtained by the inner/outer decoder can be
exchanged between the constituent decoders via interleav-
ing/deinterleavering, just in the same way as the decoding of
serially concatenated codes is performed. We have also verified
the superiority of the proposed technique over the JSCTC
proposed in [1] by EXIT analysis as well as trajectory and
BER simulations. It has been shown that our system provides
significant improvements in both gains over the standard BCJR
decoder and the gaps to the Shannon limits by requiring only
minor increase in computational burden.
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