
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
オブジェクト指向設計におけるデザインパターンの特

定分野への適用に関する研究

Author(s) 清水, 裕光

Citation

Issue Date 1997-03

Type Thesis or Dissertation

Text version author

URL http://hdl.handle.net/10119/1056

Rights

Description Supervisor:片山 卓也, 情報科学研究科, 修士



An application of design patterns to speci�c

domain

Hiromitsu Shimizu

School of Information Science,

Japan Advanced Institute of Science and Technology

Februaly 14, 1997

Keywords: object-oriented design, reuse, design patterns, frameworks.

The advantage of object-oriented design, which makes abstraction to real world using

objects and designs software, is reusability. Though there is reusable, designing object-

oriented software is hard, because you must �nd pertinent objects, factor them into classes

at the right granularity, de�ne class interfaces and inheritance hierarchies, and establish

key relationships among them.

Design patterns are reusable and systematically explains reccurring design in object-

oriented design. Each design pattern systematically names, explains and evaluates an

important and recurring design in object-oriented systems. Design patterns make it eas-

ier to reuse successful designs and architectures. Design patterns can even improve the

documentation and maintenance of existing systems by furnishing an explicit speci�ca-

tion of class and object interactions and their underlying intent. It is a partially proved

that each of design patterns for general purpose is useful. But, design patterns are more

abstract, and how those apply speci�c domain isn't studied enough. So, this paper show

a case study for building framework, which is a set of cooperating classes that make up

a reusable design for a speci�c class of software are discussed. Applying design patterns,

and guess problems with reusable designing. A framework is a set of cooperating classes

that make up a reusable design for a speci�c class of software, and most reusable in

object-oriented component.

We apply the approach to designing programming language processor. Programming

language processor established in its design and apply various area. A target systems

consist of the sub-systems including scannar (lexical analyser), parser, evaluator and

viewer.

We discuss that the essential point in designing framework for programming language

processor are as follows: (1) extendability of grammar: Grammar symbol in context-free

Copyright c 1997 by Hiromitsu Shimizu

1



grammar are categorized to terminal symbol or nonterminal symbol. Each of them have

some property. So grammar must be able to change. (2) exibility in output: Output of

parser are a parse tree and an abstract syntax tree. Node of them varys in language, but

a way of building parse tree is �xed. And a way of building abstract syntax tree maybe

changed that is not changing a kind of node handled in language. Therefore framework

must be able to easily change a way of building abstract syntax tree. (3) Use semantic

rule: To describe attribute grammar in used of static semantics which is di�cult that

prove in context-free grammar. Generally, attribute grammar may have a various type.

So framework must be able to handle exible type of attributes.

The result of analysing require for programming language processor, about structure of

framework, design patterns is usable as follows: (1) Using Interpreter pattern, framework

declared a property of each expression of terminal symbol and non-terminal symbol, and

grammar symbol expression is inheriting them. So this pattern allows to change gram-

mar, can output a parse tree after parsing and provide a way of semantic analysis. (2)

Builder pattern separates abstract syntax tree builder from grammar symbol expression,

so framework allows to change to a way of building abstract syntax tree. And making

abstraction of a class required in semantic analysis, framework allows to change to type

of attribute. (3) Iterator pattern take the responsibility for access and traversal out of

an aggregate object which is list expressed attribute or parse tree or abstract syntax tree,

make traverse without exposing its internal structure, and allows to change to a way of

traversal.

After abstract classes structured framework proposed in this paper inherits and im-

plements application of programming language processor, for testing framework that it's

design is reasonable, we give an example of simple programming language processor, and

application which applied framework designed and implemented. The result shows that

framework make it easy to implement it. Especially, we show that the parser can be built

by the grammar automatically. Therefore, we show that framework captures almost of

the design decisions that required in building applications of programming language pro-

cessor. If we use design patterns and building systems with them, design patterns which

can solve the design problem in target systems. We must evaluate the result of using that

pattern, whether it is applicable under condition of it. So in applying design patterns to

speci�c domain, precise documentation is useful to build similar systems. And therefore,

application of design patterns to problems which it gives no direct supports for is future

work.

2


