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A prediative ompletion of a uniform spaeJosef Berger, Hajime Ishihara, Erik Palmgrenand Peter ShusterNovember 9, 2010AbstratWe give a prediative onstrution of a ompletion of a uniformspae in the onstrutive Zermelo-Fraenkel set theory.Keywords: onstrutive mathematis, uniform spae, ompletion, onstru-tive set theory.2010 Mathematis Subjet Classi�ation: 03F65, 54E15.1 IntrodutionIn [6, Problems 17 to 21 of Chapter 4℄, Bishop introdued a onstrutiveonept of a uniform spae with a set of pseudometris, and showed basitheorems, suh as, that arbitrary uniform spae has a ompletion (the set ofCauhy �lters); see also [7, Problems 22 to 26 of Chapter 4℄, and [8, 10℄ forBishop's onstrutive mathematis. Although, apparently, Bishop did notatually say expliitly that the ompletion should have been onstruted inthis way, sine we have to think of the set of Cauhy �lters, the onstrutionof a ompletion is problemati from a prediative point of view, suh as in theonstrutive Zermelo-Fraenkel set theory (CZF), founded by Azel [1, 2, 3℄,without the powerset axiom and the full separation axiom.Shuster et al. [19℄ and Bridges and V̂�t��a [9℄ employed a set of entourageswith an extra ondition to de�ne a uniformity. If the disrete uniformityon R were de�ned by a set D of pseudometris, then there would existd1; : : : ; dn 2 D and � > 0 suh that Pnk=1 dk(x; y) < � implies x = y for eah1



x; y 2 R, and hene we would have the weak limited priniple of omnisiene(WLPO) [8, 1.1℄: 8x; y 2 R[x = y _ :(x = y)℄;whih is provably false both in intuitionisti mathematis and in onstrutivereursive mathematis. Therefore their approah seems more general thanthe approah with a set of pseudometris by Bishop; see also a disussion in[6, Appendix A℄, and [16℄. However their approah for uniform spaes hasa problem from a prediative point of view, and the extra ondition leadsto a phenomenon that we �nd unsatisfatory: namely, that if the real line,taken with the disrete uniform struture, satis�es it, then one an derivethe non-onstrutive priniple WLPO; see [13, Remark 3.1℄.In this paper, we de�ne a notion of a uniform spae using a base of unifor-mity as in [13℄, and onstrut a ompletion of a uniform spae in a subsystemCZF� of the onstrutive set theory CZF; see [12℄ for a onstrution of aompletion of a uniform spae in terms of formal topology [17, 18℄.There are other onstrutive treatments of uniformity: for example, see[11℄ for uniform spaes in formal topology; see also [4℄ for general topologyand formal topology in CZF.2 The onstrutive set theory CZFThe onstrutive set theory CZF, founded by Azel [1, 2, 3℄, grew out of My-hill's onstrutive set theory [15℄ as a formal system for Bishop's onstrutivemathematis, and permits a quite natural interpretation in Martin-L�of typetheory [14℄.De�nition 1. The language of CZF ontains variables for sets, a onstant!, and the binary prediates = and 2. The axioms and rules are the axiomsand rules of intuitionisti prediate logi with equality, and the following settheoreti axioms:1. Extensionality: 8a8b(8x(x 2 a()x 2 b) =) a = b).2. Pairing: 8a8b98x(x 2 ()x = a _ x = b).3. Union: 8a9b8x(x 2 b()9y 2 a(x 2 y)).
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4. Restrited Separation:8a9b8x(x 2 b()x 2 a ^ '(x))for every restrited formula '(x), where a formula '(x) is restrited, or�0, if all the quanti�ers ourring in it are bounded, i.e. of the form8x 2  or 9x 2 .5. Strong Colletion:8a(8x 2 a9y'(x; y) =) 9b(8x 2 a9y 2 b'(x; y)^8y 2 b9x 2 a'(x; y)))for every formula '(x; y).6. Subset Colletion:8a8b98u(8x 2 a9y 2 b'(x; y; u) =)9d 2 (8x 2 a9y 2 d'(x; y; u) ^ 8y 2 d9x 2 a'(x; y; u)))for every formula '(x; y; u).7. In�nity:(!1) 0 2 ! ^ 8x(x 2 ! =) x+ 1 2 !);(!2) 8y(0 2 y ^ 8x(x 2 y =) x+ 1 2 y) =) ! � y);where x + 1 is x [ fxg, and 0 is the empty set ; = fx 2 ! j ?g.8. 2-Indution:(IND2) 8a(8x 2 a'(x) =) '(a)) =) 8a'(a)for every formula '(a).A subsystem CZF� is obtained by removing 2-Indution from CZF. Leta and b be sets. Using Strong Colletion, the artesian produt a � b of aand b onsisting of the ordered pairs (x; y) = ffxg; fx; ygg with x 2 a andy 2 b an be introdued in CZF�. A relation r between a and b is a subsetof a�b. A relation r � a�b is total (or is a multivalued funtion) if for everyx 2 a there exists y 2 b suh that (x; y) 2 r. The lass of total relationsbetween a and b is denoted by mv(a; b), or more formallyr 2 mv(a; b), r � a� b ^ 8x 2 a9y 2 b((x; y) 2 r):3



A funtion from a to b is a total relation f � a� b suh that for every x 2 athere is exatly one y 2 b with (x; y) 2 f . The lass of funtions from a to bis denoted by ba, or more formallyf 2 ba , f 2 mv(a; b) ^ 8x 2 a8y; z 2 b((x; y) 2 f ^ (x; z) 2 f =) y = z):In CZF�, we an proveFullness: 8a8b9( � mv(a; b) ^ 8r 2 mv(a; b)9s 2 (s � r)),and, as a orollary, we see that ba is a set, that isExponentiation: 8a8b98f(f 2 () f 2 ba).For more details of CZF, see [5℄.3 A ompletion of a uniform spaeIn this setion, we de�ne a notion of a uniform spae using a base of unifor-mity as in [13℄, and onstrut a ompletion of a uniform spae in CZF�.A uniform spae (X;U) is a pair of a set X and a set U of subsets ofX �X suh thatUb1: 8U; V 2 U9W 2 U(W � U \ V ),Ub2: 8U 2 U(� � U),Ub3: 8U 2 U9V 2 U(V � U�1),Ub4: 8U 2 U9V 2 U(V Æ V � U).Here � = f(x; x) j x 2 Xg, and U�1 = f(x; y) j (y; x) 2 Ug and U Æ V =f(x; z) j 9y((x; y) 2 V ^ (y; z) 2 U)g for eah U; V � X � X. Note that(U Æ V )�1 = V �1 Æ U�1. We set U0 = � and Un+1 = Un Æ U .A uniform spae (X;U) is T1 if8x; y 2 X[8U 2 U((x; y) 2 U) =) x = y℄:
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Remark 2. Let D be a set of pseudometris on a set X, and let UD be theset of subsets of X �X of the formUd1;:::;dn(�) = f(x; y) 2 X �X jPnk=1 dk(x; y) < �g;where d1; : : : ; dn 2 D (n � 0) and � > 0. Then it is straightforward to seethat the pair (X;UD) forms a uniform spae, and it is T1 if8x; y 2 X[8d 2 D(d(x; y) = 0) =) x = y℄:Espeially, for a metri spae (X; d), the pair (X;Ud) forms a T1 uniformspae, where Ud = fUn j n 2 Ng and Un = f(x; y) 2 X �X j d(x; y) < 2�ng.Let �n be a relation on U de�ned byV �n U,9W 2 U(V � W \W�1 ^W n � U):Lemma 3. For eah U 2 U there exists V 2 U suh that V �n U , and ifV �n U , then V k1 Æ : : : Æ V kn � U for eah k1; : : : ; kn 2 f�1; 1g.Proof. Let U 2 U , and let m be a natural number with n � 2m. Then,using (Ub4) m times, there exists W 2 U suh that W 2m � U , and henewe have W n � W 2m � U , by using (Ub2) if neessary. There exists W 0 2 Usuh that W 0 � W�1, by (Ub3), and hene there exists V 2 U suh thatV � W \W 0 � W \W�1, by (Ub1). If V �n U , then there exists W 2 Usuh that V � W \ W�1 and W n � U , and therefore, sine V k � W foreah k 2 f�1; 1g, we have V k1 Æ : : : Æ V kn � W n � U for eah k1; : : : ; kn 2f�1; 1g.A set F of subsets of X is a �lter ifFb1: 8A 2 F9x 2 X(x 2 A),Fb2: 8A;B 2 F9C 2 F(C � A \ B).A �lter F on X onverges to x in X if for eah U 2 U there exists A 2 Fsuh that A � U(x) = fy 2 X j (x; y) 2 Ug. A �lter F on X is a Cauhy�lter ifFbC: 8U 2 U9A 2 F(A� A � U).5



A uniform spae (X;U) is omplete if every Cauhy �lter on X onverges.Let (X;U) be a T1 uniform spae. Then, sine X and U are sets, byFullness, there exists a set R suh that R � mv(U ; X) and8r 2 mv(U ; X)9s 2 R(s � r): (1)Let ' be a restrited formula de�ned by'(r),8U; V 2 U8x; y 2 X[(U; x) 2 r ^ (V; y) 2 r =) (x; y) 2 V �1 Æ U ℄:Note that '(r) ^ s � r =) '(s): (2)Using Restrited separation, de�ne a set eX byeX = fr 2 R j '(r)g:For eah U 2 U , de�ne a subset eU of eX� eX , using Restrited Separation,as follows:eU = f(r; s) j 9U1; U2 2 U9x1; x2 2 X(U1 � U ^ U2 � U^(U1; x1) 2 r ^ (U2; x2) 2 s ^ (x1; x2) 2 U)g:By Strong Colletion, let eU = feU j U 2 Ug:The equality = eX on eX is de�ned byr = eX s,8eU 2 eU((r; s) 2 eU):Remark 4. We may think of a multivalued funtion r 2 mv(U ; X) as amultivalued net in X indexed by the direted set U , and the formula '(r) asexpressing a regularity of r. Then the set eX is a set of regular multivaluednets in X indexed by the spei� direted set U ; a similar trik an be foundin the proof that the lass of points of a omplete uniform formal topology isa set in [11℄. If U is ountable, then, in the presene of the axiom of ountablehoie, we may de�ne eX as the set of regular sequenes (singlevalued funtionson N) in X. In the uniform spae (X;Ud) indued by a metri spae (X; d),6



eah regular sequene (xn)n in (X;Ud) is a regular sequene in the metrispae (X; d) in the sense thatd(xm; xn) < 2�m + 2�nfor eah m;n 2 N. On the other hand, for eah regular sequene (xn)n in(X; d), the sequene (xn+1)n is a regular sequene in (X;Ud).Proposition 5. ( eX; eU) is a T1 uniform spae.Proof. (Ub1): Let U; V 2 U . Then there existsW 2 U suh thatW � U\V ,and it is straightforward to see that fW � eU \ eV .(Ub2): Let U 2 U and r 2 eX. Then, sine r 2 mv(U ; X), there existsx 2 X suh that (U; x) 2 r, and therefore, sine (x; x) 2 U , we have (r; r) 2eU . (Ub3): Let U 2 U . Then there exists V 2 U suh that V � U�1, and itis straightforward to see that eV � eU�1.(Ub4): Let U 2 U . Then there exists V 2 U suh that V �4 U , byLemma 3. Let (r; s) 2 eV and (s; t) 2 eV . Then there exist V1; V2;W1;W2 2 Uand x1; x2; y1; y2 2 X suh that V1; V2;W1;W2 � V , (V1; x1) 2 r, (V2; x2) 2 s,(W1; y1) 2 s, (W2; y2) 2 t, (x1; x2) 2 V and (y1; y2) 2 V . Sine (V2; x2) 2 s,(W1; y1) 2 s and '(s), we have (x2; y1) 2 W�11 Æ V2, and hene(x1; y2) 2 V ÆW�11 Æ V2 Æ V � V Æ V �1 Æ V Æ V � U;by Lemma 3. Therefore, sine V1;W2 � V � U , we have (r; t) 2 eU .The uniform spae ( eX; eU) is T1 by the de�nition of equality.Let F be a Cauhy �lter on eX. De�ne a subset r of U �X, by RestritedSeparation, as follows:r = f(U; x) j 9V 2 U9A 2 F9s 2 A(V �4 U ^ A� A � eV ^ (V; x) 2 s)g:Lemma 6. r 2 mv(U ; X) and '(r).Proof. Let U 2 U . Then there exists V 2 U suh that V �4 U , by Lemma3. Sine F is a Cauhy �lter, there exists A 2 F suh that A � A � eV ,by (FbC), and hene there exists s 2 A, by (Fb1). Sine s 2 mv(U ; X),there exists x 2 X suh that (V; x) 2 s, and hene (U; x) 2 r. Thereforer 2 mv(U ; X). 7



Let (U; x) 2 r and (V; y) 2 r. Then there exist U0; V0 2 U , A;B 2 F ,s 2 A and s0 2 B suh that U0 �4 U , V0 �4 V , A� A � fU0, B � B � eV0,(U0; x) 2 s and (V0; y) 2 s0. Sine F is a �lter, there exist C 2 F andt 2 C suh that t 2 C � A \ B, by (Fb2) and (Fb1). Sine (s; t) 2 fU0 and(s0; t) 2 eV0, there exist U1; U2; V1; V2 2 U and x1; x2; y1; y2 2 X suh thatU1; U2 � U0, V1; V2 � V0, (U1; x1) 2 s, (U2; x2) 2 t, (V1; y1) 2 s0, (V2; y2) 2 t,(x1; x2) 2 U0 and (y1; y2) 2 V0. Sine (U0; x); (U1; x1) 2 s, (V1; y1); (V0; y) 2 s0and (U2; x2); (V2; y2) 2 t, we have (x; x1) 2 U�11 Æ U0, (y1; y) 2 V �10 Æ V1, and(x2; y2) 2 V �12 Æ U2, and hene(x; y) 2 V �10 Æ V1 Æ V �10 Æ V �12 Æ U2 Æ U0 Æ U�11 Æ U0� (V0 Æ V0 Æ V �10 Æ V0)�1 Æ (U0 Æ U0 Æ U�10 Æ U0) � V �1 Æ U;by Lemma 3. Therefore '(r).By (1), there exists rF 2 R suh that rF � r. Sine '(rF), by Lemma 6and (2), we have rF 2 eX.Lemma 7. F onverges to rF .Proof. Let U 2 U . Then there exists V 2 U suh that V �2 U , and thereexists W 2 U suh that W �4 V , by Lemma 3. Sine F is a Cauhy �lter,there exists A 2 F suh that A � A � fW . Let s 2 A. Sine s 2 mv(U ; X),there exists x 2 X suh that (W;x) 2 s, and hene (V; x) 2 r. SinerF 2 mv(U ; X), there exists x0 2 X suh that (V; x0) 2 rF � r. Sine '(r)by Lemma 6, we have (x0; x) 2 V �1 ÆV � U , and therefore, sine V;W � U ,we have (rF ; s) 2 eU . Thus A � eU(rF).Thus we have the following proposition.Proposition 8. ( eX; eU) is omplete.For eah x 2 X, de�ne a subset ~x of U �X by~x = f(U; x) j U 2 Ug:Then ~x is a onstant funtion on U , and, sine for eah (U; x); (V; x) 2 ~x, wehave (x; x) 2 V �1 Æ U , we have ~x 2 eX.Lemma 9. For eah U 2 U and x; y 2 X, (x; y) 2 U if and only if (~x; ~y) 2 eU .8



Proof. Sine (U; x) 2 ~x and (U; y) 2 ~y, if (x; y) 2 U , then (~x; ~y) 2 eU . If(~x; ~y) 2 eU , then there exist V;W 2 U suh that V;W � U , (V; x) 2 ~x,(W; y) 2 ~y and (x; y) 2 U , and so (x; y) 2 U .A mapping f between uniform spaes (X;U) and (Y;U 0) is uniformlyontinuous if for eah V 2 U 0 there exists U 2 U suh that(x; y) 2 U =) (f(x); f(y)) 2 Vfor eah x; y 2 X.Let i be the mapping from (X;U) into ( eX; eU) suh thati : x 7! ~x:Thus, by Lemma 9, we immediately have the following proposition.Proposition 10. i : (X;U)! ( eX; eU) is a uniformly ontinuous injetion.Let (Y;V) be a omplete T1 uniform spae, and let f : (X;U) ! (Y;V)be uniformly ontinuous. Let r 2 eX. For eah U 2 U , de�ne a subset ArU ofY by ArU = ff(x) j 9V 2 U(V � U ^ (V; x) 2 r)g:By Strong Colletion, let Fr = fArU j U 2 Ug:Lemma 11. Fr is a Cauhy �lter on Y .Proof. For eah U 2 U , sine (U; x) 2 r for some x 2 X, we have f(x) 2ArU . Sine for eah U; V 2 U if V � U , then ArV � ArU , we have for eahU; V 2 U there exists W 2 U suh that ArW � ArU \ ArV by (Ub1). LetU 2 V. Then, sine f is uniformly ontinuous, there exists V 2 U suh that(x; y) 2 V =) (f(x); f(y)) 2 U for eah x; y 2 X, and there exists W 2 Usuh that W �2 V . Suppose that (f(x); f(y)) 2 ArW � ArW . Then thereexists W1;W2 2 U suh that W1;W2 � W , (W1; x) 2 r and (W2; y) 2 r, andhene (x; y) 2 W�12 ÆW1 � W�1 ÆW � V: Thus (f(x); f(y)) 2 U . ThereforeArW � ArW � U .Sine (Y;V) is omplete, Fr onverges to a point ~f(r) in Y .9



Lemma 12. For eah U 2 V there exists V 2 U suh that(r; s) 2 eV =) ( ~f(r); ~f(s)) 2 Ufor eah r; s 2 eX.Proof. Let U 2 V. Then there exists U0 2 V suh that U0 �3 U , and,sine f is uniformly ontinuous, there exists V0 2 U suh that (x; y) 2V0 =) (f(x); f(y)) 2 U0 for eah x; y 2 X. By Lemma 3, there exists V 2 Usuh that V �5 V0. Suppose that (r; s) 2 eV . Then there exist V1; V2 2 U andx1; x2 2 X suh that V1; V2 � V , (V1; x1) 2 r, (V2; x2) 2 s and (x1; x2) 2 V .Sine Fr and Fs onverge to ~f(r) and ef(s), respetively, we an �nd W 2 Usuh that W � V , ArW � U0( ~f(r)) and AsW � U0( ~f(s)), and, sine ArW andAsW are inhabited, there exist x; y 2 X suh that f(x) 2 ArW and f(y) 2 AsW .Hene there exist W1;W2 2 U suh that W1;W2 � W , (W1; x) 2 r and(W2; y) 2 s. Sine (W1; x); (V1; x1) 2 r and (V2; x2); (W2; y) 2 s, we have(x; x1) 2 V �11 ÆW1 and (x2; y) 2 W�12 Æ V2, and therefore(x; y) 2 W�12 Æ V2 Æ V Æ V �11 ÆW1 � W�1 Æ V Æ V Æ V �1 ÆW� V �1 Æ V Æ V Æ V �1 Æ V � V0:Thus (f(x); f(y)) 2 U0. Sine ( ~f(r); f(x)) 2 U0 and ( ~f(s); f(y)) 2 U0, wehave ( ~f(r); ~f(s)) 2 U�10 Æ U0 Æ U0 � U:Sine (Y;V) is T1, we have ~f(r) = ~f(s) whenever r = eX s, by Lemma 12.Hene ~f is a funtion on eX, and it is uniformly ontinuous, by Lemma 12.Sine A~xU = ff(x)g for eah U 2 U , F~x onverges to f(x), and therefore wehave the following lemma.Lemma 13. f = ~f Æ i.The funtion ~f is unique in the following sense.Lemma 14. If h : ( eX; eU) ! (Y;V) is uniformly ontinuous with f = h Æ i,then h = ~f .Proof. Let r 2 eX, and let U 2 V. Then there exists U0 2 V suh thatU0 �2 U , and sine h is uniformly ontinuous, there exists V 2 U suh that(s; t) 2 eV =) (h(s); h(t)) 2 U0 for eah s; t 2 eX. Sine Fr onverges to ~f(r),we an �nd W 2 U suh that W � V and ArW � U0( ~f(r)), and, sine ArW is10



inhabited, there exists x 2 X suh that f(x) 2 ArW . Hene there exists W 0 2U suh that W 0 � W � V and (W 0; x) 2 r, and therefore, sine (V; x) 2 ~xand (x; x) 2 V , we have (r; ~x) 2 eV . Thus (h(r); h(~x)) = (h(r); f(x)) 2 U0.Sine ( ~f(r); f(x)) 2 U0, we have (h(r); ~f(r)) 2 U�10 Æ U0 � U . Therefore,sine (Y;V) is T1, we have h(r) = ~f(r).Now we have shown the following theorem.Theorem 15. Let (Y;V) be a omplete T1 uniform spae, and let f : (X;U)!(Y;V) be uniformly ontinuous. Then there exists a unique uniformly on-tinuous ~f : ( eX; eU)! (Y;V) suh that f = ~f Æ i.Remark 16. Let F be a Cauhy �lter on a uniform spae (X;U), and letr = f(U; x) j 9A 2 F(A� A � U ^ x 2 A)g:Then r 2 mv(U ; X) and '(r), and hene there exists rF 2 eX suh thatrF � r. On the other hand, for eah r 2 eX, let Fr = fBrU j U 2 Ug, whereBrU = fx j 9V 2 U(V � U ^ (V; x) 2 r)g:Then Fr is a Cauhy �lter on (X;U). In the presene of the powerset axiom,it is straightforward to show that these orrespondenes r 7! Fr and F 7! rFbetween the ompletion ( eX; eU) and the uniform spae of the set of all Cauhy�lters on (X;U) (the ompletion of (X;U) in the sense of Bishop) form auniform isomorphism.For a metri spae (X; d), as mentioned in Remark 4, in the presene ofthe axiom of ountable hoie, there is a uniform isomorphism between theompletion ( eX;fUd) and Bishop's metri ompletion.Aknowledgements. A part of researh leading to this paper was done inFebruary 2008 when Palmgren and Shuster were visiting Japan AdvanedInstitute of Siene and Tehnology (JAIST), and Berger was staying atJAIST as a postdotoral fellow of the Japan Soiety for the Promotion ofSiene (JSPS). Palmgren and Shuster are grateful to JAIST for supportingtheir visit, and Berger is grateful to JSPS for supporting his stay. AlsoIshihara was supported by JSPS (Grant-in-Aid for Sienti� Researh (C)No.19500012), and Palmgren was supported by Swedish Researh Counil(VR). All authors are grateful to the anonymous referees, whose ommentsand suggestions were helpful for bringing this paper into its �nal form.11
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