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from near-infrared spectroscopy signals
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Hitachi, Ltd., Central Research Laboratory, 2520 Akanuma, Hatoyama, Saitama 350-0395, Japan

Abstract. Using a machine-learning classification algorithm applied to near-infrared spectroscopy (NIRS) sig-
nals, we classify a success (change detection) or a failure (change blindness) in detecting visual changes for a
change-detection task. Five subjects perform a change-detection task, and their brain activities are continuously
monitored. A support-vector-machine algorithm is applied to classify the change-detection and change-blindness
trials, and correct classification probability of 70–90% is obtained for four subjects. Two types of temporal shapes
in classification probabilities are found: one exhibiting a maximum value after the task is completed (postdictive
type), and another exhibiting a maximum value during the task (predictive type). As for the postdictive type,
the classification probability begins to increase immediately after the task completion and reaches its maximum
in about the time scale of neuronal hemodynamic response, reflecting a subjective report of change detection.
As for the predictive type, the classification probability shows an increase at the task initiation and is maximal
while subjects are performing the task, predicting the task performance in detecting a change. We conclude that
decoding change detection and change blindness from NIRS signal is possible and argue some future applications
toward brain–machine interfaces. C©2011 Society of Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.3606494]
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1 Introduction
Recent advances in psychophysical studies have revealed that
the visual-attention system often fails to detect large and obvi-
ous changes in a visual scene if the changes are masked with a
uniform gray blank screen for a short duration (i.e., a one-shot
or flicker paradigm),1 rendered slow (slow change),2 or shown
together with attentional distracters such as “mud splashes.”3

Blindness to changes occurs not only in a laboratory setting but
also in real-world situations.4, 5 Contrary to our common belief
that our visual system maintains a meticulously detailed dupli-
cate of a visual scene, changes in a visual scene are not readily
detectable unless focused spatial attention is allocated to a place
where changes occur.6 (Regarding the discussion on how much
visual memory is maintained, see Ref. 7) This inability to de-
tect visual changes is referred to as change blindness and is a
topic of psychophysical studies. Understanding the neural and
psychological processes underlying change detection and blind-
ness is of practical interest for preventing accidents caused by
an operator’s oversight or inattention in areas such as industrial
interface designs,8 operator training,9 and driving safety.10

Neural correlates of change detection and change blindness
have been investigated with functional magnetic-resonance
imaging11–14 (fMRI) and electroencephalography (EEG),15–20 as
well as with single-unit recording of humans and monkeys.21, 22

These functional-neuroimaging studies have reported neural loci
and processes related to change detection and change blind-
ness. The fMRI studies identified stronger activations in the
dorsal and ventral visual areas12 and in the parieto-frontal atten-
tional network when a change was detected.11, 13, 14 On the other

Address all correspondence to: Hirokazu Tanaka, Central Research Laboratory,
Hitachi, Ltd., 2520 Akanuma, Hatoyama, Saitama 350-0395, Japan. Tel: 81-49-
296-6111; Fax: 81-49-296-5999; E-mail: hirokazu.tanaka.sj@hitachi.com.

hand, the EEG studies revealed temporal dynamics of neural
correlates of sub–second order and found increased P1 and P3
components, which reflected subjective awareness of changes
in a visual scene15–17 and that predicted the onset of visual
awareness.15, 20

A recent trend in functional neuroimaging, especially us-
ing EEG and fMRI, is to extract, or decode, the information
that an activated neural pattern encodes, namely, the field now
known as brain decoding.23–25 In contrast to traditional studies
on single-voxel-based activation,26, 27 brain decoding makes use
of distributed, multivoxel activation patterns to infer primary
visual28–31 and sensorimotor32 representations often on a trial-
by-trial basis. This new approach extends the applicability of
neuroimaging to extracting latent information buried in subtle
patterns in neuroimaging data and offers a new possibility of
brain–machine interfaces (BMIs) for normal and physically im-
paired users. This decoding approach is not limited to primary
sensory and motor areas but is also being applied successfully to
higher cognitive states such as intention, decision-making, and
emotion.33–36 It can therefore be expected that change detection
and change blindness can be decoded from neuroimaging data.

This study attempted to classify change detection and change
blindness by using near-infrared spectroscopy (NIRS) signals.
NIRS has a centimeter-order spatial resolution for identify-
ing neural loci and sub–second-order temporal sampling for
identifying hemodynamic changes,37 and has been successfully
applied to sensorimotor functions,38–41 visual functions,42, 43

auditory functions,44 and higher cognitive functions, such
as working memory,45–47 cognitive inhibition,48, 49 and lan-
guage processing.50, 51 Several recent studies have extended
the application of NIRS to brain decoding of hand-movement
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motor imagery,52 moment-by-moment magnitudes of pinch-
force production,53 subjective preference of beverages,54 emo-
tional responses to facial expressions,55 and applications to
brain–computer interfaces.56–58 NIRS has advantages, such as
relatively low cost and negligible physical constraints, com-
pared to other imaging modalities, such as fMRI, making it an
ideal candidate for applications of brain–machine interfaces in
a real-life environment.57

In the current study, while subjects were performing a
change-detection task, their cerebral activities were continu-
ously monitored with NIRS. We tested the hypothesis that suc-
cessful and unsuccessful trials in detecting a change can be
classified on a trial-by-trial basis by applying a machine learn-
ing algorithm to the NIRS signals.

2 Methods
2.1 Change-Detection Experiment
2.1.1 Subjects

Seven subjects that were recruited in our laboratory (five male
and two female with normal or corrected-to-normal vision and
no reported history of neurological problems; age 27 to 37) vol-
unteered for the behavioral experiment, and five of them (three
male and two female; age 33 to 37) participated in the NIRS
experiment. Two of them were the authors. The other subjects
were familiar in general with psychophysical and NIRS experi-
ments but not informed of the purpose of these particular exper-
iments. All the subjects provided written informed consent. All
measurements were conducted with the approval of the Ethics
Committee of Hitachi, Ltd.

2.1.2 Change-detection task

A task designed by Beck et al.11 was used for both the behavioral
and NIRS experiments. A single trial of this task consisted of
two subtasks—a character task and a face task—and the subjects
were instructed to respond to both of the subtasks. The time line
of stimulus presentation and subject’s responses is shown in
Fig. 1. First, a fixation cross appeared at the center of a display
on which subjects were instructed to fixate during the trial. A
screen with two faces, one on the right and another on the left
(each 2.0 deg from the fixation cross), was then shown for 500
ms. At the same time, two alphabet strings composed of three
characters were shown (2.4 deg above and below the fixation
cross). The face images and character strings subtended 3.2
× 3.7 and 1.8 × 1.0 deg, respectively. Four facial images of
middle-aged men wearing glasses, adopted from a face-image
database,59 were used (see upper-right inset in Fig. 1). Then,
a uniform gray blank screen was interleaved for 500 ms. The
screen with faces and character strings and the gray screen were
repeated four times. The subjects were seated ∼30 cm in front
of the computer display with their heads stabilized on a chin rest
and were instructed to keep fixating at the fixation cross. While
the screen was flickering, the subjects were asked to report if
a target character (in this case X) was contained either in the
top or bottom of the screen by using the key pad of an external
keyboard (pressing “7” for an X present in top, “0” for an X
present at bottom, or no key press indicating the absence of an
X). This procedure was referred to as the character task. The

Fig. 1 Schematics of the time course of a single trial of the change-
detection task. The upper-right inset shows the four faces used in the
experiment.59 In a single trial, the subjects were instructed to respond
to the face task for four times and to the face task once at the end of a
trial.

target character appeared in one-third of the runs either at the
top or bottom at one time.

At the end of each trial run, a question mark appearing at the
center of the screen for 1000 ms prompted subjects to report if
there was a change in the face stimuli during the character task
(pressing “0” for no change or “8” for change). This subtask
was referred to as the face task. The subject had three chances to
notice a change of the face stimuli. A single-trial of the change-
detection task run took 5.0 s. Because the attentional resources
of the visual system were divided into the two tasks described
above, occasional failure to detect face changes was expected.
In-house Matlab codes on a Windows-based laptop computer
were used to present the face and character-string stimuli and to
record subjects’ responses for later off-line analysis.

The face stimuli were changed in two-thirds of all trials.
These trials are hereafter referred to as the face-change trials in
which either the left stimulus or the right stimulus was changed at
equal frequency [referred to as left-change (LC) or right-change
(RC) trials, respectively]. In the remaining one-third of the entire
trials, the face stimuli were not changed [no change (NC) trials].
The NC trials were included to avoid the risk that subjects might
falsely report a change without paying attention to the face
stimuli. The sequence LC, RC, and NC trials was randomized
session by session so that the subjects could not memorize it
from previous sessions with a constraint of equal frequencies.
In some change trials, the subjects correctly reported a change
in the face stimuli (defined as successful trials), but in other
change trials the subjects failed to report a change irrespective
of the physical change (defined as unsuccessful trials). Subjects
were instructed to report a change in the face task only when
they were confident that a change occurred.

2.1.3 Behavioral experiment

A behavioral experiment was conducted prior to the NIRS ex-
periment described below. The purpose of this experiment was
twofold, namely, to familiarize the subjects with this rather

Journal of Biomedical Optics August 2011 � Vol. 16(8)087001-2



Tanaka and Katura: Classification of change detection and change blindness...

difficult change-detection task and to evaluate the task difficulty
so as to invoke change blindness to some degree. One session
consisted of 25 NC trials, 25 LC trials, and 25 RC trials (totally,
75 trials) and took ∼8 min. The intertrial interval was 1.0 s.
Seven subjects attended three to seven sessions each (4.0 ses-
sions on average). The subjects’ responses during the character
task and the face task were recorded for later analysis. During
this behavioral experiment, the experimenter closely watched
the eye movements of subjects and instructed to keep fixating at
the fixation cross whenever they broke their fixations.

2.1.4 Near-infrared spectroscopy experiment

The same change-detection task as described above was used
for the NIRS experiment, with a few modifications. First, the
intertrial interval was taken randomly from 20 to 25 s so that
the hemodynamic responses went back to the baseline level by
the beginning of each trial.60 Second, to minimize the physical
burden and to conduct each session in a reasonable time, the
total number of trials was limited to 30 (10 NC, 10 LC, and 10
RC trials). The 30 trials took ∼14 min, and the whole exper-
imental duration, including NIRS preparation, took ∼30 min.
No subjects reported any discomfort either during or after the
experimental session.

An ETG-7000 (Hitachi Medical Co., Tokyo, Japan) was used
for the NIRS measurements and was controlled by the same
Windows-based computer used for the visual-stimulus presen-
tation and response recording. Sixty probes (32 light-emitting
optical fibers and 28 light-detecting optical fibers) were sta-
bilized on the scalp by means of four probe-holder sheets,
each of which had 15 probes. Each laser emitter and detec-
tor formed a pair that provided a recording channel, resulting
in 88 channels in total (Fig. 2). Note that channels refer to
cortical locations, located approximately at the midline of cor-
responding laser emitters and detectors that are located on the
scalp.61 The probe-holder sheets were connected to each other
with elastic bands. The landmarks of the nasion, inion, and the
left and right tragus in the ear were identified for each sub-
ject, and the reference site Cz was determined from these four
landmarks according to the international 10–20 method.62 The
probe-holder sheets were arranged so that their center of mass
was located at Cz. To map out the corresponding cortical loca-
tions, the actual three-dimensional positions of all probes were
measured with a three-dimensional digitizer (ISOTRAK II, Pol-
hemus Corporation, Colchester, Vermont) for two subjects. The
three-dimensional locations of channels were derived as mid-
points of the corresponding light-emitter/-detector pairs. These
locations were first translated into MNI coordinates by using sta-
tistical spatial registration63 and then into corresponding cortical
areas by applying automatic anatomical labeling.64

2.2 Data Analysis
The subjects’ behavioral data and NIRS signal data were an-
alyzed with Matlab (The MathWorks, Natick, Massachusetts).
The NIRS signals were preprocessed with an analysis software
(Platform for Optical Topography Analysis Tools, POTATo) run-
ning on Matlab that has been developed by T.K.65 The POTATo
software provides several convenient functions for preprocess-

Fig. 2 Cortical locations of 88 channels measured by averaging data
from two subjects.

ing NIRS data. The overall flow for preprocessing and classify-
ing NIRS data is summarized in Fig. 3.

2.2.1 Behavioral data analysis

Correct responses and reaction times in the behavioral experi-
ment, for both the character task and the face task, were counted.
In a single trial of the character task, the subjects had to report the
presence or absence of the target character X and its location in
four consecutive screens. Responses were defined as successful
when subjects correctly reported the location of the X when it
was present and when subjects did not press any key when no X
was present. Any other responses were regarded as unsuccess-
ful. The correct-response ratio was computed by dividing the
number of successful trials by the number of screens presented
to subjects. The distribution of reaction times of successful re-
sponses when the subjects correctly reported the presence of an
X was also computed.

For the face task, trials were defined as successful if subjects
reported a change when there was a change in the face stimuli or
if subjects reported no change when there was no change in the
face stimuli. The correct-response ratio was defined as the ratio
of successful trials to the number of trials. The correct-response
ratio and the response times for the NC, LC, and RC trials were
computed.

Fig. 3 Schematics of NIRS-data analysis procedure (the right blowup
describes the details of the SVM classification analysis).
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2.2.2 Preprocessing of near-infrared spectroscopy data

All analysis procedures were performed offline. Oxy-
hemoglobin-concentration signals were used for the analysis
because they have been shown to have a high signal-to-noise
ratio.66 The NIRS signals were preprocessed as follows. First, to
remove certain noises of extra-cortex origins, such as pulsations,
a temporal moving average over 3.0-s duration was applied.67, 68

A third-order polynomial a0 + a1t + a2t2 + a3t3 was fitted
to NIRS signals of an entire experimental session by the least-
squares method, and this polynomial component was subtracted
from the NIRS signals in order to remove global trends. This
polynomial detrending was applied separately to all channels.
This procedure ensured that the detrended NIRS signals had no
drift components.

The subsequent classification analysis used NIRS signals
from combinations of channels and required a considerable
computational resource. Out of the entire 88 channels, those
noisy channels were therefore excluded if their amplitudes ex-
ceeded 0.5. Channels whose power spectrum appeared to be
white were also excluded according to the following criterion.
Low-frequency components (<3.0 Hz) contain biologically rel-
evant signals including hemodynamic changes, whereas high-
frequency components (>3.0) can be regarded as biologically
irrelevant noises. If the spectrum power of the high-frequency
band is comparable to that of the low-frequency band in a NIRS
channel, then biologically relevant signals in the low-frequency
band are not to be detected due to high-frequency noise. In other
words, the ratio of low- and high-frequency bands can be used
as a measure of “whiteness.” A t-test was applied to determine
whether the spectrum power of low- (0.01–0.5 Hz) and high-
frequency bands (4.0–4.5 Hz) in each channel was statistically
distinguishable (an indication that the channel’s spectrum dif-
fered from a white spectrum). Channels were used for further
analysis if the p-value computed in the t-test was smaller than
an empirically determined threshold of 1 × 10− 10, and were
excluded otherwise. The threshold p-value was empirically de-
termined by visual inspection of NIRS data in this study. A
more objective criterion for determining a threshold value is
being developed.

2.2.3 Classification analysis by support-vector
machine

There are a variety of machine-learning algorithms applied
to classification of neuroimaging data. Some examples are
minimum-distance classification,69 Fisher’s linear-discriminant
analysis (LDA),70 support-vector-machine (SVM) algorithms,71

and hidden Markov models.52 In this study, a support-vector-
machine algorithm with a linear kernel72 was adopted for the
binary classification problem.

To exploit the temporal resolution of NIRS, classification
probabilities of successful and unsuccessful trials were com-
puted in time steps of 0.1 s (Fig. 4). First, a combination of
channels was chosen, NIRS signals were extracted from all
face-change trials, and each subject’s trial was labeled as being
a change-detected (successful) or change-undetected (unsuc-
cessful) trial [green and red lines, respectively, in Fig. 4(a)]. The
signals were then averaged in a temporal window [blue-shaded
areas in Fig. 4(a)] to give points in a multidimensional space
[Fig. 4(b)]. The width of the temporal window was fixed at 3.0

s, and the onset of the temporal average was varied from − 5.0
to 13.0 s in steps of 0.1 s (note that 0 s was defined as the
onset of the task). The SVM classification algorithm was then
applied to the points of the multidimensional space [Fig. 4(b)].
To evaluate how well the data points could be classified, twofold
cross validation was used [Figs. 4(c) and 4(d)]. Approximately
half of the data points were randomly selected as training data
[green and red points in Fig. 4(c)], and the rest were preserved as
test data [gray points in Fig. 4(c)]. An SVM decision boundary
was computed using only the training data [blue dashed line in
Fig. 4(c)]. The performance of the decision boundary was eval-
uated by applying it to the test data [green and red points in
Fig. 4(d)] and by computing the probability that the test data
were correctly classified>. (defined as classification probabil-
ity). This cross-validation procedure [Figs. 4(c) and 4(d)] was
repeated 30 times with randomly chosen test and trial data in
order to compute the mean classification probability and its con-
fidence intervals. This SVM classification was performed on a
subject-by-subject basis; a decision boundary was determined
from a subject’s data and its performance was evaluated with
the same subject’s data.

2.2.4 Number of channels used for classification
analysis

Before applying the classification procedure described earlier,
it was necessary to determine how many dimensions or chan-
nels should be used. In general, there should be optimal dimen-
sions for a classification problem. Small feature dimensions may
not provide sufficient information for classifying the change-
detected and change-undetected trials. On the other hand, large
feature dimensions incur the risk of overfitting to training data.
Too small or too large feature dimensions both result in poor per-
formance of classification of the test data. Moreover, the number
of possible combinations of features grows rapidly with an in-
creasing number of feature dimensions; therefore, it is desirable
to keep the feature dimension as small as possible to save the
computational time needed for analysis. For the classification
problem stated in Sec. 2.2.3, the performances of classification
using single channels, pairs of channels, or triplets of channels
were compared in terms of the test data of Subject 1. After
the number of channels was determined, the same number of
channels was used for the data of other subjects.

2.2.5 Clustering analysis of temporal classification
probabilities

To discover typical temporal profiles of classification probabili-
ties, an unsupervised classification algorithm was applied to the
classification probabilities computed by using the SVM method
(as described in Sec. 2.2.4). The k-means clustering algorithm
with a squared Euclidean distance was adopted as a similar-
ity measure.73 The number of clusters was adjusted by visual
inspection.

3 Results
3.1 Behavioral Results
Most subjects reported that, at first, the task was difficult because
of its tight requirement concerning keyboard response time and
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Fig. 4 Schematic of classification analysis procedure. (a) A pair of NIRS signals recorded in change trials. Green and red lines depict signals in
change-detected and change-undetected trials, respectively. The blue shaded area is an example of a temporal window in which the NIRS signals
were averaged. (b) Two-dimensional map of temporally averaged NIRS signals obtained from the data in (a). (c) SVM classification applied to training
data (a decision boundary indicated by blue dashed line) and (d) cross validation of the decision boundary using test data. These plots were created
from actual experimental data. (Color online only.)

the unfamiliar method of reporting their responses. The sub-
jects reported that these issues disappeared after a few sessions
of training. Seven subjects attended 28 sessions in total (i.e.,
75 × 28 = 2100 trials) of the behavioral experiment (average
4.0 sessions per subject). For the character task, the correct re-
sponse ratio was 95.4% for all seven subjects, indicating that
they performed the tasks almost perfectly. The reaction time
when subjects reported an X was 577 ms (SD 127 ms).

For the face task, the subjects responded within the time
reaction limit (1.0 s) in 97.05% of all the trials. For the following
behavioral analysis, the trials in which the subjects responded
within the time limit were used. Reaction times had a mean
of 436 ms and a standard deviation of 165 ms. Figure 5(a)
plots the distribution of reaction times for all trials of the seven
subjects. Reaction times for the NC, LC, and RC trials were 445
ms (SD 170 ms), 431 ms (SD 167 ms), and 432 ms (SD 160
ms), respectively. There was no statistical difference between
the reaction times for these three conditions [one-way analysis
of variance (ANOVA); F(2,2035) = 1.32, p = 0.266].

The correct-response ratio for the face task was 54.5%, in-
dicating that the task difficulty was properly adjusted. Interest-
ingly, there was asymmetry between the success rates in the LC
and RC trials; the subjects detected visual changes more cor-
rectly in the left visual hemifield [15.5 (SD 4.57) trials] than in
the right [13.3 (SD 5.33) trials] [Fig. 5(b)]. The performance

difference was statistically significant [unpaired double-sided
t-test; t(54) = 2.82.; p = 0.0066)]. This asymmetry between
the left and right visual fields is consistent with a clinical study
that showed right-hemisphere (which corresponds to the left vi-
sual hemifield) superiority in a face match-to-sample task in
split-brain patients74 and with imaging studies that showed the
right-hemisphere dominance of face-processing activities.75, 76

Fig. 5 Summary of behavioral results obtained from the face task. (a)
Distribution of reaction time from 2100 trials. The 1000-ms response
period was split uniformly into thirty bins. (b) Box plot of correct re-
sponses for the LC and RC trials.
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Table 1 Summary of behavioral and NIRS data used for the classification analysis.

Subject No. 1 No. 2 No. 3 No. 4 No. 5

Correct response (%) 43.8 43.8 62.5 66.7 83.3

No. NIRS channels 60/88 56/88 88/88 76/88 N/A

Maximum classification
probability (%)

86.4 ± 2.4 89.4 ± 3.2 77.3 ± 1.5 84.8 ± 3.0 N/A

Most informative channel(s) 33 (left angular
gyrus)

35 (left occipital
area)

20 (right
occipital area)

32, 36 (left
posterior parietal

association
cortex)

N/A

The false-positive rate that subjects reported a change when
there was actually no change was 6.4%.

3.2 Analysis of Near-Infrared Spectroscopy Signals
The correct-response ratios of five subjects are summarized in
Table 1. Four of them had the correct response ratios in the range
of 43.8–66.7%, and their NIRS signals were classified according
to the procedure stated in Sec. 2. Subject 5, however, had a
high correct-response ratio (83.3%) with far fewer undetected
trials than detected trials. This subject was excluded from further
analysis. For the other four subjects, 70 channels on average (out
of 88 channels) were used (Table 1) after excluding channels that
were considered not to reflect cortical activities under the criteria
described in 2.2.2.

3.2.1 Optimal number of channels necessary for
classification algorithm

To determine the optimal number of channels, the classification
probabilities were evaluated by using single channels (60), chan-
nel pairs (60C2 = 1,770), and channel triplets (60C3 = 34,220)
and the response data of Subject 1. The computation for these
three cases took, respectively, 15 min, 7.2 h, and five days on a
Windows-based computer (Intel Core2Duo, 3.0 GHz). Figure 6
summarizes 50 classification probabilities that varied signifi-
cantly in their time courses for the three cases. Average values
of maximum classification probabilities of the 50 combinations
were 77% (SD 6.7%), 86% (SD 3.1%), and 87% (SD 2.1%).
The classification probabilities in the channel-pair case were
considerably improved compared to those in the single-channel

Fig. 6 Classification probabilities computed from (a) single channels,
(b) channel pairs, and (c) channel triplets. The dashed lines indicate
average values of maximum of all probabilities.

case. In contrast, when channel triplets were used instead of the
channel pairs, the classification probabilities changed little, in-
dicating that the channel pairs were sufficient for classifying the
successful from unsuccessful trials. Moreover, the exhaustive
search using channel triplets was prohibitively time consuming
for analyzing the data of multiple subjects. Accordingly, channel
pairs were used for further analyses of the other subjects.

3.2.2 Distribution of classification probabilities

Moment-by-moment classification probabilities were computed
using all possible channel pairs for the four subjects. The tem-
poral window was first fixed, and the population distributions
of classification probabilities for possible channel pairs were
investigated. The red histograms in Fig. 7 illustrate distributions
of classification probabilities computed using all channel pairs
for Subject 1 during the task period (0–3 s) [Fig. 7(a)] and 5 s
after the task completion (10–13 s) [Fig. 7(b)]. The distribu-
tion in Fig. 7(a) had a mean of 51.6% and a standard deviation
of 7.3%. In contrast, the distribution in Fig. 7(b) had a mean
of 61.3% and a standard deviation of 10.1%. Figures 7(c) and
7(d) illustrate NIRS signals that show the maximum and 50%
classification probabilities, respectively, in the distribution of
Fig. 7(b).

Note that the distributions computed using randomly rela-
beled, surrogate data [blue histograms in Figs. 7(a) and 7(b)]
were highly peaked and did not change during and after the
task. The differences between the histograms computed using
the subjects’ response and surrogate data were statistically sig-
nificant [Mann–Whitney U-test; p = 8.9 × 10− 4 for Fig. 7(a),
and p = 6.2 × 10− 128 for Fig. 7(b)]. This analysis confirmed that
the high values of posttrial classification could not be attributed
to a statistical chance.

3.2.3 Temporal profiles of classification probabilities

It was found that there were, generally, two types of temporal
profiles, which we call postdictive and predictive. The post-
dictive type of temporal profile exhibited a plateau before and
during the task period, a gradual increase on task completion,
and a peak value ∼5 s after task completion. Figure 8(a) il-
lustrates a representative probability profile computed from a
channel pair (25, 33) of Subject 1 [for corresponding images
of the NIRS signal, see Appendix A (Fig. 11 and Video 1). By
classifying the signals of this channel pair, it was possible to
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Fig. 7 Classification probabilities (red histograms) obtained by using the NIRS signals from all 1770 channel pairs (a) during task (0- and 3-s
interval) and (b) after task completion (10- and 13-s interval). The blue histograms describe classification probabilities computed from surrogate
data (i.e., randomly relabeled as successful and unsuccessful trials). Examples of NIRS signals, found in the posttrial distribution which: (c) gave
50% probability and (d) gave the highest probability. The blue dashed line in (d) indicates the decision boundary computed by an SVM algorithm.
(Color online only.)

determine if this subject noticed a face change in the change
trial that had just been finished. We interpreted that this tempo-
ral profile of classification probability reflected the success or
failure of a trial.

The predictive type of temporal profile was found in the case
of Subject 2 [Fig. 8(b)]. The classification probability increased
3.0 s before task initiation, took a maximum value around the
time of the task initiation, and decreased to approximately the
correct response ratio [for corresponding snapshots of NIRS
signal, see Appendix A (Fig. 12 and Video 1)]. By classifying the

Fig. 8 Classification probabilities (a) that was postdicitive for Subject 1
and (b) that was predictive for Subject 2. The pink shaded areas indicate
the task period. Black lines and surrounding blue shaded areas illustrate
average values and 95% confidence intervals of moment-by-moment
classification probabilities, respectively. (Color online only.)

signals of this channel pair, it was possible to predict whether the
subject noticed a face chance immediately before the trial was
completed. The signals from this channel pair were interpreted
as predictive for the success or failure of a trial

3.2.4 Analysis of four subjects

We performed the same classification procedure exhaustively
on all possible channel pairs (1770, 1596, 3828, and 2580 pairs
from Subjects 1–4, respectively; see Table 1). Because the tem-
poral dynamics of classification probabilities was the focus
of interest, the 50 channel pairs that showed maximal ampli-
tudes of classification probabilities (i.e., maximum probability
– minimum probability in each temporal profile) were chosen.
Figure 9 summarizes the results for Subjects 1 and 3. Classi-
fication probabilities in Fig. 9(a) (Subject 1) had postdictive
temporal profiles that were similar to the one shown in Fig. 8(a).
The corresponding channel pairs from which the probabilities
in Fig. 9(a) were computed are shown in Fig. 9(b). We looked
for the most informative channels, or hubs, which are defined as
NIRS channels that most frequently appeared in the 50 channel
pairs. Channel 33 (indicated by a blue circle) located in the left
angular gyrus appeared in 32 channel pairs out of the total 50
channel pairs, contributing most to the postdicitive classifica-
tion. The results for Subject 3 are summarized in Figs. 9(c) and
9(d), exhibiting characteristics similar to those of Subject 1. The
most informative channel was channel 35 (indicated by a blue
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Fig. 9 (a) Temporal profiles of the classification probability computed using the NIRS signals of Subject 1. The pink-shaded area depicts the task
period. The light blue line denotes the average values of all probabilities. (b) Channel pairs used to compute the probabilities shown in (a). The
pairs are connected by light blue lines. The black filled circles describe the locations of the channels used for the analysis, and gray filled circles
the locations of the channels that were excluded according to the criteria stated in Sec. 2. The numbers printed on the channels indicate the
cortical location depicted in Fig. 2. (c) Temporal classification probabilities of Subject 3 and (d) the locations of the channels pairs. (Color online
only.)

circle), which was located in the left occipital area and appeared
in 24 channel pairs. For both subjects, the pairs that contained
channels in the left temporoparietal or occipital areas gave the
higher values of classification probabilities, and the most infor-
mative channels tended to be paired with channels in the frontal
lobe [Figs. 9(b) and 9(d)].

Figure 10(a) shows predictive temporal profiles of classifi-
cation probabilities computed from 50 channel pairs of Subject
2. Most temporal profiles exhibited maximum values before the
task completion, thereby predicting whether that subject would
report the presence or absence of a face change. Pairs that con-
tained channels in the right temporoparietal areas contributed
to these high-classification probabilities [Fig. 10(b)]. Channel
20 (located at the right occipito-temporal junction), appearing
in 34 pairs, was most informative for this predictive classifi-
cation. Subjects 1–3 had either pre- or postdicitive temporal
profiles only. Interestingly, Subject 4 had both pre- and postdic-
itive components [Fig. 10(c)]. Channel pairs that had posterior-
parietal-lobe channels had contributed to both pre- and postdic-
itive classification [light blue and purple curves for postdictive
and predictive classification, Fig. 10(d)]. Channel 32 (located

in the posterior parietal area) appeared in 34 pairs and was
most informative for postdictive classification (a blue circle),
and channel 36 (located in the postcentral area) appeared in 16
pairs and was most informative for predictive classification (red
circle).

The above analysis found either predictive or postdictive
components of classification probabilities that exhibited high
temporal amplitudes. The clustering analysis was performed on
classification probabilities computed from all possible chan-
nel pairs, and it was found that three subjects (1–4) had
both predictive and postdictive components [see Appendix B
(Fig. 13)].

4 Discussion
This study demonstrated that moment-by-moment classification
probabilities could be computed from NIRS signals measured
in a change-detection task. The NIRS signals provided the tem-
poral dynamics and the most informative cortical locations si-
multaneously for classifying whether subjects noticed a change
in a visual scene.
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Fig. 10 (a) Temporal classification Probabilities of Subject 2 and (b) the locations of the channels pairs. (c) Temporal classification probabilities of
Subject 4 and (d) the locations of the channels pairs. In (c), two kinds of temporal profiles, whose corresponding channel pairs are shown in (d), are
shown in light blue and purple lines. These two temporal profiles are centers of clusters found with a k-means (k = 2) algorithm. (Color online only.)

4.1 Postdictive and Predictive Classification
Probabilities

The classification probabilities had two distinct types: post-
dictive and predicate. The postdictive type [Figs. 8(a) and 9]
remained at ∼50% before and during the task, began to increase
at the task completion, and took the maximum value approxi-
mately 5 s after the task completion. These postdictive classi-
fication probabilities arose mainly from a combination of the
most informative channels in the parietal, temporal, or occipi-
tal lobe and another channel in the frontal lobe. The predictive
classification probability [Figs. 8(b) and 10] predicted the per-
formance in subsequent trials immediately before and during
the task onset. A combination of the frontal and temporopari-
etal cortices contributed most to this type of classification
probability.

Although we initially did not expect to find a predictive
component in the change-detection experiment, such a com-
ponent was not surprising in retrospect because recent fMRI
studies reported that bold signals immediately before task ini-
tiation predicted task performances such as magnitude of force
production32 and sensitivity to somatosensory stimuli.77 An-
other fMRI study reported brain activation that began to evolve
gradually as early as thirty seconds before subjects made errors
in a flanker task.78 Moreover, hemodynamic signals recorded

simultaneously with electrophysiological recording revealed an
anticipatory component predicting upcoming sensory stimuli.79

The NIRS signals measured from the temporoparietal and frontal
cortices contributed to the predictive type of classification prob-
ability in general agreement with those fMRI studies.

There are, in general, two types of visual attention;80, 81

bottom-up, sensory-driven attention which enhances a stimulus
whose features differ from those of other surrounding stimuli,
and top-down, behavior-driven attention, which enhances a stim-
ulus of behavioral relevance. It is tempting to speculate that our
finding of pre- and postdicitive types may correspond to the two
types of visual attention. There are equally plausible specula-
tions for the predictive component. If the predictive component
resulted from allocation of attentional resources to face task,
then it could be related to top-down attention. Or, if the pre-
dictive component reflected enhancement to sensory stimulus
processing, then it could be attributed to bottom-up attention.
Also, the postdictive component could be due to either top-
down or bottom-up attention. The postdictive component might
have reflected a process that top-down attention was covertly
attracted to coincidently found face changes. Or, bottom-up at-
tention may have caused the postdictive component due to a
novel event, such as face changes. Designing an experiment
to dissociate top-down and bottom-up components in relation

Journal of Biomedical Optics August 2011 � Vol. 16(8)087001-9



Tanaka and Katura: Classification of change detection and change blindness...

Fig. 11 Snapshots of NIRS signals from t = − 5.0 to t = 10.0 that were used to compute the probability in Fig. 8(a). Horizontal and vertical axes
in each image denote temporally averaged NIRS signals from channels 25 and 33, respectively. The pink shade indicates the task period. The blue
dashed lines depicting the decision boundaries are included if the classification probability is >75%. (Color online only.)

to our findings of pre- and postdictive components will be of
neuroscientific interest.

4.2 Statistical Validation of Decoding Results
A recent NIRS study reported that subjective preference of
beverages could be decoded on a trial-by-trial basis with a
probability of ∼80% by using analysis and classification meth-
ods similar to ours.54 A subsequent commentary pointed that
there is a risk of high-classification probability out of ran-
dom data with no information about actual preference, and it

questioned if the high-classification probability of the study
might be caused by a statistical coincidence in choosing
“the best feature” out of a large number of features.82 It is
emphasized that this methodological criticism is not applicable
to our study. We demonstrated that the distribution of classifica-
tion probabilities was shifted from the task period to the posttask
period (Fig. 7). If no information concerning change-detected
and change-undetected trials were encoded, such a shift in the
distribution would not occur. Using surrogate data (i.e., ran-
domly relabeled successful and unsuccessful trials), the distri-
butions of classification probabilities were computed and found
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Fig. 12 Images of NIRS signals used for Fig. 8(b). Channels 4 and 32 were used for the horizontal and vertical axes. The pink shade indicates the
task period. (Color online only.)

to differ significantly from the distributions created from sub-
jects’ responses. We thus concluded that the structured temporal
profiles of classification probabilities in Figs. 8–10 reflected the
subjects’ performance.

4.3 Possible Applications toward Brain-Machine
Interfaces

According to a recent study,83 NIRS can be an appropriate sub-
stitute for fMRI across multiple cognitive tasks, although care
should be taken for its lower spatial resolution and weaker
signal-to-noise ratio. NIRS has a few important advantages

(such as fewer physical constraints and relatively lower cost)
with regard to BMIs.37 This opens up an alternative possibility
of monitoring an operator’s latent cognitive states from NIRS
measurements in a real-world setting. Our result that classi-
fied the success and failure in a change-detection task suggests,
for example, an interface based on NIRS signals to monitor
an operator’s performance and attentive states. In addition, our
analysis of how many channels were necessary for decoding
visual awareness to changes revealed that a small number of
channels were sufficient if their locations were deliberately cho-
sen. It is possible to make a compact and portable device84, 85

for NIRS-based decoding.
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Fig. 13 Clustering analysis applied to all possible channel pairs. (a) Three representative temporal profiles of the clusters (light blue, magenta, and
black in descending order of temporal amplitudes). (b) Locations of channel pairs for the light blue and magenta profiles of (a). To avoid cluttering,
only 30 pairs (those with the largest temporal amplitudes) are shown. (c) Distribution of three temporal profiles. (Color online only.)

4.4 Limitations of Current Study
Despite the success in classifying the successful and unsuc-
cessful trials, the current study has a few concerns. First, we
could not monitor the subjects’ eye movements due to a lack
of gaze tracking instrument. It might be possible to increase
the classification performance by removing trials in which overt

eye movements occur. Second, although most subjects exhib-
ited both pre- and postdictive types, their proportions differed
considerably; some had strong postdictive and weak predic-
tive components, whereas others showed weak postdictive and
strong predictive components. It is unclear, at this moment,
what caused the difference. Third, although we showed that two
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channels sufficed for successful classification, the locations of
the most informative channels varied from subject to subject. It
will be desirable to optimize the number of required channels
on a subject-by-subject basis. Also, we used only instantaneous
oxy-hemoglobin signals; however, a recent study suggested that
a decoding performance can be improved by considering a his-
tory or gradients of NIRS signals.86 A thorough search for an
optimal set of variables should be performed to achieve the bet-
ter performance and robustness of decoding. Lastly, the current
study employed a small number of subjects, and two of them
were the authors themselves who were aware of the aim of this
study. We tried to minimize the confounding risks of using the
authors as subjects by randomizing trial sequences session by
session so that they could not expect what trial type would come
next. However, the authors knew the proportion of the three trial
types; thus, it cannot be excluded that they might have implicitly
made a statistical guess of trial types.

To overcome these limitations, it would be worth extending
the current study by recruiting a larger number of subjects. By
inspecting a large data set, we expect to see what variables play
a dominant role in boosting the decoding performance and what
determines the relative strengths of post- and predictive compo-
nents. Also, one interesting direction is to decode one subject’s
state by using a classifier trained by other’s NIRS data set. This
will save a training session, which is of practical convenience
for NIRS-based brain machine interfaces. This approach has not
been examined with a few exceptions.87 These lines of studies
will be pursued in our future study.

Appendix A: Temporal Snapshots of Near-Infrared
Spectroscopy Signals
Figures 11 and 12 demonstrate typical examples of NIRS sig-
nals that were used to compute the classification probabilities in
Fig. 8. These snapshots were computed from –5.0 to + 8.0 s in
steps of 1.0 s. The green and red circles in each snapshot denote
NIRS signals from successful (change detected) and unsuccess-
ful (change undetected) trials (see Video 1).

Appendix B: Coexisting Predictive and Postdictive
Components
In Figs. 9 and 10, only 50 temporal profiles of classification
probabilities that showed maximal amplitudes were analyzed,
and in the cases of Subjects 1–3, either a pre- or postdictive

Video 1 NIRS signals and classification probabilities. (WMV, 4.9 MB)
[URL: http://dx.doi.org/10.1117/1.3606494.1]

component was found. Both components were found only in
the case of Subject 4. Here we show that, when all possible
profiles were analyzed, Subjects 1, 2, and 4 exhibited both pre-
and postdictive components.

The k-means clustering algorithm was applied to all possible
temporal profiles of NIRS signals. The number of clusters was
set to 3 (k = 3). In Fig. 13(a), three representative profiles of
the clusters are depicted using three colors (light blue, magenta,
and black in descending order of temporal amplitudes). In the
case of Subjects 1 and 3, the largest-amplitude components
(light blue) had peak values after task completion. The second
largest-amplitude components (magenta) had two peaks before
and after the task completion, indicating that these contained
both pre- and postdictive components. Interestingly, the cortical
locations for light blue and magenta components considerably
overlapped. The components with the smallest amplitude (black)
are almost flat, indicating these are irrelevant to subjective visual
experience. The same trend was observed in the case of Subject
4, who already showed predictive and postdictive components in
Fig. 10. Three temporal profiles computed from Subject 2’s data
have peaks only in the task period, indicating that only predictive
components were found in the case of Subject 2. Figure 13(c)
depicts the ratios of three components; for Subjects 1, 3, and 4,
the postdictive components are most dominant.
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