
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title オペレーティングシステムの最適化に関する研究

Author(s) 寺田, 徹

Citation

Issue Date 1997-03

Type Thesis or Dissertation

Text version author

URL http://hdl.handle.net/10119/1068

Rights

Description Supervisor:中島 達夫, 情報科学研究科, 修士



A Study on Operating System Optimization

Tooru Terada

School of Information Science,

Japan Advanced Institute of Science and Technology

February 14, 1997

Keywords: Extensible operating system, Dynamic code generation, Module.

The current requirements of applications for operating systems are very complex.

Thus, it is impossible for any single operating systems to satisfy all requirements of

applications. So, today's researches are directed to the systems which can be extensible.

The microkernel architecture is one of the extensible system models. It moves several

services from traditional monolithic kernels to user-level servers. It increases the exibility

of operating systems because of its portability of servers. In addition, it increases the

safety that applications are never inuenced by servers which they does not use.

However, operating systems based on the microkernel architecture have a drawback

concerned with their performance. They need much protection domain crossing than

traditional monolithic kernels because of the communications with servers. Several ap-

proaches to improve this drawback are proposed. The approach moving application's

functionalities into the kernel seems to be e�ective. In systems using the approach, ap-

plications load the code into the operating system kernel dynamically in order to alter

its behavior. This reduces the number of context switches. In addition, downloading the

code can be used to create data paths in the kernel. This removes the need for much

of data copies across the user/kernel boundary. If applications load the code into the

kernel, safety issues should be taken into account. Loading codes should not expose other

applications in danger. However, we require much exibility or the better performance

so that it is di�cult to design codes with no errors. Application designers which include

downloading code must take care not to include some errors, since there is no mechanism

to check completely not only syntactic errors but also semantic errors of kernel extensions.

To design downloading code with no error, modular designs are expected. In addition,

modular softwares are reusable. However, modular softwares have worse performance

than monolithic and speci�c software. This thesis proposes optimizations improving this

drawback of modular programming.

One of the cause of the poor performance in modular softwares is that many modules

designed individually manipulates the same data segment respectively. Usually, respective

Copyright c 1997 by Tooru Terada

1



modules load data to registers, manipulate them, and store them to memories. Loading

and storing data in each modules are redundant. To reduce this redundancy, this thesis

provides a mechanism and a set of application programming interfaces which integrates

respective data manipulations into pairs of load/store. This optimization is e�ective if

the same data is manipulated repeatedly by many modules.

Another cause of poor performance in modular softwares arises when a set of modules

is triggered the execution by some outer events such as in-kernel events. In the middle of

executing, there are some cases that modules conclude from their execution states that no

bene�t is brought to the application by that execution. Then, they abort the execution.

If many modules are executed until they abort, it includes many useless execution. In

another case, even if the execution is bene�table for the application, executing same

judge at many module is redundant. Now, this thesis introduce the �lter into module

programming. This �lter is similar to the packet �lter in network. Each modules pass their

�lters to the modules being executed formerly. Receiving modules collects and executes

their conditional evaluation. This reduces useless or repeated execution. Moreover, if

receiving modules need not execute their conditional evaluation, they are let propagate

�lters to more former modules. This technique brings not only cuts unnecessary executions

but also improvement in memory locality. Improvement in memory locality can reduce

cach misses.

These optimizations can be implemented with dynamic code generation. Dynamic

code generation is the creation of executable code at runtime. It is a powerful technique,

enabling applications to use runtime information to improve performance by up to an

order of magnitude. Dynamic code generation is useful for our optimization. Firstly, dy-

namic code generation reduce procedure call by composing set of modules into a function.

Secondly, since it can decides instruction order dynamically, it integrates data manipula-

tions in order to reduce load/store between memorys and registers. Finally, it compiles

�lter structures to machine code in order to reduce execution costs of composed function.

We implemented a prototype system including these optimization on Real-Time Mach

kernel. Real-Time Mach is a real-time extension of the Mach operating system. We also

choose VCODE system which has developed at MIT as a dynamic code generating system.

The VCODE system is a set of C macros and support functions that allow programmers

to portably and e�ciently generate code at runtime. VCODE generates code in place.

It eliminates the need to build and consume an intermediate representation. VCODE

instructions are translated directly to the machine instructions that they correspond to.

This allows us to directory construct arbitrary code at runtime, such as integrated data

manipulation and compiled �lter structure.

We show the e�ectiveness of our proposal by showing some basic experiments. In

addition, we show the e�ectiveness of downloading code to kernels or servers.

2


