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Abstract—This paper proposes a simple coding structure with
iterative spatial demapper (ISM) for single carrier transmission
of two correlated sources (with instantaneous power control) over
fading multiple access channel (Fading MAC) where the receiver
has only a single receive antenna. The correlation between the
sources is exploited via vertical iteration (VI) loop between the
two decoders and analyzed based on the Slepian-Wolf (SW)
coding theorem. The proposed structure, of which potential
applications are sensor or relay systems requiring relatively
small number of the transmission phases, can achieve turbo-
like performance over Fading MAC even with short memory
convolutional codes (CC). The rate-1 doped accumulator (D-
ACC) is used to flexibly adapt the variation of the correlation
between the sources which makes the convergence tunnel between
the demapper and decoder open until a point very close to
(1,1) mutual information (MI) point. The results of computer
simulations confirm that the proposed structure can achieve close
performance to the Slepian-Wolf/Shannon limit of two correlated
sources using single transmission phase.

I. INTRODUCTION

In multi-node communications, the correlation in informa-
tion between the multiple sources can be utilized to reduce
the energy consumption [1] for reliable data transmission from
multiple sources to a common receiver. A goal of this paper
is to propose a technique that can make efficient use of the
source correlation in the framework of multiple access channel
(MAC) with single antenna receiver.

Despite the volume of publications describing transmission
techniques for independent multiple sources, to the authors’
best knowledge, only a few simple techniques for application
of correlated sources in wireless sensor or relaying systems
have been investigated from the viewpoint of Slepian-Wolf
(SW) coding system.

The SW coding theorem, introduced by Slepian and Wolf in
1973 [2], has drawn much attention recently with the aim of
its applications to variety of systems such as sensor networks
[3], and recently to relay and cooperative network systems [4].

The SW coding theorem specifies achievable rate regions of
multiple sources, R1 and R2, when considering the lossless
compression of two correlated sources b1 and b2 sending data

This research is supported in part by the Japan Society for the Promotion
of Science (JSPS) Grant under Scientific Research (C) No. 2256037 and (B)
No. 23360170.
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Fig. 1. Transmission of two correlated sources with joint entropy
H(b1, b2) = 1 + H(p) over fading multiple access channel (Fading MAC)
to a common destination D

to a common joint decoder as shown by Fig. 1. The region
is an unbounded polygon with two corner points, where b1 is
compressed at its entropy H(b1) while b2 can be compressed
at a smaller rate than its entropy H(b2), but larger than their
conditional entropy H(b2|b1) or vice versa. The SW bound is
given by the three inequalities,

R1 ≥ H(b1|b2), (1)

R2 ≥ H(b2|b1), (2)

and R1 + R2 ≥ H(b1, b2), (3)

where H(b1, b2) is the joint entropy. The contribution of SW
coding theorem is the discovery that the compression can be
performed even if both sources are encoded separately as long
as the joint decoder is able to know or estimate the source
correlation.

In this paper, we propose for single carrier signaling a sim-
ple structure of SW coding systems using single transmission
phase and single antenna receiver for two correlated sources
using iterative spatial demapper (ISM), denoted as SW-ISM
structure, for fading multiple access channel (Fading MAC)
with instantaneous power control.1 The receiver performs
ISM demapper combined with iterative decoding separated by
interleavers, where the correlation between the two sources is
exploited using a vertical iteration (VI) loop; the detection of
sources b1 and b2 are performed by horizontal iteration (HI)
loop.

1The analysis and results on general Fading MAC (without instantaneous
power control) are not presented in this paper due to the space limitation.
However, the results presented in this paper is also valid for general Fading
MAC.



Spatial mapping is presented, for example, in [5] for
multiple-input multiple-output (MIMO) systems, where the
optimal spatial mapping for BPSK can outperform the conven-
tional, called ’serial-to-parallel (S/P)’, mapping. However, the
mapping optimization is difficult for independent transmission
of separate sources,2 (or other non-MIMO systems) which by
nature results in Gray mapping that has no benefit for iterative
processing even a priori information is available.

To solve the problem, inspired by [6], this paper proposes
iterative spatial demapper combined with the rate-1 doped
accumulator (D-ACC); D-ACC improves the demapper per-
formance even with Gray mapping by ”bending up” the right
hand side of the its extrinsic information transfer (EXIT)
curve [7]. Furthermore, it results in a better matching to
the decoder of convolutional code’s EXIT curve to achieve
performance very close to the SW/Shannon theoretical limit.
To the best of our knowledge, this paper for the first time pro-
poses MAC/Slepian-Wolf results (single transmission phase),
therefore the performances are presented with physical layer
network coding (PLNC) [8] as the baseline comparison.

This paper is organized as follows: In Section II, we de-
scribe the system model assumed in this paper. In Section III,
we provide detailed descriptions of our proposed the SW-
ISM structure, which is followed by EXIT chart analysis
in Section IV to provide in-depth consideration on the joint
decoding of the correlated sources. We also provide briefly the
results of theoretical analysis of the SW capacity region over
Fading MAC and its performance evaluation in Section V.
Finally, we conclude this paper in Section VI with some
concluding remarks.

II. SYSTEM MODEL

In this paper, we consider single carrier signaling.3 Fig. 1
shows a block-diagram of the system we consider, where the
binary streams b1 and b2 are encoded separately, and the
sources do not communicate each other. Puncturing for each
coded source may be performed to adjust the rates R1 and
R2 including compression and channel coding.

The encoded sources b1 and b2 are then mapped on to
symbols s1 and s2 with E{s1} = 1, E{s2} = 1, respectively,
using binary-phase shift keying (BPSK).4 The symbols s1 and
s2 are transmitted simultaneously with powers P1 and P2,
respectively, such that transmission of both sources requires
only one transmission phase.

Block wise transmission is assumed. The channels between
transmit antenna 1 and 2 to the single receive antenna are both
assumed to be one-path (block) Rayleigh distributed fading
channel with instantaneous power control so that the complex
channel coefficient for source 1 and 2 are |h1| = 1 and |h2| =
1, respectively.5

2The encoder and modulator do not communicate each other.
3An extension to other signaling schemes, such as multicarrier systems as

well as their mixture systems, is rather straightforward.
4There is no restriction to other higher order modulations.
5An extension to multipath Rayleigh fading channel is possible by turbo

equalization, e.g., frequency domain soft-cancellation minimum mean square
error (FD/SC-MMSE) as in [9], [10].
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Fig. 2. Constellations of spatially separated two BPSK symbols with channel
phase difference θ of (a). 90◦ and (b). 0◦

TABLE I
SUMMARY OF MAC MODEL DEFINITIONS

|h1|, |h2| θ=∠(h1, h2) Noise MAC

1 0◦ N = 0 Binary Erasure MAC
1 0◦ N > 0 Gaussian MAC [11]
1 random N > 0 Fading MAC (Power Control)

Rayleigh random N > 0 Fading MAC

Due to the simultaneous transmission from two transmit
antennas to a single receive antenna at the receiver, the
received signal r is a superposition of the signals, as

r = h1

√
P1s1 + h2

√
P2s2 + z, (4)

where z is a noise component modeled by complex Gaussian
random variable with zero mean and variance σ2

n/2 per
dimension, and hence the complex noise power is N = σ2

n.
The channel state information (CSI) is assumed to be known
to the receiver, however, since we consider an instantaneous
power control, the magnitude of CSI is known (but the phase
difference θ = ∠(h1, h2) is not known) to the transmitter.
Hence, the received signal-to-noise power ratio (SNR) for
source 1 and 2, respectively, are defined as

γ1 =
|h1|2P1

N
=

P1

N
, and γ2 =

|h2|2P2

N
=

P2

N
. (5)

The effect of superposition depends on the complex channel
gains h1 and h2 and their random variable phase difference θ.
With θ = 90◦ the constellation point of the received symbols
is plotted in Fig. 2(a)6 with j =

√−1, while with θ = 0◦

is shown in Fig. 2(b), both for P1 = P2 = 1. In this paper,
we use terminology Fading MAC with instantaneous power
control since θ = random and the power is controlled such
that |h1| = |h2| = 1. The other MAC models for different
parameter settings are summarized in Table I.

III. PROPOSED SLEPIAN-WOLF ITERATIVE SPATIAL

DEMAPPING (SW-ISM) STRUCTURE

Based on insightful findings in [9], [10] and [12], we
propose SW-ISM structure that use only one transmission
phase, of which the receiver has a common iterative spatial
demapper and two short memory convolutional decoders. The
proposed SW-ISM structure is shown in Fig. 3.

6Normalization by
√

2 is not needed because it is a composite sym-
bol. Furthermore, the results of superposition with θ = 90◦ are not
{+1,−1, +j,−j}.



A. Correlated Sources Model

A simple bit flipping model [13] is used to parameterize
the correlation between the sources b1 = [b1

1, b
2
1, · · · , bk

1 , · · · ]
and b2 = [b1

2, b
2
2, · · · , bk

2 , · · · ]. We assume that the sequence b1

satisfies the i.i.d condition with Pr(bk
1 = 0) = 0.5, Pr(bk

1 =
1) = 0.5. Then, the sequence b2 is defined as

bk
2 = bk

1 ⊕ ek, (6)

where ⊕ indicates a modulo 2 addition and ek ∈ {0, 1} is
the random variable for the k-th source bit with probabilities
Pr(ek = 1) = p and Pr(ek = 0) = 1−p, which is independent
of bk

1 . The conditional probability is then given by

Pr(bk
2 = 0|bk

1 = 1)=Pr(bk
2 = 1|bk

1 = 0) = p (7)

Pr(bk
2 = 0|bk

1 = 0)=Pr(bk
2 = 1|bk

1 = 1) = 1 − p, (8)

where parameter p can be in the range of 0 � p � 0.5 [13].
With the source model described above, the sequences of

the binary random variables bk
1 and bk

2 in source b1 and b2,
respectively, are still i.i.d in terms of the bit index k (not
temporarily correlated) and the appearances of 0 and 1 are
equiprobable. Therefore, the corresponding entropy H(b1) =
H(b2) = 1, while the conditional entropy of H(b1|b2), is given
by

H(b1|b2) = lim
k→∞

1
k

H(b1
2, · · · , bk

2 |b1
1, · · · , bk

1) = H(p), (9)

where H(p) = −p log2(p)−(1−p) log2(1−p) is a binary en-
tropy of random sequence e. As a consequence, the achievable
SW region (R1,R2) with this model is given by

R1 ≥ H(p), (10)

R2 ≥ H(p), (11)

and R1 + R2 ≥ 1 + H(p). (12)

B. Transmitters

Two sources, b1 and b2, are transmitted from two separated
antennas simultaneously. The bitstream b1 is convolutionally
encoded using C1, interleaved by Π1, doped accumulated, and
modulated to form BPSK symbol s1. The bitstream b2 is first
Π0-interleaved, convolutionally encoded using C2, interleaved
by Π2, doped accumulated and modulated to form BPSK
symbol s2.

The interleaver Π0 is introduced to exploit the correlation
knowledge via the VI loop at the receiver, while Π1 and Π2,
which is longer than Π0 is used to interleave the coded bits x
and y to obtain sequences x′ and y′.7

The rate-1 D-ACC [12] can be applied to fully exploit the
correlation between the sources in SW systems. As shown in
Fig. 3, D-ACC is performed after the interleaver. The structure
of D-ACC is very simple since it is composed of a memory-1
systematic recursive convolutional codes (SRCC) with octal
code generator of ([3, 2]3)8 followed by heavy puncturing of
the coded bits so that overall coding rate = 1. With a doping

7A delay τ may be added to antenna 1 as a compensation of the delay
because of interleaver Π0 at source b2.

rate Q, the D-ACC replaces every Q-th systematic bits with
the accumulated coded bit.

At the receiver D-ACC decoding, denoted as Ddacc, is
performed using Bahl-Cokce-Jelinek-Raviv (BCJR) algorithm
[14] immediately after the demapper. It should be noted
here that interleaver between Ddacc and the demapper is not
needed because the extrinsic log-likelihood ratio (LLR) is not
exchanged between them.

C. Receiver

The receiver consists of a common ISM demapper, two
HI loops because two sources are considered, and VI loop
to exploit the benefit of correlation between the sources.
ISM demapper performs demapping of spatial constellation
from r into s1, symbol-by-symbol, with the help of a priori
information for s2, and vice versa, in the form of LLR
provided by the decoder. The demapper output is extrinsic
LLR which is fed into Ddacc, deinterleaved, and then decoded
by D1 or D2.

Decoder D1 and D2 provide extrinsic LLR of the uncoded
bits Lu

e,D1
and Lu

e,D2
, respectively, to performs VI loop to

achieve additional coding gain by exploiting the correlation
knowledge p. Decoders D1 and D2 also provide extrinsic
LLRs of the coded bits Lc

e,D1
and Lc

e,D2
, respectively, for

the HI loop to improve the ISM demapper performance by
providing additional extrinsic LLRs.

1) ISM Demapper: As shown in Fig. 3, with the help of
a priori information about s1 provided by the decoder D1 in
the form of La1,M , the demapper calculates the extrinsic LLR
Le2,M of the symbol s2 from the received signal r by

Le2,M= ln
Pr(s2 = +1|r)
Pr(s2 = −1|r)

= ln

∑
S∈S+1

exp
{
−|r−h1

√
P1s1−h2

√
P2s2|2

σ2
n

+b1La1,M

}

∑
S∈S−1

exp
{
−|r−h1

√
P1s1−h2

√
P2s2|2

σ2
n

+b1La1,M

} ,

(13)

where S+1, S−1 are the sets of superposition symbols in (4)
having symbol s1 being +1 and −1, respectively, with s1 =
1−2b1. Similarly, with the help of a priori information about
symbol s2 provided by decoder D2 in the form of La2,M , the
extrinsic LLR Le1,M of symbol s1 is calculated.

The extrinsic LLRs, Le1,M and Le2,M are then doped
deaccumulated by Ddacc, deinterleaved by Π−1

1 and Π−1
2 ,

respectively, to provide a priori LLR, Lc
a,D1

and Lc
a,D2

, of
the coded bits for the decoders D1 and D2.

2) Vertical Iterations and LLR Updates: Because the two
sources are not fully correlated, i.e., (p �= 0), the extrinsic LLR
of the uncoded information bits, obtained as a result of the
BCJR algorithm, has to be updated to avoid error propagation
via the VI loop. As in [13], we use the following probability
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Fig. 3. The proposed single antenna receiver for two correlated sources with single transmission phase

update for b2:

Pr(b2 = 0) = (1 − p)Pr(b1 = 0) + pPr(b1 = 1),
Pr(b2 = 1) = (1 − p)Pr(b1 = 1) + pPr(b1 = 0). (14)

The probability update for b1 is performed in the same way
as (14). The LLR updating function ρ(·) corresponds to (14)
for b2 is

Lb2 = ρ(p, Lb1) = ln
(1 − p)eLb1 + p

(1 − p) + peLb1
, (15)

where Lb1 and Lb2 are the extrinsic LLRs of b1 and b2,
respectively. Similarly, the updating function for b1, Lb1 =
ρ(p, Lb2)′, is obtained from (15) by changing Lb2(Lb1) by
Lb1(Lb2). In this paper, we assume that p is perfectly known
to the receiver.8

IV. EXIT ANALYSIS

EXIT analysis is necessary to evaluate the convergence
properties of the proposed iterative spatial demapper and its
corresponding decoders with VI loops with the correlation
p values as a parameter. We assume that P1 = P2 = P
so that the SNRs for source 1 and 2 are the same as
γ1 = γ2 = γ. Because of the limited space, in this section
we show only the EXIT chart with θ = 0◦, because of its
most critical effect that results in the worst bit-error-rate (BER)
performance. Fig. 4 shows for the source b1 EXIT chart of
the ISM demapper and the joint decoder (obtained via the VI
loop) for γ = {−4.875,−2, 0} dB with correlation values of
p = {0.00, 0.10, 0.49} with θ = 0◦.

The X-axis is mutual information (MI) between x′′ and
L′

a1,M , denoted as Ia1,M = I(x′′;L′
a1,M ), and MI Ic

e,D1
=

8When p is unknown to the receiver, it can be estimated using the technique
in [13]. However, the estimation quality can be improved by the use of a
posteriori LLR as shown in [10].
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I(x;Lc
e,D1

), where x and x′′ are shown in Fig. 3 and L′
a1,M =

Π1(Lc
e,D1

) with Π1(·) being the Π1 interleaver function. Here,

La1,M (k) ≡
{

L′
a1,M (k), k �= nP, n = 1, · · · ,K

0, otherwise,
(16)

where L′
a1,M (k) is the a priori LLR for Ddacc and k is the

bit-index.
The Y-axis of Fig. 4 is MI Ie1,M = I(x′′;Le1,M and

Ic
a,D1

= I(x;Lc
e,D1

). It is important to note that by assuming
that Ic

a,D1
= Ic

a,D2
the decoder EXIT curve can be plotted

in two dimensions (2D),9 because the extrinsic LLRs Le1,M

and Le2,M are produced by the same demapper. It should be

9Otherwise, the decoders’ EXIT curve should be plotted in three dimensions
(3D), since Ic

e,D1
= T (Ic

a,D1
, Ic

a,D2
) with T (·) being the decoders’ EXIT

curve transfer function.



noticed in Fig. 4 that the trajectory and EXIT curves of the
ISM demapper and decoders are exactly consistent each other.

As observed from Fig. 4, the decay of ISM demapper EXIT
curve depends on: (a) γ values, and (b) the doping rate Q. It
is shown that small doping rate, Q = 6, is required when the
correlation value p is small, while Q = 12 is needed when the
correlation is closer to p ≈ 0.5. The reason is that the bigger
the p value the smaller the coding gain obtained by the LLR
exchange via VI loops10 and the help from the joint decoder
diminishes. In this case, the ISM demapper should increase
the doping rate Q such that the number of zero a priori LLR,
La1,M (k) = 0 in (16) decreases.

The EXIT curve of joint decoders depends on the correlation
p, where the area under the decoder EXIT curve decreases
equivalently to the SW coding rates ηSW . The detailed pro-
portional relation between ηSW and the bit-flipping probability
p is given by (18) as ηSW ∝ {1 + H(p)}. This relation
is confirmed by the EXIT curves shown in Fig. 4. It is
also observed from the figure that because of no intersection
between the ISM demapper and decoder EXIT curves, turbo
cliff happens at the corresponding threshold γs.

V. PERFORMANCE EVALUATION

A series of computer simulation was conducted to verify the
effectiveness of the proposed SW-ISM structure for several
values of bit-flipping probabilities p representing the corre-
lation parameters. Binary sequence b1 is generated randomly
with length of 10,000 bits. The bits in b1 was randomly flipped
with probability of p = {0, 0.01, 0.1, 0.2, 0.3, 0.4, 0.49}, and
randomly Π0-interleaved to produce sequence b2, as b2 =
Π0(b1 ⊕ e), where Pr(e = 1) = p. Therefore, the length of
interleaver Π0 is also 10,000 bits.11

The binary sequences b1 and b2 are then independently
encoded by the same memory-2 rate 1/2, Rc1 = Rc2 = 1/2,
non-systematic non-recursive convolutional codes (NSNRCC)
with a generator polynomial G = [7, 5]8, resulting in two inde-
pendent sequences x and y, each having length of 20,000 bits.
The sequence x and y are further independently interleaved by
random interleavers Π1 and Π2, respectively,12 and then doped
accumulated by D-ACC with doping rates P = {5, 6, 10, 12}.

BPSK symbols s1 and s2, s1 = 1 − 2b1 and s2 = 1 − 2b2,
respectively, where the transmit power is set to P1 = P2 =
1 = P . The receiver is assumed to have perfect knowledge
about the correlation p. We use activation ordering pattern
50(H1V 3), which means that each one HI followed by 3
VI is repeated 50 times. The total iterations in maximum is,
therefore, 2 × 50 HIs + 3 × 50 VIs for each block.

A. Theoretical Limit

The Slepian-Wolf and Shannon theorems states that the
condition to achieve arbitrarily low BER for two correlated
sources, b1 and b2, is given by (3).

10The VI loop disconnects D1 and D2 at an exact value of p = 0.5.
11This length is assumed to be enough to simulate the number of flipped

bits e, especially for p = 0.01 since 0.01 × 10, 000 = 100 bits are flipped.
12The length of interleavers Π1 and Π2 is, therefore, also 20,000 bits.

TABLE II
SYSTEM PERFORMANCES (NOTE: * OBTAINED BY EXIT CHART)

p
Two Phases (dB) Proposed Single Phase (dB)
ηSW γlim ηSW γlim γBER Gap

0.00 0.2500 -7.2306 0.5000 -6.8381 -5.010 1.83
0.01 0.2702 -6.8619 0.5404 -6.4361 -4.135 2.30*
0.10 0.3673 -5.3776 0.7345 -4.7898 -2.135 2.59
0.20 0.4305 -4.5882 0.8609 -3.8922 -1.135 2.76*
0.30 0.4703 -4.1406 0.9406 -3.3753 -0.510 2.86*
0.40 0.4928 -3.9027 0.9855 -3.0980 -0.135 2.96*
0.49 0.4999 -3.8285 0.9999 -3.0112 0.000 3.01

1) Two-Phase Transmission: The capacity of a channel
with two-phase transmission is given by

H(b1, b2) ≤ R1 + R2,

≤ C1/Rc1 + C2/Rc2 ,

≤ 1
Rc

{log2(1 + γ1) + log2(1 + γ2)} , (17)

where C1 and C2 is the channel capacity for link between
the singe receive antenna and transmit antenna 1 and 2,
respectively. By assuming that γ1 = γ2 = γ and Rc1 = Rc2 =
Rc = 1/2, the SW/Shannon limit γlim and spectrum efficiency

ηSW =
1
2
RcH(b1, b2) (18)

are shown in Table II.
2) Single Phase Transmission: With single phase trans-

mission using single receive antenna, the capacity of SW is
determined by the phase θ, where the MAC rate region for
P1 = P2 = P , as shown in the Appendix, is given by

H(b1, b2)≤ 1
Rc

log2

{(
1+

P

N

)(
1+

P

N+P cos2 θ

)}
. (19)

The total MAC capacity in (19) is maximum with θ = 90◦

regardless of P1 and P2 values, resulting in the same equation
as the MAC capacity of two-phase transmission given by (17).
On the contrary, the total capacity in (19) is minimum with
θ = 0◦ which is equivalent to a capacity of multiple-input
single output (MISO) channel,

H(b1, b2) ≤ 1
Rc

log2

{(
1+

P

N

)(
1+

P

N+P

)}

≤ 1
Rc

log2(1 + 2γ). (20)

The γlim for θ = 0◦ and its SW spectrum efficiency

ηSW = RcH(b1, b2) (21)

for Fading MAC are also summarized in Table II.

B. Bit-Error-Rate (BER) Performances

BER performance is evaluated over Fading MAC with phase
difference of θ = 0◦ and θ = random. The results are plotted
in Fig. 5 for p = 0, p = 0.1, and p = 0.5 (without correlation
exploitation); for other p values, the results, in terms of SNR
at BER = 10−5, denoted as γBER, are estimated using EXIT
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chart; the results are presented in Table II. BER curve with
uncoded physical layer network coding (PLNC)13, expressed
as [8], [15]

Pb =
1
2
erfc

(
T√
N

)
+

1
4
erf

(
T +2√

N

)
+

1
4
erf

(
T−2√

N

)
, (22)

are shown for a baseline comparison, where T is the optimum
threshhold given by T = 1 + N

4 ln(1 +
√

1 − e−
8
N ) [8], and

erf(x) = 1 − erfc(x).
It can be observed from Fig. 5 that the proposed SW-ISM

for p = 0 provides clear turbo-cliff at γ = −5.01 dB, which
is about 1.83 dB away from the SW/Shannon limit. It is also
found that BER curves with θ = 0◦ and θ = random coincide
at lower BER, which indicates that channel with θ = 0◦

dominates the performance. Therefore, we can approximate
the BER for Fading MAC with instantaneous power control
with single phase transmission, of which rate bound is given by
(27) shown in Appendix, with θ = 0◦.14 When the correlation
p = 0.1, clear turbo-cliff is still achievable without error floor
at γ = 2.135 dB, which is about 2.59 dB away from the limit.

The performances gap of the proposed SW-ISM for other
p values increases as the correlation decreases as shown in
Table II. A general tendency is that the smaller the correlation,
the larger the distance to the SW/Shannon limit. For example,
with p = 0.5, the threshold SNR is about 3.01 dB away from
the limit.

C. Analysis on the Slepian-Wolf and Fading MAC Rate Re-
gions

In this sub-section, we provide analysis of SW and MAC
rate regions based on the results on Fading MAC channels

13It happens when the phase difference θ = 0◦.
14However, the ergodic capacity, as presented in the next subsection, is

obviously larger.
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Fig. 6. Fading MAC (with instantaneous power control) and SW capacity
rate regions

with instantaneous power control for p = 0 and p = 0.1. The
results are shown in Fig. 6(a) and (b), respectively. The SW
capacity rate region only depends on the correlation p and is
independent of SNR. The theoretical MAC capacity rate region
is shown with dashed line. The SW/Shannon theoretical SNR
limit, defined for

H(b1, b2) =
1

Rc
(C1 + C2) (23)

is satisfied, which are at γlim = −6.838 dB and −2.135 dB
for p = 0 and p = 0.1, respectively.

The MAC region evaluated at BER= 10−5 by the proposed
SW-ISM structure for p = 0 is shown in Fig. 6(a) with
γBER = −5.01 dB. The gap from the theoretical limit is
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Fig. 7. Numerical evaluation of ergodic and outage capacities of Fading MAC
with and without instantaneous power control at θ = 0◦ and θ = random

1.83 dB as shown by the figure. The ergodic capacity with the
same γBER is also shown in the figure. Fig. 6(b) shows the rate
regions for p = 0.1, where the γlim is -2.135 dB. The gap from
the theoretical limit is 2.654 dB, which is larger compared to
the case of p = 0 as presented in Fig. 6(a) because of its
weaker correlation.

The ergodic MAC capacity is obtained by numerical inte-
gration of (27), as shown in Appendix, over all θ values with
uniform distribution p(θ) = 1

2π . However, as shown by Fig. 7,
for γ = 0 dB, the capacity of θ = 0◦ and θ = random for
Fading MAC with and without instantaneous power control
coincide at outage probability less than 1%.

Since the BER performance was evaluated using massive
simulations where more than 50,000 blocks were transmitted,
the result was with the outage probability of 0.002%. It can
be concluded from the results and analysis that with our
proposed SW-ISM structure the SW and Fading MAC with
instantaneous power control overlaps with 99.998% proba-
bility. Hence, the source channel separation holds with the
probability.

VI. CONCLUSIONS

In this paper, we have proposed a simple coding structure
for single carrier signalling of two correlated sources with
single phase transmission where the receiver has only a single
receive antenna and a very simple decoder. To achieve flexible
adaptability to the correlation parameters, doped-accumulator
is utilized. It has been found that a close matching between
EXIT curves of demapper and decoder can be achieved,
yielding the gap to the Slepian-Wolf/Shannon theoretical limit
is about 1.83 − 3.01 dB. In this paper, the rates of the two
users were assumed to be the same. However, with a minor
modifications, it can be easily proven that the same results
can be derived in the asymmetric cases, including the well-

known corner points in the rate region corresponding to the
successive cancellation. The proposed structure has potential
applications to cooperative relaying systems that allow errors
between the source and relay links with small number of
transmission phases.

APPENDIX

In Fading MAC with instantaneous power control, we have
|h1|2 = |h2|2 = 1 and ∠(h1, h2) = θ = random. Since θ
is a random variable, the achievable rates in Fading MAC are
also random variables. By assuming that θ is known to the
receiver and the noise N is complex Gaussian distributed, the
rates can be expressed as

R1(θ)≤ log2

(
1 +

P

N + P cos2 θ

)
, (24)

R2(θ)≤ log2

(
1 +

P

N + P cos2 θ

)
, (25)

R1(θ)+R2(θ)≤ log2

{(
1+

P

N

)(
1+

P

N+P cos2 θ

)}
. (26)

Finally, the average rate of Fading MAC, averaged over all the
possible θ distributed by p(θ) over (0, 2π], can be calculated
from

Ri ≤
∫ 2π

0

Ri(θ)p(θ)dθ. (27)
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