
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
パラメータ化プログラミングにおけるモジュール変換

に関する研究

Author(s) 浦上, 貴裕

Citation

Issue Date 1997-03

Type Thesis or Dissertation

Text version author

URL http://hdl.handle.net/10119/1069

Rights

Description Supervisor:二木 厚吉, 情報科学研究科, 修士

Module Transformations

in Parameterized Programming

Uragami Takahiro

School of Information Science,

Japan Advanced Institute of Science and Technology

14th Feb. 1997

Keywords: parameterized programming, reusability, module graph, CafeOBJ.

1 Introduction

Structuring is the indispensable method for developing any large-scale and/or complicated

software, so a mechanism for modularization is important. It is also important in speci-

�cations written in natural languages. Usually speci�cations written in natural language

have some structures such as chapters and sections. Also, table of contents and indexes

are attached to speci�cations. These make hierarchical structure of speci�cations by the

reference relationship. This relationship decides whole structure of speci�cations.

When you read a speci�cation written in natural language and �nd an outline with

indexes to detailed de�nition parts, it makes-up a hierarchical structure. If you �nd an

application of a function and there is an index to the detailed de�nition of the func-

tion, we can say it makes-up a reliance relationship. Further more, the reusability of

speci�cation is improved by using function parameterization. In natural language spec-

i�cations, parameterization is expressed in the declaration of that the functions rely on

implementation.

In algebraic speci�cation paradigms, a set of data and operations are all abstracted

and their properties are self-supported what is called data abstraction. Abstract data

type is typical method for modularization. The mechanism for modularization should

have methods for referring each other such as importing other modules. It makes use of

reference relationship and parameterized speci�cation. These mechanisms make it easy

to develop complicated reference relationship between modules, but it may lose module

readability. We propose a method called module graph to increase the readability. Which

makes it easy to understand module relationship. A module graph is based on the same

concept with the table of contents and the indexes of speci�cations in natural language.

After de�ning the module graphs, we try to show the e�ectiveness of this method.

Copyright c 1997 by Uragami Takahiro

1

2 Algebraic Speci�cation Language CafeOBJ

CafeOBJ is an algebraic speci�cation language based on order-sorted rewriting logic which

is an extension of order-sorted equational logic. A subset of CafeOBJ is executable, where

the operational semantics is given by a conditional order-sorted term rewriting system.

In CafeOBJ, we can use parameterized programming mechanism that is inherited from

OBJ2 and OBJ3. For example, we can de�ne a parameterized stack module STACK in

CafeOBJ. The parameter of STACK is characterized by the theory TRIV. TRIV is the

requirement theory for an interface that only requires a designated sort corresponding

to Elt from an actual object. Using this generic STACK object we can de�ne integer

stack INT-STACK only by instantiating TRIV with INT. As this, parameterized modules

maximize reusability by permitting tuning to �t a variety of applications. Also it increase

the expressive power of modules. For example, a parameterized sequence module can

be imported into a sorting module without instantiating. This module will be a sorting

program over sequences of any sort. At the time, the sorting module is parameterized

with the same parameter as sequence module. When the sorting module is instantiated

with any module, the same module will bound the parameter of the sequence module.

We call this sequence sorting module as a multiple parameterized module. We call this

event as a multiple instantiation.

Using CafeOBJ's renaming mechanism, we can import one module twice with dif-

ferent name. Multiple parameterize mechanisms and renaming functions are very useful

properties for programmer, because both of them maximize module power of expression.

Unfortunately, unlimited using of these properties makes program code more complicated

and lose module readability.

3 Module Graph

A module graph is heavily related to the information contained in header part of the

CafeOBJ module. This header part contains a module name, of its self importing module

name and its mode, parameter and constraint module name, and renaming informations.

The declaration except module name are optional. A module graph denotes the struc-

ture of modules. Its nodes denote modules (�gure 1) and its edges denote relationships

between imported modules and importing modules (�gure 2). Parameterized modules

are represented with parameters denoted within an oval (�gure 3). Module shapes will

change before and after instantiating. This variation makes it possible to represent a

speci�cation which is in an intermediate stage. An instance of a parameterized module is

given by binding modules to parameters. The process of binding is called instantiation.

Instantiation of parameters can be done by declaring a view with the module graph. If

the view already declared then, their name is bound to the formal parameter. If there is

no view, you can declare an ephemeral view in the module de�nition and use it. Views

are represented as diamond with a constraint and an actual module (�gure 4). View is

put in the diamond and arrows are draw from a line which represents the bind of the

target module to the constraint module. Instantiation mechanism is expressed as an edge

2

directed from view to formal parameter, which represents the parameter of parameter-

ized module graph (�gure 5). The multiple parameterization will shape as parameterized

modules are inside of a parameterized module (�gure 6). The parameter part of these

modules are connected with arrows.

4 Conclusion

Using our method we can express multiple parameterized modules and modules with

renaming mechanism as the module graph. These structures play important role for

modularizations and readability. We can easily understand the relationships of module

references from the module graph. Further more, we can add or improve modules using

its the module graph. In this paper we show some examples consist of data structures by

module graphs. Then, we changed the data structure of the module on the graph keeping

the module structure unchanged. Possibility of improving a program without changing

module structures means that we can safely maintain the program.

As a result, we �nd that the change of the data structures on a module graph shows

us the changes of constraints for parameters. In the multiple parameterized module, if

the constraint of inner module is more tight than that of outer one, the module de�nition

regarded as invalid, so this case we have to change the constraint of the outer module to

be the same as inner module. This shows that the module graph shows not only the state

changes of module structures but also shows the changes of the constraints for the formal

parameters.

3

PARAMETERIZED
 MODULEMODULE

(1) module

IMPORTED
 MODULE

(2) module importing

IMPORTING
 MODULE

(3) parameterized module

PARA::THEORY

Module Graph Definition

THEORY

(4) view

view

 TARGET
MODULE THEORY

view

 TARGET
MODULE

(5) instantiation

PARAMETERIZED
 MODULE

PARA::THEORY
PARAMETERIZED
 MODULE

(6) dual-parameterized module

PARA::THEORY

DUAL::THEORY

DUAL-PARAM-
 ETERIZATION

4

