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Abstract. If there are many displaced workers in a company, then a
person who goes for job hunting might not select this company. That
is, the number of members who quit is quite negative information. Sim-
ilarly, in revocable group signature schemes, if one knows (or guesses)
the number of revoked users (say r), then one may guess the reason be-
hind such circumstances, and it may lead to harmful rumors. However,
no previous revocation procedure can achieve to hide r. In this paper,
we propose the first revocable group signature scheme, where r is kept
hidden. To handle these properties, we newly define the security notion
called anonymity w.r.t. the revocation which guarantees the unlinkabil-
ity of revoked users.
Keywords: Group signature, Revocation, Hiding the Number of Re-
voked Users

1 Introduction

Imagine that there are many users who have stopped using a service. If this fact
is published, then how would the newcomers feel about this? One may guess the
reason behind such circumstances, and may judge that those users did not find
the service attractive or the service fee is expensive. The same thing may occur
in other cases, e.g., if there are many displaced workers in a company, then a
person who goes for job hunting might not select this company. That is, the
number of members who quit is quite negative information.

Many cryptographic attempts for the revocation of rights of users have been
considered so far, especially, in group signature [12]3, anonymity revocation has
3 The concept of group signature was investigated by Chaum and Heyst [12], and its

typical usage is described as follows: The group manager (GM) issues a membership
certificate to a signer. A signer makes a group signature by using its own membership
certificate. A verifier anonymously verifies whether a signer is a member of a group
or not. In order to handle some special cases (e.g., an anonymous signer behaves
maliciously), GM can identify the actual signer through the open procedure. Since
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been introduced [7, 8, 14, 25, 27, 28, 31]4. However, the number of revoked users
(say r) is revealed in all previous revocable group signature schemes. As men-
tioned previously, the number of revoked users r is quite a negative information.
As a concrete example, we introduce an application of revocable group signa-
ture for outsourcing businesses [20]. By applying group signature, the service
authentication server (outsourcee) has only to verify whether a user is a legiti-
mate member or not, and does not have to manage the list of identities of users.
Therefore, the risk of leaking the list of identities of users can be minimized,
and this is the merit of using group signature in identity management. After a
certain interval, the service provider charges the users who have already used
the service, by using the opening procedure of group signature. When a user
would like to leave the group, or when a user have not paid, the service provider
revokes this user. In this system, if r is revealed, then one may think that there
might be many users who have stopped using the service, i.e., this service may
not be interesting, or he/she have not paid the service fee, namely, the service
fee may be expensive, and so on.

So, our main target is to propose a revocable group signature scheme with the
property of hiding the number of revoked users r. Then, we need to investigate
the methodology for achieving the following:

1. The size of any value does not depend on r.
2. The costs of any algorithm do not depend on r, except the revocation algo-

rithm executed by GM .
3. Revoked users are unlinkable.

In particular, if revoked users are linkable, then anyone can guess (i.e., not exactly
obtain) r by linking and counting revoked users. Although we assume that an
adversary can obtain the polynomial (of the security parameter) number of group
signatures, this assumption is not unreasonable (actually, the adversary can issue
the polynomial times queries of the signing oracle). In addition, r is also a
polynomial-size value. That is, this guessing attack works given that revoked
users are linkable.

However, no previous revocable signature scheme satisfying all requirements
above has been proposed. For example, in revocable group signatures [7, 11,
14, 31] (which are based on updating the group public values, e.g., using accu-
mulators), either the size of public value or the costs of updating membership
certificate depend on r. Nakanishi et al. [27] proposed a novel technique of group
signature, where no costs of the GSign algorithm (or the Verify algorithm also) de-
pend on r. However, their methodology requires that r signatures are published
to make a group signature, and therefore r is revealed. In [8, 13, 25, 28] (which are
verifier-local revocation (VLR) type group signature), revoked users are linkable.

verifiers do not have to identify individual signers, group signature is a useful and
powerful tool for protecting signers’ privacy.

4 Since a long RSA modulus leads to certain inefficiency factors (e.g., long signatures,
heavy complexity costs, and so on), we exclude RSA-based revocable group signa-
tures (e.g., [29, 30]) in this paper.
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In this case, anyone can guess r by executing the verification procedure. For the
sake of clarity, we introduce the Nakanishi-Funabiki methodology [28] as follows:
let RL = {hx1 , hx2 , . . . , hxr} be the revocation list, where xi is the secret value
of revoked user Ui. Note that by adding dummy values, we can easily expand
|RL|. So, we can assume that r is not revealed from the size of RL. But, r is
revealed (or rather, guessed) as follows. Each group signature σ (made by Uj)
contains fxj+β and hβ for some random β and some group elements f and h. If
Uj has been revoked, then there exists hxi such that e(fxj+β , h) = e(hxihβ , f)
holds. By counting such i, one can easily guess r even if RL is expanded by
dummy values. Since each value in RL is linked to a user (i.e., hxi is linked to
Ui), even if values in RL are randomized (e.g., (hxi)ri for some random ri), this
connection between a user and a value in RL is still effective. So, one can easily
guess r even if RL is randomized.

From the above considerations, no previous revocation procedure can be
applied for hiding r. One solution has been proposed in [16], where only the
designated verifier can verify the signature. By preventing the verification of
signature from the third party, r is not revealed from the viewpoint of the third
party. However, this scheme (called anonymous designated verifier signature)
is not group signature any longer. Next, as another methodology, consider the
multi group signature [1] with two groups (valid user group and revoked user
group). However, this attempt does not work, since each user is given his/her
membership certificate (corresponding the group he/she belongs to) in the initial
setup phase, and the revocation procedure is executed after the setup phase.

Our contribution: In this paper, we propose the first group signature scheme
with the property of hiding the number of revoked users r, by applying attribute-
based group signature (ABGS) [15, 18, 21, 22]. By considering two attributes: (1)
valid group user and (2) the user’s identity, we can realize the property of hiding
r. To handle this property, we newly define the security notion called anonymity
w.r.t. the revocation. As the main difference among our anonymity definition
and previous ones, to guarantee the unlinkability of revoked users, A can issue
the revocation queries against the challenge users.

2 Bilinear Groups and Complexity Assumptions

Definition 1 (Bilinear Groups). Let G1, G2, and GT be cyclic groups with
a prime order p, and G1 = 〈g〉 and G2 = 〈h〉. Let e : G1 × G2 → GT be an
(efficient computable) bilinear map with the following properties: (1) bilinearity:
for all (g, g′) ∈ G2

1 and (h, h′) ∈ G2
2, e(gg′, h) = e(g, h)e(g′, h) and e(g, hh′) =

e(g, h)e(g, h′) hold, and (2) non-degeneracy : e(g, h) 6= 1T , where 1T is the unit
element over GT .

Definition 2 (The Computational Diffie-Hellman (CDH) assumption).
We say that the CDH assumption holds if for all probabilistic polynomial time
(PPT) adversary A, Pr[A(g1, g

a
1 , gb

1) = gab
1 ] is negligible, where g1 ∈ G1 and

(a, b) ∈ Z2
p.
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Definition 3 (The Decision Diffie-Hellman (DDH) assumption). We
say that the DDH assumption holds if for all PPT adversary A, |Pr[A(g1, g

′
1, g

x
1 ,

g′1
x) = 0] − Pr[A(g1, g

′
1, g

x
1 , g′1

r) = 0]| is negligible, where (g1, g
′
1) ∈ G2

1 and
(x, r) ∈ Z2

p with x 6= r.

Definition 4 (The Decision Linear (DLIN) assumption [7]). We say that
the DLIN assumption holds if for all PPT adversary A, |Pr[A(u, v, h, ua, vb, ha+b) =
0]− Pr[A(u, v, h, ua, vb, η) = 0]| is negligible, where (u, v, h, η) ∈ G4

2 and (a, b) ∈
Z2

p.

Definition 5 (The Hidden Strong Diffie-Hellman (HSDH) assumption [9]).
We say that `-HSDH assumption holds if for all PPT adversary A, Pr[A(g1, h, hω,

(g
1

ω+ci
1 , hxi)i=1,...,`) = (g

1
ω+x

1 , hx)∧∀xi 6= x] is negligible, where (g1, h) ∈ G1×G2

and (ω, x, x1, . . . , x`) ∈ Z`+2
p .

Definition 6 (The Strong Diffie-Hellman (SDH) assumption [6]). We
say that q-SDH assumption holds if for all PPT adversary A, Pr[A(g1, h, hω, hω2

,

. . . , hωq

) = (g
1

ω+x

1 , x)] is negligible, where (g1, h) ∈ G1 ×G2 and (ω, x) ∈ Z2
p.

Definition 7 (The external Diffie-Hellman (XDH) assumption [14]).
Let (G1, G2, GT ) be a bilinear group. We say that the XDH assumption holds if
for all PPT adversary A, the DDH assumption over G1 holds.

3 Definitions of Group Signature

Here, we define the system operations of revocable group signature and security
requirements (anonymity w.r.t. the revocation and traceability) by adapting [27].
Note that our definition follows the static group settings [4]. However, we can
easily handle the dynamic group settings [3] (and non-frameability) by applying
an interactive join algorithm.

Definition 8. System Operations of Group Signature

Setup : This probabilistic setup algorithm takes as input the security parameter
1κ, and returns public parameters params.

KeyGen : This probabilistic key generation algorithm (for GM) takes as input
the maximum number of users N and params, and returns the group public
key gpk, GM’s secret key msk, all user’s secret key {uski}i∈[1,N ], and the
initial revocation-dependent value T0.

GSign : This probabilistic signing algorithm (for a user Ui) takes as input gpk,
uski, a signed message M , and a revocation-dependent value (in the period
t) Tt, and returns a group signature σ.

Verify : This deterministic verification algorithm takes as input gpk, M , σ, and
Tt, and returns 1 if σ is a valid group signature, and 0 otherwise.

Revoke : This (potentially) probabilistic revocation algorithm takes as input gpk,
msk, a set of revoked users RLt+1 = {Ui}, and Tt, and returns Tt+1.
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Open : This deterministic algorithm takes as input msk and a valid pair (M,σ),
and returns the identity of the signer of σ ID. If ID is not a group member,
then the algorithm returns 0.

In the Revoke algorithm, we set RL0 = ∅, and assume that the non-revoked user
in t is {U1, . . . , UN}\RLt. Under this setting, boomerang users (who re-join the
group) are available (i.e., Ui such that Ui ∈ RLt−1 and Ui 6∈ RLt). In addition, if
an invalid pair (M, σ) is input to the Open algorithm, then the Open algorithm
easily detect this fact by using the Verify algorithm. So, we exclude this case
from the definition of the Open algorithm.

Next, we define anonymity w.r.t. the revocation and traceability. As the main
difference among our anonymity definition and previous ones, to guarantee the
unlinkability of revoked users,A can issue the revocation queries against the chal-
lenge users. Note that we do not handle the CCA-anonymity, where an adversary
A can issue the open queries. So, we just handle the CPA-anonymity [7] only in
this paper. However, as mentioned by Boneh et al. [7], the CCA-anonymity can
be handled by applying a CCA secure public key encryption for implementing
the open algorithm.

Definition 9 (Anonymity w.r.t. the Revocation).

Setup : The challenger C runs the Setup algorithm and the KeyGen algorithm,
and obtains params, gpk, msk, and all {uski}Ni=1. C gives params and gpk
to A, and sets t = 0, RU0 = ∅, and CU = ∅, where RU0 denotes the (initial)
set of ID’s of revoked users, and CU denotes the set of ID’s of corrupted
users.

Queries : A can issue the following queries:
Revocation : A can request the revocation of users IDi1 , . . . , IDikt+1

for some
constant kt+1 ∈ [1, N ]. C uns Tt+1 ← Revoke(msk, {IDi1 , . . . , IDikt+1

}, Tt)
and adds IDi1 , . . . , IDikt+1

to RUt+1.
Signing : A can request a group signature on a message M for a user Ui

where IDi 6∈ CU . C runs σ ← GSign(gpk, uski,M, Tt), where Tt is the
current revocation-dependent value, and gives σ to A.

Corruption : A can request the secret key of a user Ui. C adds IDi to CU ,
and gives uski to A.

Challenge : A sends a message M∗ and two users Ui0 and Ui1 , where IDi0 , IDi1 6∈
CU . C chooses a bit b ← {0, 1}, and runs σ∗ ← GSign(gpk, uskib

,M∗, Tt∗),
where Tt∗ is the current revocation-dependent value, and gives σ∗ to A.

Queries : The same as the previous one (Note that no corruption query for the
challenge users is allowed).

Output : A outputs a guessing bit b′ ∈ {0, 1}.

We say that anonymity holds if for all PPT adversaries A, the advantage

Advanon
A (1κ) := |Pr[b = b′]− 1

2
|

is negligible.
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There are two types of revocable group signature such that (1) any users can
make a valid group signature, and anyone can distinguish whether a signer has
been revoked or not [8, 13, 25, 28], or (2) no revoked user can make a valid group
signature without breaking traceability [7, 11, 14, 27, 31]. We implicitly require
the second type revocable group signature, since clearly anonymity is broken if
one of the challenge users is revoked in a first type scheme. We also require that
the challenger C (that has msk) can break traceability to compute the challenge
group signature σ∗ for the case that a challenger user is revoked. Note that
since msk is used for generating user’s secret keys, obviously any entity with
msk makes an “untraceable” group signature, and this fact does not detract the
security of our group signature.

One may think that the above anonymity definition can be extended that
A can issue the corruption query against the challenge users, as in the Full-
Anonymity [4]. It might be desired that r is not revealed even if revoked users
reveal their secret signing keys, since their signing keys are already meaningless
(i.e., the rights of signing have been expired). For example, if users are not
intentionally revoked (e.g., a user has not paid in the outsourcing businesses
example [20]), then users might reveal their secret signing keys to compromise
the systems. Or, even if users are intentionally revoked (e.g., they feel that this
service is not interesting in the outsourcing businesses example), they might
reveal their secret signing keys as a crime for pleasure. However, even if r is kept
hidden when revoked users reveal their secret signing keys, one can easily guess
r by counting the number of revealed secret keys. So, in our opinion such secret
key leakage resilient property is too strong, and therefore our proposed group
signature does not follow this leakage property. Next, we define traceability.

Definition 10 (Traceability).

Setup : The challenger C runs the Setup algorithm and the KeyGen algorithm,
and obtains params, gpk, msk, and all {uski}Ni=1. C gives params and gpk
to A, and sets t = 0, RU0 = ∅, and CU = ∅, where RU0 denotes the (initial)
set of ID’s of revoked users, and CU denotes the set of ID’s of corrupted
users.

Queries : A can issue the following queries:
Revocation : A can request the revocation of users IDi1 , . . . , IDikt+1

for some
constant kt+1 ∈ [1, N ]. C runs Tt+1 ← Revoke(msk, {IDi1 , . . . , IDikt+1

}, Tt)
and adds IDi1 , . . . , IDikt+1

to RUt+1.
GSigning : A can request a group signature on a message M for a user Ui

where IDi 6∈ CU . C runs σ ← GSign(gpk, uski,M, Tt), where Tt is the
current revocation-dependent value, and gives σ to A.

Corruption : A can request the secret key of a user Ui. C adds IDi to CU ,
and gives uski to A.

Opening : A can request to a group signature σ on a message M . C returns
the result of Open(msk, M, σ) to A.

Output : A outputs a past interval t∗ ≤ t for the current interval t, and (M∗, σ∗).

We say that A wins if (1) ∧ (2) ∧ ((3) ∨ (4)) holds, where
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1. Verify(gpk,M∗, σ∗, Tt∗) = 1
2. A did not obtain σ∗ by making a signing query at M∗.
3. for IDi∗ ← Open(msk, M∗, σ∗), IDi∗ 6∈ CU

4. for IDi∗ ← Open(msk, M∗, σ∗), IDi∗ ∈ RUt∗

We say that traceability holds if for all PPT adversaries A, the advantage

Advtrace
A (1κ) := Pr[A wins]

is negligible.

4 Other Cryptographic Tools

In this section, we introduce cryptographic tools applied for our construction.

BBS+ signature [2, 7, 19, 27]: Let L be the number of signed messages,

and (G1, G2, GT ) be a bilinear group. Select g, g1, . . . , gL
$← G1, h

$← G2,
and ω ← Zp, and compute Ω = gω. The signing key is ω and the verifica-
tion key is (p, G1, G2, GT , e, g, g1, . . . , gL+1, h, Ω). For a set of signed messages

(m1, . . . ,mL) ∈ ZL
p , choose r, y

$← Zp, and compute A = (gm1
1 · · · gmL

L gr
L+1g)

1
ω+y .

For a signature (A, r, y), the verification algorithm output 1 if e(A,Ωhy) =
e(gm1

1 · · · gmL

L gr
L+1, h) holds. The BBS+ signature scheme satisfies existential

unforgeability against chosen message attack (EUF-CMA)5 under the q-SDH
assumption.

Linear Encryption [7]: A public key is pk = (u, v, h) ∈ G2 such that uX1 =
vX2 = h for X1, X2 ∈ Zp. The corresponding secret key is (X1, X2). For a plain-

text M ∈ G2, choose δ1, δ2
$← Zp, compute a ciphertext C = (F1, F2, F3),

where F1 = M · hδ1,δ2 , F2 = uδ1 , and F3 = vδ2 . C can be decrypted as
M = F1/(FX1

2 FX2
3 ). The linear encryption is IND-CPA secure6 under the DLIN

assumption.

Signature based on proof of knowledge: In our group signature, we apply
the conversion of the underlying interactive zero knowledge (ZK) proof into
non-interactive ZK (NIZK) proof by applying the Fiat-Shamir heuristic [17].
We describe such converted signature based on proof of knowledge (SPK) as
SPK{x : (y, x) ∈ R}(M), where x is the knowledge to be proved, R is a relation
5 First an adversary A is given vk from the challenger C. Then A sends messages to
C and obtains the corresponding signatures. Finally, A outputs a message/signature
pair (M∗, σ∗). We say that A wins if (M∗, σ∗) is valid and A has not sent M∗ as a
signing query. The EUF-CMA security guarantees that the probability Pr[A wins]
is negligible.

6 First an adversary A is given pk from the challenger C. Then A sends the challenge

message (M∗
0 , M∗

1 ) to C, and C chooses µ
$← {0, 1}, and computes the challenge

ciphertext C∗ which is a ciphertext of M∗
µ . A is given C∗, and outputs a bit µ′. The

IND-CPA security guarantees that |Pr[µ = µ′]− 1
2
| is negligible.
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(e.g., y = gx in the case of the knowledge of the discrete logarithm), and M is
a signed message. The SPK has an extractor of the proved knowledge from two
accepting protocol views whose commitments are the same but challenges are
different.

5 Proposed Group Signature Scheme with Hiding of the
Number of Revoked Users

In this section, we propose a group signature scheme hiding the number of re-
voked users by applying ABGS. Before explaining our scheme, we introduce
ABGS as follows:
Attribute-based group signature (ABGS): ABGS [15, 18, 21, 22] is a kind
of group signature, where a user with a set of attributes can prove anonymously
whether he/she has these attributes or not. Anonymity means a verifier can-
not identify who the actual signer is among group members. As a difference
from attribute-based signature [23, 24, 26, 32], there is an opening manager (as in
group signatures) who can identify the actual signer (anonymity revocation), and
a verifier can “explicitly” verify whether a user has these attributes or not [15, 21,
22]. By applying this explicitly attribute verification, anonymous survey for the
collection of attribute statistics is proposed [15]. As one exception, the Fujii et
al. ABGS scheme [18] achieves signer-attribute privacy, where a group signature
does not leak which attributes were used to generate it, except that assigned at-
tributes satisfy a predicate. As another property (applied for our construction),
the dynamic property has been proposed in [15], where the attribute predicate
can be updated without re-issuing the user’s secret keys.
Our Methodology: We consider two attributes: (1) valid group user and (2)
the user’s identity (say Ui), and apply the dynamic property of ABGS [15] and
the signer-attribute privacy of ABGS [18]. Here we explain our methodology. Let
the initial access tree be represented as in Fig 1:

Valid
Group
User

U1

∧

Valid
Group
User

U2

∧

· · ·
Valid
Group
User

UN

∧

∨

Fig. 1. Initial Access Tree

Due to the signer-attribute privacy, a user Ui can anonymously prove that he/she
has attributes “valid group user” and “Ui”. Namely, anyone can verify whether
the signer’s attributes satisfy the access tree, without detecting the actual at-
tribute (i.e., the user’s identity).
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When a user (say U1) is revoked, the tree structure is changed as in Fig 2.

U1

∧

Valid
Group
User

U2

∧

· · ·
Valid
Group
User

UN

∧

∨

Fig. 2. Modified Access Tree

Due to the dynamic property of ABGS, this modification can be done without
re-issuing the user’s secret keys. By removing the attribute “valid group user”
from the subtree of U1, we can express the revocation of U1, since U1 cannot
prove that his/her attributes satisfy the current access tree.

In addition, we propose a randomization and dummy attribute technique to
implement the revocation procedure (Fig 3). We apply the Boldyreva multisig-
nature [5], since it is applied for the computation of the membership certificate
in the Fujii et al. ABGS. Let t be the time interval and v denote the attribute
“valid group user”.

Valid
Group
User

Ui

∧

⇐⇒

Public value : g
sv,t,ixi

1 , g
sv,t,i+si

1

User secret key : gsixi
1

Ui

∧

⇐⇒

Public value : g
s′v,t+1,i

1 , g
sv,t+1,i+si

1

User secret key : gsixi
1

(Ui is revoked)

Time interval t

Time interval t + 1

Fig. 3. Our Randomization and Dummy Attribute Technique

For a non-revoked user Ui, GM publishes the dummy value g
sv,t,ixi

1 . Then Ui can
compute g

(sv,t,i+si)xi

1 (= Hi) from dT,t,i = g
sv,t,ixi

1 and Ui’s secret key Bi = gsixi
1 .

Let Ui be revoked in the time interval t + 1. Then, GM publishes a randomized
dummy value g

s′
v,t+1,i

1 (instead of g
sv,t+1,ixi

1 ), and therefore Ui cannot compute
g(sv,t+1,i+si)xi due to the CDH assumption. Note that (gsv,t+1,i+si

1 , g
sv,t+1,ixi

1 ) and

(gsv,t+1,i+si

1 , g
s′

v,t+1,i

1 ) are indistinguishable, under the XDH assumption, where
the DDH assumption holds in G1. Next, we give our group signature scheme.



10

Protocol 1 (Our revocable group signature).

Setup(1κ) : Select a bilinear group (G1, G2, GT ) with prime order p, a bilinear

map e : G1 × G2 → GT , g, g1, . . . , g4, g̃
$← G1, h̃

$← G2. Output params =
(p, G1, G2, GT , e, H, g, g1, g2, g3, g4, g̃, h̃)

KeyGen(params, N) : Let (U1, . . . , UN ) be all users. Set t = 0. Select ω1, ω2, X1,

X2, x1, . . . , xN , s1, . . . , sN , sv,0,1, . . . , sv,0,N
$← Z∗

p. Compute

– u, v, h ∈ G2 with the condition uX1 = vX2 = h (note that (u, v, h) is
a public key of the linear encryption, and (X1, X2) is the corresponding
secret key),

– Ki,1 = g
1

ω1+xi
1 , Ki,2 = hxi , and Bi = gsixi

1 for all i ∈ [1, N ], and

– Ω1 = hω1 and Ω2 = hω2 .

For all i ∈ [1, N ], choose sv,0,i, y0,i, r0,i
$← Z∗

p. If sv,0,i + si = 0 mod p, then
choose sv,0,i again until sv,0,i + si 6= 0 mod p holds. Set sT,0,i := sv,0,i + si,
and compute

– hT,0,i = g
sT,0,i

1

– A0,i = (gsT,0,i

1 gt
2g

r0,i

3 g4)
1

ω2+y0,i (which is a BBS+ signature for signed
messages (sT,0,i, t)), and

– dT,0,i := g
sv,0,ixi

1 .

Set Sign(sT,0,i, i) = (A0,i, y0,i, r0,i). Output

– gpk = (params, Ω1, Ω2, u, v,H), where H : {0, 1}∗ → Z∗
p is a hash func-

tion which is modeled as a random oracle.

– msk = (X1, X2, s1, . . . , sN , sv,0,1, . . . , sv,0,N , x1, . . . , xN , reg := {(Ki,2, i)}Ni=1),

– uski = (Ki,1,Ki,2, Bi) for all i ∈ [1, N ], and

– T0 = {(Sign(sT,0,i, i), hT,0,i, dT,0,i)}Ni=1.

GSign(gpk, uski,M, Tt) : Let Ui be a non-revoked user in the current time in-
terval t. That is, for (Sign(sT,t,i, i), hT,t,i, dT,t,i) ∈ Tt, hT,t,i = g

sv,t,i+si

1 :=
g

sT,t,i

1 and dT,t,i = g
sv,t,ixi

1 hold for some unknown exponent sv,t,i ∈ Z∗
p.

Ui chooses r1, r2, . . . , r10, δ1, δ2
$← Z∗

p, sets α = −r1r2, β = −r2r4, β′ =
r5yt,i − r4, γ = r2r6 + r7, γ′ = r4r8 + r9, and γ′′ = r10yt,i, and computes

Hi = Bi · dT,t,i = g
sixi+sv,t,ixi

1 = hxi

T,t,i,

T1 = Ki,1g̃
r1 , T2 = Ki,2h̃

r2 , T3 = Hig̃
r3 , T4 = hT,t,ig̃

r4 , T5 = At,ig̃
r5 ,

C1 = gr1 g̃r6 , C2 = gαg̃r7 , C3 = gr2 g̃r8 , C4 = gβ g̃r9 , C5 = gr10 g̃−r5 , C6 = gγ′′
g̃−r4 ,

F1 = Ki,2h
δ1+δ2 , F2 = uδ1 , and F3 = vδ2 , and
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V = SPK{(r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, yt,i, rt,i, α, β, β′, γ, γ′, γ′′, δ1, δ2) :
e(T1, Ω1T2)

e(g1, h)
= e(g̃, Ω1T2)r1e(T1, h̃)r2e(g̃, h̃)α

∧e(T4, T2)
e(T3, h)

=
e(g̃, T2)r4e(T4, h̃)r2e(g̃, h̃)β

e(g̃, h)r3

∧ e(T5, Ω2)
e(g4, h)e(T4, h)e(g2, h)t

=
e(g̃, Ω2)r5e(g3, h)rt,ie(g̃, h)β′

e(T5, h)yt,i

∧C1 = gr1 g̃r6 ∧ C2 = gαg̃r7 ∧ C2 = C−r2
1 g̃γ

∧C3 = gr2 g̃r8 ∧ C4 = gβ g̃r9 ∧ C4 = C−r4
3 g̃γ′

∧C5 = gr10 g̃−r5 ∧ C6 = gγ′′
g̃−r4 ∧ C6 = C

yt,i

5 g̃β′

∧T2

F1
=

h̃r2

hδ1+δ2
∧ F2 = uδ1 ∧ F3 = vδ2}(M)

Output σ = (C1, C2, C3, C4, C5, C6, F1, F2, F3, T1, T2, T3, T4, T5, V )7.

Verify(gpk, M, σ, Tt) : Return 1 if σ is a valid group signature8, and 0 otherwise.

Revoke(gpk,msk, {Ui}, Tt) : Let RLt+1 := {Ui} be a set of revoked users. Set

t→ t+1. For all i ∈ {i|Ui ∈ RLt+1}, choose s′v,t+1,i
$← Z∗

p. For all i ∈ [1, N ],

choose sv,t+1,i, yt+1,i, rt+1,i
$← Z∗

p (until sv,t+1,i + si 6= 0 mod p holds), set
sT,t+1,i := sv,t+1,i + si, and compute

hT,t+1,i = gsT,t+1,i ,

At+1,i = (gsT,t+1,i

1 gt+1
2 g

rt+1,i

3 g4)
1

ω2+yt+1,i ,

and compute dT,t+1,i such that:

dT,t+1,i =

{
g

sv,t+1,ixi

1 (Ui 6∈ RLt+1)

g
s′

v,t+1,i

1 (Ui ∈ RLt+1)

and set Sign(sT,t+1,i, i) = (At+1,i, yt+1,i, rt+1,i). Output Tt+1 = {(Sign(sT,t+1,i, i),
hT,t+1,i, dT,t+1,i)}Ni=1.

Open(gpk, msk, M, σ) : Compute F1

F
X1
2 F

X2
3

= K, and search i such that (Ki,2, i) ∈
reg and K = Ki,2. If there is no such i, output 0. Otherwise, output i.

In our scheme, no public values have size dependent on r, and no costs of the
GSign algorithm (or the Verify algorithm) depend on r or N . In addition, our
scheme satisfies anonymity w.r.t. the revocation which guarantees the unlinka-
bility of revoked users. So, in our scheme, no r is revealed.
7 We give the detailed form of SPK V in the appendix.
8 We give the procedure of the verification algorithm in the appendix.
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6 Discussion

One drawback of our scheme is that the number of public values depends on
N , since no common attribute can be applied for implementing the revoca-
tion procedure of “each” user. So, one may think that there might be a more
trivial construction (without applying ABGS) if such big-size public value is al-
lowed. For example, as one of the most simple group signature construction, let
gx1 , . . . , gxN be users’ public keys, and GM randomizes these value such that
y1 := (gx1)rGM , . . . , yN := (gxN )rGM , and publishes y := grGM . Each user (say
Ui) proves the knowledge of xi for the relation (grGM )xi using the OR relation
such that SPK{x : yx = y1 ∨ · · · ∨ yx = yN}(M) to hide the identity i ∈ [1, N ].
If a user (say Uj) is revoked, then GM publishes a random value Rj (instead
of (gxj )rGM ). In this case, the number of revoked users is not revealed under
the DDH assumption, since (g, gxj , grGM , (gxj )rGM ) is a DDH tuple. However,
this trivial approach requires N -dependent signing/verification cost, whereas our
scheme achieves constant proving costs.

As another candidate, Sudarsono et al. [33] proposed an attribute-based
anonymous credential system by applying an efficient pairing-based accumu-
lator proposed by Camenisch et al. [10]. Since the Sudarsono et al. construction
follows AND/OR relations of attributes, a revocable group signature scheme
with the property of hiding r might be constructed. However, it is not obvious
whether 2-DNF formulae ∨N

i=1(valid group user∧Ui) can be implemented or not
in the Sudarsono et al. attribute-based proof system. In addition, their construc-
tion also requires the N -dependent-size (N is the number of attributes in this
context) public values to update the witness of users, as in our group signature
scheme. So, we insist that proposing a revocable group signature scheme with
both the property of hiding r and constant proving costs is not trivial if such
large-size public key is allowed.

7 Security Analysis

The security proofs of following theorems are given in the appendix.

Theorem 1. The proposed group signature scheme satisfies anonymity w.r.t.
the revocation under the DLIN assumption and the XDH assumption.

Theorem 2. The proposed group signature scheme satisfies traceability under
the N -HSDH assumption, the CDH assumption, and Nt-SDH assumption, where
t is the final time interval that A outputs (M∗, σ∗).

8 Conclusion

In this paper, we propose a revocable group signature scheme with the property
of hiding r, by applying ABGS. Under a XDH-hard elliptic curve with 170 bits
p (as in [14, 28]), the size of signature is 7242 bits, where the size of an element
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of G1 is 171 bits, the size of an element of G2 is 513 bits, and the size of the
challenge c is 80 bits. Since the size of signature in [14] (resp. in [28]) is 1444
(resp. 1533) bits, there is space for improvement the signature size. In addition,
proposing a r-hiding revocable group signature with small-size public key is also
interesting future work.
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Appendix A: Detailed SPK

First, we explain the relations proved in SPK V . V proves that:

1. A signer has a valid (Ki,1, Ki,2) generated by the KeyGen algorithm.

– (Ki,1,Ki,2) can be verified by using the public value Ω1 such that:

e(Ki,1, Ω1Ki,2) = e(g1, h)

– Since Ki,1 (resp. Ki,2) is hidden such that T1 = Ki,1g̃
r1 , (resp. T2 =

Ki,2h̃
r2), this relation is represented as:

e(T1, Ω1T2)
e(g1, h)

= e(g̃, Ω1T2)r1e(T1, h̃)r2e(g̃, h̃)α
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– We need to guarantee the relation α = −r1r2 in the relation above. To
prove this, introduce an intermediate value γ = r2r6 + r7, and prove
that:

C1 = gr1 g̃r6 ∧ C2 = gαg̃r7 ∧ C2 = C−r2
1 g̃γ

Note that C2 = C−r2
1 g̃γ = (gr1 g̃r6)−r2 g̃γ = g−r1r2 g̃−r2r6+γ = gαg̃r7

yields α = −r1r2 and γ = r2r6 + r7.

2. A signer has not been revoked.
– A non-revoked signer can compute Hi = h

logh Ki,2
T,t,i = (gsT,t,i

1 )xi from
Bi and dT,t,i, where sT,t,i is a signed message of At,i. These satisfy the
relations

e(hT,t,i,Ki,2) = e(Hi, h)
e(At,i, Ω2h

yt,i) = e(gsT,t,i

1 gt
2g

rt,i

3 g4, h)

– Since Hi, hT,t,i, and Ai are hidden such that T3 = Hig̃
r3 , T4 = hT,t,ig̃

r4 ,
and T5 = At,ig̃

r5 , these relations are represented as:

e(T4, T2)
e(T3, h)

=
e(g̃, T2)r4e(T4, h̃)r2e(g̃, h̃)β

e(g̃, h)r3

e(T5, Ω2)
e(g4, h)e(T4, h)e(g2, h)t

=
e(g̃, Ω2)r5e(g3, h)rt,ie(g̃, h)β′

e(T5, h)yt,i

– We need to guarantee the relations β = −r2r4 and β′ = r5yt,i − r4

in the relations above. To prove these, introduce intermediate values
γ′ = r4r8 + r9 and γ′′ = r10yt,i, and prove that:

C3 = gr2 g̃r8 ∧ C4 = gβ g̃r9 ∧ C4 = C−r4
3 g̃γ′

C5 = gr10 g̃−r5 ∧ C6 = gγ′′
g̃−r4 ∧ C6 = C

yt,i

5 g̃β′

As in α and γ explained before, relations β = −r2r4, β′ = r5yt,i − r4,
γ′ = r4r8 + r9, and γ′′ = r10yt,i are obtained from the relations above.

– Note that (At,i, rt,i, yt,i) is a BBS+ signature for signed messages (sT,t,i, t),
and therefore V depends on the current time interval t.

3. A value for the Open algorithm is included in σ.

– (F1, F2, F3) is a ciphertext (of the linear encryption scheme) of the plain-
text Ki,2, which can be computed by decrypting (F1, F2, F3) using msk.

Next, we describe the detailed SPK of our scheme as follows.

1. Choose rr1 , rr2 , rr3 , rr4 , rr5 , rr6 , rr7 , rr8 , rr9 , rr10 , ryt,i , rrt,i , rα, rβ , rβ′ , rγ , rγ′ , rγ′′ ,

rδ1 , rδ2

$← Z∗
p.



16

2. Compute

R1 = e(g̃, Ω1T2)rr1 e(T1, h̃)rr2 e(g̃, h̃)rα , R2 =
e(g̃, T2)rr4 e(T4, h̃)rr2 e(g̃, h̃)rβ

e(g̃, h)rr3
,

R3 =
e(g̃, Ω2)rr5 e(g3, h)rrt,i e(g̃, h)rβ′

e(T5, h)ryt,i
, R4 = grr1 g̃rr6 , R5 = grα g̃rr7 , R6 = C

−rr2
1 g̃rγ ,

R7 = grr2 g̃rr8 , R8 = grβ g̃rr9 , R9 = C
−rr4
3 g̃rγ′ , R10 = grr10 g̃−rr5 , R11 = grγ′′ g̃−rr4 ,

R12 = C
ryt,i

5 g̃rβ′ , R13 =
h̃rr2

hrδ1+rδ2
, R14 = urδ1 , R15 = vrδ2 ,

c = H(gpk,M,C1, C2, C3, C4, C5, C6, F1, F2, F3, T1, T2, T3, T4, T5, R1, . . . , R15),
sri = rri + cri (i ∈ [1, 10]), syt,i = ryt,i + cyt,i, srt,i = rrt,i + crt,i,

sα = rα + cα, sβ = rβ + cβ, sβ′ = rβ′ + cβ′, sγ = rγ + cγ, sγ′ = rγ′ + cγ′,

sγ′′ = rγ′′ + cγ′′, sδ1 = rδ1 + cδ1, and sδ2 = rδ2 + cδ2,

3. Output V = (c, {sri}10i=1, syt,i , srt,i , sα, sβ , sβ′ , sγ , sγ′ , sγ′′ , sδ1 , sδ2).

Next, we describe the verification of σ = (C1, C2, C3, C4, C5, C6, F1, F2, F3, T1,
T2, T3, T4, T5, c, {sri

}10i=1, syt,i
, srt,i

, sα, sβ , sβ′ , sγ , sγ′ , sγ′′ , sδ1 , sδ2) as follows.

1. Compute

R̃1 = e(g̃, Ω1T2)sr1 e(T1, h̃)sr2 e(g̃, h̃)sα(
e(T1, Ω1T2)

e(g1, h)
)−c,

R̃2 =
e(g̃, T2)sr4 e(T4, h̃)sr2 e(g̃, h̃)sβ

e(g̃, h)sr3
(
e(T4, T2)
e(T3, h)

)−c,

R̃3 =
e(g̃, Ω2)sr5 e(g3, h)srt,i e(g̃, h)sβ′

e(T5, h)syt,i
(

e(T5, Ω2)
e(g4, h)e(T4, h)e(g2, h)t

)−c,

R̃4 = gsr1 g̃sr6 C−c
1 , R̃5 = grα g̃sr7 C−c

2 , R̃6 = C
−sr2
1 g̃rγ C−c

2 ,

R̃7 = gsr2 g̃sr8 C−c
3 , R̃8 = gsβ g̃sr9 C−c

4 , R̃9 = C
−sr4
3 g̃sγ′ C−c

4 ,

R̃10 = gsr10 g̃−sr5 C−c
5 , R̃11 = gsγ′′ g̃−sr4 C−c

6 , R̃12 = C
syt,i

5 g̃sβ′ C−c
6 ,

R̃13 =
h̃sr2

hsδ1+sδ2
(
T2

F1
)−c, R̃14 = usδ1 F−c

2 , and

R̃15 = vrδ2 F−c
3 .

Note that a verifier computes e(g2, h)t to check whether σ is made in the
time interval t or not.

2. Check c = H(gpk, M, C1, C2, C3, C4, C5, C6, F1, F2, F3, T1, T2, T3, T4, T5, R̃1,
. . . , R̃15). If it holds, then output 1, and 0, otherwise.

Appendix B: Security Analysis

Proof of Theorem 1

Proof. Let C be the challenger of the linear encryption, and A be the adversary
who breaks anonymity w.r.t. the revocation of our scheme. We construct the
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algorithm B that breaks the IND-CPA security of the linear encryption. First, C
gives the public key of the linear encryption (u, v, h). B chooses all values, except
(u, v, h), and therefore B can answer all queries issued from A.

In the challenge phase, A sends (M∗, Ui0 , Ui1). Let hxi0 and hxi1 be (a part
of) secret key of Ui0 , and Ui1 , respectively. B sets M∗

0 := hxi0 and M∗
1 := hxi1 ,

and sends (M∗
0 ,M∗

1 ) to C as the challenge messages of the linear encryption. C
sends the challenge ciphertext C∗. B sets C∗ = (F1, F2, F3), and computes the
challenge group signature σ∗. Note that B does not know the random number
(δ∗1 , δ∗2) and µ ∈ {0, 1} such that C∗ = (hxiµ hδ∗

1+δ∗
2 , uδ∗

1 , vδ∗
2 ), since (δ∗1 , δ∗2 , µ) are

chosen by C. So, B uses the backpatch of the random oracle H for computing
σ∗, and includes C∗ in σ∗. Then, all values (except C∗) is independent of µ.
Note that even if Uiµ is revoked in the challenge interval, B can compute σ∗,
since B knows msk. If either Ui0 or Ui1 is revoked in the challenge interval, this
fact is not used for guessing µ under the XDH assumption, since (g

sv,t+1,iµ+siµ

1 ,

g
sv,t+1,iµ xiµ

1 ) and (g
sv,t+1,iµ+siµ

1 , g
s′

v,t+1,iµ

1 ) are indistinguishable.
Finally, A outputs the guessing bit µ′ ∈ {0, 1}. B outputs µ′ as the guessing

bit of the IND-CPA game of the linear encryption. ut

Proof of Theorem 2

Proof. LetA1 be an adversary who outputs (M∗, σ∗) where for IDi∗ ← Open(msk,
M∗, σ∗), IDi∗ 6∈ CU holds. As a case of the first one, let A2 be an adversary
who outputs (M∗, σ∗) where for IDi∗ ← Open(msk,M∗, σ∗), IDi∗ 6∈ CU and
Ui∗ 6∈ {U1, . . . , UN} holds. In addition, let A3 be an adversary who outputs
(M∗, σ∗) where for IDi∗ ← Open(msk, M∗, σ∗), IDi∗ ∈ RU holds. We con-
struct an algorithm B1 (resp. B2 and B3) that breaks the N -HSDH assumption
(resp. q-SDH assumption, where q is the number of signing queries, and the CDH
assumption) by using A1 (resp. A2 and A3).

First, we describe B1. Let g1, h, hω1 , {(g
1

ω1+xi
1 , hxi)}i=1,...,N be an N -HSDH

instance. B1 selects Ui∗ ∈ {U1, . . . , UN}, and choose all values, except g1, h, and
Ω1 := hω1 . B1 answers queries issued by A1 as follows:

Revocation : A1 requests the revocation of users IDi1 , . . . , IDikt
for some con-

stant kt ∈ [1, N ]. Since B1 knows ω2, B1 adds IDi1 , . . . , IDikt
to RUt, and

simply returns the result of the Revoke algorithm.
GSigning : A1 requests a group signature on a message M for a user Ui where

IDi 6∈ CU . Since B1 does not know gxi
1 , B1 computes σ by using the back-

patch of the random oracle H, and gives σ to A.
Corruption : A1 requests the secret key of a user Ui. If Ui = Ui∗ , then B1 aborts.

Otherwise, B1 sets (g
1

ω1+xi
1 , hxi) = (Ki,1,Ki,2), chooses s′i

$← Z∗
p, sets s′i =

sixi, and computes Bi = gs′
i . B1 adds IDi to CU , and gives (Ki,1,Ki,2, Bi)

to A1.
Opening : Since B1 has (X1, X2), B1 simply returns the result of the Open algo-

rithm.
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Finally, A1 outputs a past interval t∗ ≤ t for the current interval t, and a
pair (M∗, σ∗). By using the extractor of SPK, B1 gets: (K∗

i,1,K
∗
i,2,H

∗
i ), where

e(K∗
i,1, Ω1K

∗
i,2) = e(g1, h), e(hT,t,i,K

∗
i,2) = e(H∗

i , h), F1 = K∗
i,2h

δ1+δ2 , F2 = uδ1 ,
and F3 = vδ2 hold. From (F1, F2, F3), B1 obtains i by using the Open algorithm.
If i 6= i∗, then B1 aborts. Otherwise, B1 outputs (K∗

i,1,K
∗
i,2) as a solution of the

N -HSDH problem.

Next, we describe B2 that outputs a forged BBS+ signature. Let C be the
challenger of the BBS+ signature. B2 is given (g, g1, g2, g3, g4, h,Ω2) from C.
B2 chooses all values, except (g, g1, g2, g3, g4, h,Ω2). For each revocation query,
B2 issues N signing queries to C for obtaining A·,i. So, B2 needs to issue the
signing query in Nt times. For other queries, B2 can answer since B2 knows
all other secret values. Finally, A3 outputs a past interval t∗ ≤ t for the cur-
rent interval t, and a pair (M∗, σ∗). By using the extractor of SPK, B2 gets:
(At∗,i∗ , yt∗,i∗ , rt∗,i∗), where e(At∗,i∗ , Ω2h

yt∗,i∗ ) = e(gsT,t∗,i∗

1 gt∗

2 g
rt∗,i∗

3 g4, h). Note
that, since Ui∗ 6∈ {U1, . . . , UN}, B2 does not obtain (At∗,i∗ , yt∗,i∗ , rt∗,i∗) from C.
So, B2 outputs a forged BBS+ signature (At∗,i∗ , yt∗,i∗ , rt∗,i∗).

Finally, we describe B3 that breaks the CDH assumption. Let (g1, g
a
1 , gb

1) be
an CDH instance. B3 selects Ui∗ ∈ {U1, . . . , UN}, sets xi∗ := a and si∗ := b,
and choose all values, except g1 and uski∗ . B3 answers queries issued by A3 as
follows:

Revocation : A3 requests the revocation of users IDi1 , . . . , IDikt
for some con-

stant kt. Since B3 knows ω2, B3 adds IDi1 , . . . , IDikt
to RUt, and simply

returns the result of the Revoke algorithm.
GSigning : A3 requests a group signature on a message M for a user Ui where

IDi 6∈ CU . B3 computes σ by using the backpatch of the random oracle H,
and gives σ to A.

Corruption : A3 requests the secret key of a user Ui. If Ui = Ui∗ , then B3 aborts.
Otherwise, B3 adds IDi to CU , and gives (Ki,1,Ki,2, Bi) to A3.

Opening : Since B3 has (X1, X2), B3 simply returns the result of the Open algo-
rithm.

Finally, A3 outputs a past interval t∗ ≤ t for the current interval t, and a pair
(M∗, σ∗). By using the extractor of SPK, B3 gets: H∗

i , where e(K∗
i,1, Ω1K

∗
i,2) =

e(g1, h), e(hT,t,i, K
∗
i,2) = e(H∗

i , h), F1 = K∗
i,2h

δ1+δ2 , F2 = uδ1 , and F3 = vδ2 hold.
From (F1, F2, F3), B3 obtains i by using the Open algorithm. If i 6= i∗, then B3

aborts. Otherwise, B3 solves the CDH problem as follows. Since Ui ∈ RLt, B3

has computed g
sv,t,i∗

1 ·gb
1 = g

sv,t,i∗+si∗

1 and g
s′

v,t,i∗

1 . That is, H∗
i = Bi∗ ·g

sv,t,i∗xi

1 =
g

ab+asv,t,i∗xi

1 holds. So, B3 outputs H∗
i /(ga

1 )sv,t,i∗ = gab
1 as the solution of the

CDH problem. ut


