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1 Introduction

The study of quantum logic had started from the foundational work of G.Birkho� and

J.von Neumann in 1936 ([1]). They pointed out that according to Hilbert-space formalism

of quantum mechanics, physical propositions of a quantum system, which are represented

by closed subspaces of a Hilbert space, form an orthomodular lattice. Since then, ortho-

modular logic, in which the truth values of formulas are interpreted by elements of an

orthomodular lattice, is considered to be the most hopeful candidate of quantum logic.

But orthomodular logic turned out to be rather intractable, then orthologic, whose alge-

braic model is an ortholattice, has been discussed in this research area.

In both orthologic and orthomodular logic, two di�erent notions of logical consequences

are considered: weak logical consequence and strong logical consequence and they deter-

mine di�erent logics: weak logic and strong logic ([5]). In 1974, R.I.Goldblatt introduced

a Kripke-style semantics for strong orthologic, and by applying �ltration technique to his

Kripke-style model, he proved that it has the �nite model property and hence that strong

orthologic is decidable ([3]).

On the other hand, the decision problem for orthomodular logic still remains open.

Goldblatt also proposed in the same paper a Kripke-style semantics for strong orthomod-

ular logic, but this semantics was not successful in solving its decision problem. In lattice

theory, there is a representation theorem of orthomodular lattice proved by D.J.Foulis

in 1960 ([2],[4]). This representation theorem may be helpful when we investigate the

orthomodular logic semantically.

The present paper is devided into two parts. In Part I, we will try to extend the meth-

ods of Goldblatt to weak orthologic. Then we can show that it enjoys the Kripke-style
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semantics and that it is also decidable. In Part II, we will construct a new semantics for or-

thomodular logic by using the Foulis representation theorem and show that orthomodular

logic is complete with respect to this semantics.

2 Semantics of weak orthologic

In Part I, we take only orthologics into account. We interpret the truth values of our

formulas by elements of an ortholattice A by way of an orthovaluation v.

Strong orthologic SOL is a set of pairs of formulas (�; �) such that for any ortholattice

A and for any orthovaluation v, v(�) � v(�) holds. On the other hand, weak orthologic

WOL is a set of pairs of formulas (�; �) such that for any ortholattice A and for any

orthovaluation v, if v(�) = 1, then v(�) = 1. This 1 is the maximum element of the

ortholattice A.

Goldblatt proved the decidabilty of strong orthologic in the following way.

First a Kripke-style modelM ( called an orthomodel ) was introduced, which consists of

a non-empty set, an irreexive and symmetric binary relation, and a valuation function.

Then it is proved that strong orthologic is complete with respect to the above model.

More precisely, for any formulas � and �, the following two statements are equivalent.

(P1) for any ortholattice A and for any orthovaluation v, v(�) � v(�) holds.

(Q1) for any orthomodel M, M : � j= �. ( This means \for any x in the model M, �

implies � at x in M ". )

The �ltration technique is applied to this models and it is showed that strong orthologic

has the �nite model property, that is, the above statement (Q1) is shown to be equivalent

to the following statement (R1).

(R1) for any orthomodel N which has at most 2k+l points, N : � j= �, where k is

the number of subformulas included in � and � together and l is the number of

propositional variables included in � and � together.

We will modify the proof of Goldblatt, and will prove that for any formulas �, �, � and

� , the following three statements are equivalent.

(P2) for any ortholattice A and for any orthovaluation v, if v(�) � v(�), then v(� ) � v(�).

(Q2) for any orthomodel M, if M : � j= �, then M : � j= �.

(R2) for any orthomodel N which has at most 2k+l points, if N : � j= �, then N : � j= �,

where k is the number of subformulas included in �, �, � and � together and l is

the number of propositional variables included in �, �, � and � together.

It is easy to see that there exists an algorithm which can decide whether (R2) holds or

not. Now take :(� ^ :�) for both � and � . Then this algorithm gives us a procedure

which decide whether (�; �) 2WOS or not for given formulas � and �.
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Therefore we have the following theorem.

Theorem Weak orthologic is decidable.

2

3 Semigroup semantics for orthomodular logic

In Part II, we discuss only strong orthomodular logic. This time, we interpret the truth

values of our formulas by elements of an orthomodular lattice A by way of an orthomodu-

lar valuationv. Then orthomodular logic is de�ned as a set of pairs of formulas (�; �) such

that for any orthomodular lattice A, and for any orthomodular valuation v, v(�) � v(�)

holds.

Apart from Goldblatt's Kripke-style semantics for orthomodular logic, we consider a

bit di�erent algebraic structure G = hG; �; �i called a Rickart * semigroup, in which hG; �i
is a semigroup containing the zero element 0 and such a binary operation � on G that

satis�es the following (a): (x�)
�

= x and (b): (x � y)� = y� � x�.
Moreover G satis�es the following condition, that is: for any x 2 G, there exists a

projection e such that f x g(r) = e �G = f e � y j y 2 G g.

Here it is needed to explain some terms.

� An element e 2 G is called a projection i� it satis�es e� = e � e = e.

The set of all projections in G is denoted by P(G).

� For an element x 2 G, the set f x g(r) := f y 2 G j x � y = 0 g is called the right

annihilator for x.

� A projection f is called closed i� for f there exists some x 2 G such that f x g(r) =
f �G. The set of all closed projections in G is denoted by Pc(G)

Based on Rickart * semigroups, an orthomodular model M = hG; ui for orthomodular

logic is constructed as follows: That is, G = hG; �; �i is a Rickart * semigroup, and u is a

function assigning to each propositional variable pi an element u(pi) of Pc(G).

The notion of truth for our formulas is de�ned inductively as foloows: The symbols

(M; x) j= � mean \ a formula � is true at x in a model M".

(i) (M; x) j= pi i� pi 2 u(pi) �G.

(ii) (M; x) j= � ^ � i� (M; x) j= � and (M; x) j= �.

(iii) (M; x) j= :� i� 8y 2 G, [ (M; y) j= � only if y� � x = 0 ].

We write M : � j= �, i� for any x in a model M, either (M; x) 6j= � or (M; x) j= �

holds. We can prove the completeness theorem.
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Theorem (Completeness Theorem for orthomodular logic) For any formulas �

and �, the following statemants are equivalent.

(S) For any orthomodular lattice A, and for any orthomodular valuation V , v(�) � v(�).

(T) For any orthomodular model M, M : � j= �.

2

Proof of this theorem consists of two parts,

1): (S) implies (T), and 2): (T) implies (S).

1): It is not so hard to show this direction. We can de�ne a partially order on P(G)

and we can prove that Pc(G) forms an orthomodular lattice with respect to this order.

Moreover we can de�ne a suitable orthomodular valuation from � to Pc(G). By these

facts together with other simple observations, we can prove that if (T) does not hold,

then (S) does not hold.

2): It is a bit complicated to show this direction. We use the following notion to construct

a Rickart * semigroup from an orthomodular lattice.

For a given ordered set hA;�i, consider such monotone map ' from A to A that for

varphi, there exists some monotone map '] which satis�es the following: for any x 2 A,

']('(x)) � x and '('](x)) � x.

We call this map '] a residual map for ', and denote the set of all such monotone maps

as ' on A by G(A).

It is easily check that this G(A) is a semigroup with respect to the composition op-

eration of maps. And particularly, if A is an orthomodular lattice, then we can de�ne

such * operation on G(A) that GA = hG(A); �; �i is a Rickart * semigroup. Thus we can

build up the suitable orthomodular model from a given orthomodular lattice and a given

orthomodular valuation by using the above construction. Therefore we can show that if

(S) does not hold, then (T) does not hold.

Basically, we make use of the following theorem in the above proof.

Theorem (Foulis's representation theorem for orthomodular lattice) Let A

be an orthomodular lattice. Then GA = hG(A); �; �i is a Rickart * semigroup, and A is

isomorphic to Pc(G(A)).
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