
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title 逐次型戦略に基づくTRSコンパイラの構築

Author(s) 関, 康夫

Citation

Issue Date 1997-03

Type Thesis or Dissertation

Text version author

URL http://hdl.handle.net/10119/1072

Rights

Description Supervisor:酒井 正彦, 情報科学研究科, 修士



TRS compiler based on sequential strategy

Yasuo Seki

School of Information Science,

Japan Advanced Institute of Science and Technology

February 14, 1997

Keywords: term rewriting systems，functional language，compiler，normalizing

strategy.

Recently, practical systems, Elan, Sml-NJ, Gofer, OBJ and so on, of functional lan-

guages have been developed. These systems have special features, i.e., delaied evaluation,

higher-order functions, polymorphic type, etc. Other than these systems, there is a sim-

ple system, Cdimple, which generates programs written in procedural language C that

execute TRS e�ciently. Programs generated by Cdimple reduce terms given by user, in

innermost strategy and outputs terms (normal form) having no reduces. Cdimple allows

user de�ned C program together with input TRS. If is not garanteed that it caluculates

the normal form even if the input term has a normal form, because of innermost strategy.

This paper tries e�cient implementation of Term Rewriting Systems (TRS) by improving

Cdimple based on normalizing strategy.

In a class called Orthogonal, a term having normal form can be reduced to normal

form by rewriting the position called index. G. Huet and J.-J. Le'vy have introduced

a class of strong sequentiality (SS) that is subclass of orthogonal. They also show an

automaton for searching for index of a given term. Althorgh an index of a given term t

can be found e�ciently by this artomaton, we always have to go back to root position

of t after reductions. It is ine�cient in case that repeatedly reducation are needed. Tus

Copyright c
 1997 by Yasuo Seki

1



Strandh propose Forward-Branching (FB) that is a sub class of SS. In this class, we can

continue searching index without going back to the root position.

In this paper, we construct a TRS compiler that generate C program by unfolding

FB index automaton into C procedures. Terms are represented as dag structure. Hence,

redices are not duplicated by copying rules. Gabage collection is implemented by using

reference counter. Since garbage collections are taken plase in real time, there is a little

problem of overhead in operating on reference counters.

We compare our TRS-compiler with other systems (Cdimple, Elan compiler, Sml-NJ

compiler, Gofer compiler).(See �gure)

Cdimple, Elan compiler and Sml-NJ compiler adapt innermost reduction strategy.

Gofer is based on leftmost outermost strategy. For some TRS's (factorial, �bonatch,

naive reverse), our compiler generates several times slower code than systems based on

innermost strategy. Our compiler produce a little faster program than Gofer.

For quick sort, our compiler takes much faster than Cdimple and Elan, Sml-NJ. How-

ever, ours is almost program that same speed as Gofer's. for the last TRS, the programs

generated by our compiler get the answer, while others, are not terminate.

Table 1: results

Our Compiler Cdimple Elan SML-NJ Gofer

fact 8 586ms 456ms 74ms 290ms 684ms

�b 20 509ms 478ms 113ms 120ms 722ms

naive reverse 1000 7712ms 9760ms 566ms 1230ms 9132ms

quiq sort 20
a
0ms 14086ms 2912ms 1850ms 2 ms

quiq sort 1000 543ms
b
|

c
4

c
4 518ms

fbexamp
a
0ms

d
1

d
1

d
1

d
1

a
0 < 1ms

b
memory error

c
long time <1, terminate

d
non terminate

2


