
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
Random Generation and Enumeration of Bipartite

Permutation Graphs

Author(s)
Saitoh, Toshiki; Otachi, Yota; Yamanaka,

Katsuhisa; Uehara, Ryuhei

Citation Journal of Discrete Algorithms, 10: 84-97

Issue Date 2011-11-18

Type Journal Article

Text version author

URL http://hdl.handle.net/10119/10720

Rights

NOTICE: This is the author's version of a work

accepted for publication by Elsevier. Toshiki

Saitoh, Yota Otachi, Katsuhisa Yamanaka, and

Ryuhei Uehara, Journal of Discrete Algorithms,

10, 2011, 84-97,

http://dx.doi.org/10.1016/j.jda.2011.11.001

Description

Random Generation and Enumeration of Bipartite Permutation
GraphsI

Toshiki Saitoha, Yota Otachib, Katsuhisa Yamanakac, Ryuhei Ueharaa

aSchool of Information Science, JAIST, Asahidai 1-1, Nomi, Ishikawa 923-1292, Japan
bDepartment of Computer Science, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515, Japan

cGraduate School of Information Systems, The University of Electro-Communications, Chofugaoka 1-5-1, Chofu,
Tokyo 182-8585, Japan

Abstract

Connected bipartite permutation graphs without vertex labels are investigated. First, the number
of connected bipartite permutation graphs of n vertices is given. Based on the number, a sim-
ple algorithm that generates a connected bipartite permutation graph uniformly at random up to
isomorphism is presented. Finally an enumeration algorithm of connected bipartite permutation
graphs is proposed. The algorithm is based on reverse search, and it outputs each connected bipar-
tite permutation graph in O(1) time.

Keywords: Bipartite permutation graph, counting, Dyck path, enumeration, Motzkin path,
random generation.

1. Introduction

Recently we have to process huge amounts of data in the area of data mining, bioinformatics,
etc. In most cases, we have to use some certain structure to solve problems efficiently. We need
three efficiencies to deal with the complex structure; it has to be represented efficiently, essentially
different instances have to be enumerated efficiently, and its properties have to be checked effi-
ciently. From the viewpoint of graph classes, the previously studied structures are relatively prim-
itive. Although trees are widely investigated as a model of such structured data [6, 11, 13, 15],
there are few results for more complex graph classes. Recently, distance-hereditary graphs [12]
and proper interval graphs [18] are investigated from this viewpoint.

In this paper, we investigate counting, random generation, and enumeration of a graph class
called bipartite permutation graphs. More precisely, we aim to count, generate, and enumerate
unlabeled connected bipartite permutation graphs. From the practical point of view, “unlabeled”
and “connected” are reasonable properties to avoid redundancy. On the other hand, however, they
are also challenges to developing efficient algorithms. Especially, unlabeled property requires us
to avoid generating isomorphic graphs. In other words, we have to recognize isomorphic graphs

IA preliminary version of this article was presented at ISAAC 2009 [17].
Email addresses: toshikis@jaist.ac.jp (Toshiki Saitoh), otachi@comp.cs.gunma-u.ac.jp (Yota

Otachi), yamanaka@is.uec.ac.jp (Katsuhisa Yamanaka), uehara@jaist.ac.jp (Ryuhei Uehara)

Preprint submitted to Journal of Discrete Algorithms March 16, 2010

and suppress generating/counting/enumerating them twice or more. Roughly speaking, the graph
isomorphism problem has to be solved efficiently for our target graph classes in this context. The
graph isomorphism problem is one of well-known basic problems, and it is still hard on restricted
graph classes [22]. There are two well-known graph classes that the graph isomorphism problem
can be solved in polynomial time; interval graphs [14] and permutation graphs [3]. Hence, they are
the final goal in this framework. We mention that these graph classes have been widely investigated
since they are very basic graph classes from the viewpoint of graph theory. Therefore many useful
properties have been revealed, and many efficient algorithms have been developed for them (see,
e.g., [2, 7, 19]). From the practical point of view, when an efficient algorithm for a graph class is
developed and implemented, we need many graphs belonging to the class to check the reliability of
the algorithm. Hence, for such popular graph classes, efficient random generator and enumerator
are required. On the other hand, the counting of such graphs is rather mathematical. From the
viewpoint of combinatorics, the counting of graphs having a certain structure is an important issue.
In combinatorics, the notion of Dyck path is one of basic tools, and it appears in a number of areas
[20, 21]. One natural extension of the notion of Dyck path is known as Motzkin path; while a
Dyck path is a sequence of +1 and −1, a Motzkin path is a sequence of +1, −1, and 0. We will
show that an unlabeled connected bipartite permutation graph is strongly related to an extension of
a Motzkin path, which is known as a 2-Motzkin path [5], that consists of +1, −1, +0, and −0. Our
counting result also gives a new insight of this area.

Saitoh et al. have obtained such results for proper interval graphs which form a subclass of
interval graphs [18]. We turn to bipartite permutation graphs that form a subclass of permutation
graphs, and show the similar results for them. As we will see, bipartite permutation graphs have a
certain structure, which can be seen as a generalization of the structure appearing in proper interval
graphs implicitly. That is, developing some new nontrivial techniques based on the results in proper
interval graphs, we advance the results in [18] to bipartite permutation graphs.

2. Preliminaries

Interval graph: A graph G = (V, E) with V = {v1, v2, . . . , vn} is an interval graph if there is a finite
set of intervals I = {Iv1 , Iv2 , . . . , Ivn} on the real line such that {vi, v j} ∈ E if and only if Ivi ∩ Iv j , ∅
for each i and j with 0 < i, j ≤ n. We call the interval set I an interval representation of G. For
each interval I, we denote by L(I) and R(I) the left and right endpoints of the interval, respectively.
An interval representation is proper if no two distinct intervals I and J exist such that I properly
contains J or vice versa. An interval graph is proper if it has a proper interval representation. If
an interval graph G has an interval representation I such that every interval in I has the same
length, G is said to be a unit interval graph. Such interval representation is called a unit interval
representation. It is well-known that proper interval graphs coincide with unit interval graphs [16].
That is, given a proper interval representation, we can transform it to a unit interval representation.
A simple constructive way of the transformation can be found in [1]. We can assume without loss
of generality that L(I) , L(J) (and hence R(I) , R(J)), and R(I) , L(J) for any two distinct
intervals I and J in a unit interval representation I.

Let Σ be an alphabet {‘[’, ‘]’}. We encode a unit interval representation I of a unit interval
graph G by a string s(I) in Σ∗ as follows; we sweep the interval representation from left to right,

2

1
2

3

4

5 6

7

8 9

10

11 12

1 2 3 4 5 6 7 8 9 10 11 12

L1

L2

G G2[X]

Figure 1: Proper interval graph from bipartite permutation graph

and for each I ∈ I encode L(I) and R(I) by ‘[’ and ‘]’, respectively. We call the encoded string a
string representation of G. We say that string x in Σ∗ is balanced if the number of ‘[’s in x equals
that of ‘]’s. Clearly s(I) is a balanced string of 2n letters. Using the construction in [1], s(I) can
be constructed from a proper interval representation I in O(n) time and vice versa since the ith ‘[’
and the ith ‘]’ give the left and right endpoints of the ith interval, respectively. (We assume that
each interval representation is given by a list of the endpoints of intervals from left to right.)

We define ‘[̄’ = ‘]’ and ‘]̄’ = ‘[’ respectively. For two strings x = x1x2 · · · xn and y = y1y2 · · · ym

in Σ∗, we say that x is smaller than y if (1) n < m, or (2) n = m and there exists an index i ∈ {1, . . . , n}
such that xi′ = yi′ for all i′ < i and xi = ‘[’ and yi = ‘]’. If x is smaller than y, we denote x < y.
(This is so called “lexicographical order with length preferred.”) For a string x = x1x2 · · · xn we
define the reverse x̄ of x by x̄ = x̄n x̄n−1 · · · x̄1. A string x is reversible if x = x̄. A connected proper
interval graph G is said to be reversible if its string representation is reversible.

Lemma 1 (See, e.g., [4, Corollary 2.5]). Let G be a connected proper interval graph, and I and
I′ be any two unit interval representations of G. Then either s(I) = s(I′) or s(I) = s(I′) holds.
That is, the string representation of a proper interval graph is unique up to isomorphism.

Permutation graph: A graph G = (V, E) with V = {1, 2, . . . , n} is said to be a permutation graph if
there is a permutation π over V such that {i, j} ∈ E if and only if (i− j)(π(i)− π(j)) < 0. Intuitively,
each vertex i in a permutation graph corresponds to a line `i joining two endpoints on two parallel
lines L1 and L2. Then two vertices i and j are adjacent if and only if the corresponding lines `i and
` j intersect. The ordering of vertices gives the ordering of the endpoints on L1, and the ordering
by permutation π over V gives the ordering of the endpoints on L2. We call the intersection model
a line representation of the permutation graph. For two line representations L and L′, suppose L
contains (i, j) if and only ifL′ contains (i, j). Then we call them isomorphic and denote byL = L′.

When a permutation graph is bipartite, it is said to be a bipartite permutation graph (see Fig-
ure 1). Then the following lemma holds:

Lemma 2. Let G = (X,Y, E) be a connected bipartite permutation graph with |X|, |Y | > 0 and L =
(L1, L2) its line representation. Without loss of generality, we assume that v1 ∈ X corresponds to
(1, i) for some i with 1 ≤ i ≤ n. Then X and Y satisfy that X = {vi | vi corresponds to (i, j) with i <
j} and Y = {vi | vi corresponds to (i, j) with i > j}.

3

Proof. If v1 ∈ X corresponds to (1, 1), G is disconnected. Hence v1 = (1, i) with i > 1 and there is
a vertex vi′ corresponding to (i′, 1) with i′ > 1. Clearly, `1 and `i′ intersect. Hence vi′ ∈ Y , and v1

and vi′ satisfy the condition.
To derive a contradiction, we assume that there is a v j ∈ X that corresponds to (j, j′) with j ≥ j′

in G. Without loss of generality, every vertex corresponding to `k = (k, k′) with k < j satisfies the
condition of the lemma. Then let x j be the number of vertices in X placed before v j on L1, and y j

the number of vertices in Y placed before v j on L2, respectively. Moreover, let y′j be the number of
vertices in Y placed before v j on L1. If j = j′, we have j − x j = y′j = y j. Hence G is disconnected,
which is a contradiction. Thus assume j > j′. Then, we have y j + x j = j′ − 1 < j − 1 = x j + y′j,
equivalently, y′j > y j. Thus there exists vk ∈ Y with `k = (k, k′) such that k < j and j′ < k′. We
suppose that vk is the leftmost one among such vertices. If N(vk)∩X∩{v1, . . . , vk−1} is empty, it is not
difficult to see that G is not connected (since v j and vk are the leftmost pair of the second connected
component). Hence vk has some neighbor, say vx, in X ∩ {v1, . . . , vk−1}. By the assumption, for
` j = (j, j′), `k = (k, k′), and `x(x, x′), we have x < k < j and j′ < k′ < x′. This implies that ` j

and `x intersect, which contradicts that v j and vx are in X. With a symmetric argument for Y , the
lemma follows. �

Let L = (L1, L2) be a line representation of a bipartite permutation graph G = (X,Y, E). For a
connected bipartite permutation graph G, we can construct essentially equivalent representations
by flipping L. There are three operations that play important roles in this paper. On a horizontal
flip LH (H-flip for short) of L, each line (i, j) on L is mapped to the line (n − i + 1, n − j + 1). On
a vertical flip LV (V-flip for short) of L, each line (i, j) on L is mapped to the line (j, i). For a line
representationL, (LH)V = (LV)H gives us a rotation ofL. Hence we denote the line representation
by LR after this operation.

One important property is that they are unique up to isomorphism like Lemma 1:

Lemma 3. Let G = (V, E) be a connected bipartite permutation graph, and L and L′ any two line
representations of G. Then one of L = L′, L = L′H, L = L′V , and L = L′R holds. That is, the line
representation of G is unique up to isomorphism.

Proof. By Lemma 2, we can partition V to X and Y . Let G2[X] = (X, EX) be a graph obtained from
G by joining two vertices x, x′ ∈ X if and only if N(x) ∩ N(x′) , ∅. That is, two vertices x and x′

are joined in G2[X] if the distance between them is 2. In other words, x and x′ are joined by some
vertex in Y . We first show that G2[X] is a connected proper interval graph. Intuitively, from a line
representation of G, we can obtain the interval representation of G2[X] as follows (see Figure 1):
we first rearrange the vertices in Y to vertical lines at regular intervals, and next make the vertices
x in X be horizontal intervals spanning N(x). Then the resultant intervals corresponding to the
vertices x in X are proper, and this proper interval representation can be transformed to the unit
interval representation in a straightforward way in [1]. The resultant graph G2[X] is also connected.
Thus Lemma 1 implies that the resultant unit interval representation is unique up to reversal. G2[Y]
can be defined in a symmetric way.

Now, we consider the rewind of this process. Given connected bipartite permutation graph G =
(V, E), X and Y are determined from G uniquely by Lemma 2. Then, by the discussion above, two

4

proper interval graphs G2[X] and G2[Y] are uniquely determined. By Lemma 1, these unit interval
graphs correspond to the unique interval representations. Thus, these unit interval representations
give the unique orderings of X and Y in a natural way, respectively. Thus, combining these two
orderings on X and Y with G = (X,Y, E), we can construct the line representation of G uniquely
as follows. First, we pick up the “leftmost” vertex x1 in X according to the ordering of X. Then
pick up the “leftmost” vertex y1 from N(x1) according to the ordering of Y . Now all vertices in
N(x1) are placed before x1 on L2 according to the ordering of Y , and all vertices in N(y1) are placed
before y1 on L1 according to the ordering of X. Next we proceeds to x2 and y2, and so on. By a
simple induction for the size of graph, we can show that the line representation of G is uniquely
determined up to isomorphism. �

Let G = (V, E) be a connected bipartite permutation graph, and L,LH,LV ,LR its four line
representations. Then some of them can be isomorphic; G is H-symmetric, V-symmetric, and R-
symmetric if L = LH, L = LV , and L = LR, respectively.

Here, we map each representation L to a string s(L) in Σ∗ as follows. We first sweep the
endpoints from left to right on L1, and construct a string s1(L) by adding ‘[’ when the endpoint is
in X, and ‘]’ when the endpoint is in Y (e.g., s1(L) = [[][]][]][]] in Figure 1). Next we sweep the
endpoints from left to right on L2, and construct a string s2(L) by adding ‘[’ when the endpoint is in
Y , and ‘]’ when the endpoint is in X (e.g., s2(L) = [][][[[[][]] in Figure 1). Finally, we concatenate
s2(L) after s1(L) and obtain the resultant string (e.g., s(L) = [[][]][]][]][][][[[[][]] in Figure 1).

Using the string, we define a canonical representation of G as follows. We first suppose that
all strings s(L), s(LH), s(LV), s(LR) are distinct. Then the canonical representation is the one cor-
responding to the smallest string. When G satisfies exactly one symmetricalness with respect to
H-flip, V-flip, or rotation, then four possible representations give two distinct strings. Then the
canonical representation is the one corresponding to the smaller string. If G satisfies two symmet-
ricalnesses, the last symmetricalness is also satisfied. Hence, in the case, four representations are
isomorphic and this gives the unique canonical representation. By Lemma 3, this rule gives us a
one-to-one mapping between bipartite permutation graphs and canonical representations.

Dyck path, Motzkin path, and 2-Motzkin path: A path in the (x, y) plane from (0, 0) to (2n, 0)
with steps (1, 1) and (1,−1) is called a Dyck path of length 2n if it never pass below the x-axis.
It is well-known that the number of Dyck paths of length n is given by the nth Catalan number
C(n) := 1

n+1

(
2n
n

)
(see [21, Corollary 6.2.3] for further details). We will use one of the generalized

notions of Catalan number; C(n, k) := k+1
n+1

(
n+1

(n−k)/2

)
, which gives us the number of subpaths of Dyck

paths from (0, 0) to (n, k). This can be obtained by a generalized Raney’s lemma about m-Raney
sequences with letting m = 2; see [8, Equation (7.69), p. 349] for further details. A path in the (x, y)
plane from (0, 0) to (n, 0) with steps (1, 0), (1, 1), and (1,−1) is called a Motzkin path of length n if
it never go below the x-axis (see [21, Exercise 6.38] for further details). The number of Motzkin
paths of length n is called Motzkin numberM(n); e.g.,M(1) = 1,M(2) = 2,M(3) = 4,M(4) =
9,M(5) = 21,M(6) = 51. A 2-Motzkin path is a Motzkin path that has two kinds of step (1, 0).
We distinguish them by (1,+0) and (1,−0). Deutsch and Shapiro show that 2-Motzkin paths have
correspondences to ordered trees and others [5].

In paths above, each step consists of (1, x) for some x in {+1,−1,+0,−0}. Hence we will denote
a path by a sequence of such integers x in {+1,−1,+0,−0}.

5

Machine Model: Time complexity is measured by the number of arithmetic operations. Especially
we assume that each binomial coefficient and each (generalized) Catalan number can be computed
in O(1) time. Moreover we assume that the basic arithmetic operations of these numbers can be
done in O(1) time. This assumption is out of the standard RAM model. We have to multiply the
time complexity of calculation of these numbers to the complexities to obtain the time complexity
in the standard RAM model. We employ the assumption only in Section 3 to simplify the discus-
sion. The enumeration algorithm in Section 4 does not require the assumption, and all the results
are valid on the standard RAM model.

3. Counting and Random Generation

Let P(n) be the set of permutations corresponding to connected bipartite permutation graphs of
n vertices, and Bn the set of distinct (up to isomorphism) connected bipartite permutation graphs
of n vertices. We denote a (not necessarily canonical) line representation of a permutation π by
Lπ = (L1, L2), and the graph of π by Gπ = (X,Y, E). Without loss of generality, we assume that X
contains the vertex corresponding to (1, π(1)) in Lπ for π(1) > 1. Now, we construct a 2-Motzkin
path as follows. For each i with 1 ≤ i ≤ n, we see the endpoints at i on L1 and L2. Let pi and qi be
the endpoints on L1 and L2, respectively. We say that pi is in X (and Y) if pi is the endpoint of a
vertex corresponding to (i, π(i)) in X (and Y , respectively). Similarly, we say that qi is in X (and Y)
if qi is the endpoint of a vertex corresponding to (π−1(i), i) in X (and Y , respectively). If Gπ is not
connected, in each connected component, we assume that the vertex corresponding to the leftmost
endpoint on L1 belongs to X. Then the value zi is defined as follows;

zi =


+1 if pi is in X and qi is in Y ,
−1 if pi is in Y and qi is in X,
+0 if pi and qi are in X,
−0 if pi and qi are in Y .

That is, two values +0 and −0 are distinguished (for counting) but have the same value.
From the sequence z1, . . . , zn, we can consider a path Zπ = (z1, . . . , zn). (For example, Zπ =
(+1,+0,−0,+0,−0,−0,+1,−0,−1,+1,−1,−1) for the graph in Figure 1.) Note that π = π′ if
and only if Zπ = Zπ′ . For the path Zπ, we define its height at point i by

∑i
j=1 z j. To simplify, we

define that the height at point 0 is 0. We show that Zπ is a 2-Motzkin path that has positive height at
point i, 1 < i < n, if and only if π ∈ P(n). To this end, we need a property of connected permutation
graphs.

Lemma 4 ([9, Lemma 3.2]). Let π be a permutation on {1, . . . , n}. Then Gπ is disconnected if and
only if there exists k < n such that {π(1), π(2), . . . , π(k)} = {1, 2, . . . , k}.

Then we have the following lemma.

Lemma 5. A sequence Z = (z1, . . . , zn) on the alphabet {+1,−1,+0,−0} is constructed from π ∈
P(n) in the above way if and only if Z is a 2-Motzkin path such that Z has height 0 at point 0 and
n, and positive height at point i with 0 < i < n.

6

+1 -1 +0 -0

+1 +1 -1 -1 +1 -1 -1 +1+1 -1

Figure 2: An example of the bijection

Proof. (=⇒) Clearly, z1 = +1 and zn = −1 since Gπ = (X,Y, E) is connected, and X and Y are
nonempty. It is easy to see that the number of +1 is equal to the one of −1 in Z. Thus

∑n
i=1 zi = 0.

If Z has height 0 at some point k with 0 < k < n, we have that π(i) ∈ {1, . . . , k} for 1 ≤ i ≤ k. From
Lemma 4, we have that Gπ is disconnected, which is a contradiction.
(⇐=) We can construct a line representation L = (L1, L2) from Z as follows:

1. At point i (1 ≤ i ≤ n) on L1, put x if zi ∈ {+1,+0}, otherwise put y;
2. At point i (1 ≤ i ≤ n) on L2, put x if zi ∈ {−1,+0}, otherwise put y;
3. Draw a line segment from the ith x on L1 to the ith x on L2 for each i;
4. Draw a line segment from the ith y on L1 to the ith y on L2 for each i.

Then, we have a permutation π ofL. Thus, it suffices to show that π ∈ P(n), that is, Gπ is connected
and bipartite. Clearly, two lines in L intersect only if one of them is a line from x to x and another
line is from y to y. So, Gπ is bipartite. If Gπ is disconnected then there exists an index k < n
such that π(i) ∈ {1, . . . , k} for 1 ≤ i ≤ k (Lemma 4). Obviously, this implies

∑k
i=1 zi = 0, which

contradicts the assumption. �

From the above characterization, we can count the number of elements in P(n). Deutsch and
Shapiro [5] have shown the following bijection between 2-Motzkin paths of length n and Dyck
paths of length 2(n + 1): In a 2-Motzkin path, we replace +1 by (+1,+1), −1 by (−1,−1), +0 by
(+1,−1), and −0 by (−1,+1); Then add +1 before the obtained sequence, and add −1 after the
sequence. Figure 2 shows an example. Note that a 2-Motzkin path has height k at point i if and
only if the corresponding Dyck path has height 2k + 1 at point 2i + 1. The bijection gives the
following lemma, which yields |P(n)| = C(n − 1).

Lemma 6 ([5]). The number of 2-Motzkin paths of length n is C(n + 1).

Corollary 1. |P(n)| = C(n − 1).

Proof. Let π ∈ P(n). Since π bijectively corresponds to Zπ, it suffices to count the elements of Zπ.
Lemma 5 and its proof imply that Zπ bijectively corresponds to a 2-Motzkin path of length n − 2
(as the first and the last steps in Zπ are removed). The corollary follows from Lemma 6. �

7

We can show that the bijection is also a bijection for restricted paths. For z ∈ {+1,−1,+0,−0},
we define −z naturally; −z = ±b if and only if z = ∓b for b ∈ {0, 1}. A Dyck path D = (d1, . . . , d2n)
is symmetric if di = −d2n−i+1 for 1 ≤ i ≤ 2n.

Lemma 7 ([18]). The number of symmetric Dyck paths of length 2n is
(

n
bn/2c

)
.

A 2-Motzkin path Z = (z1, . . . , zn) is semi-symmetric if zi = −zn−i+1 for 1 ≤ i ≤ n, and Z
is symmetric if zi = −zn−i+1 for zi ∈ {+1,−1} and zi = zn−i+1 for zi ∈ {+0,−0}. A 2-Motzkin
path can be semi-symmetric only if its length is even. Obviously, the bijection is also a bijection
between symmetric 2-Motzkin paths of length n and symmetric Dyck paths of length 2(n + 1).
Furthermore, if n is even, there is a bijection between semi-symmetric 2-Motzkin paths of length
n and symmetric Dyck paths of length 2(n + 1), since a semi-symmetric 2-Motzkin path can be
bijectively transformed to a symmetric 2-Motzkin path by flipping the signs of 0s in the right half.
From the above observation and Lemma 7, we have the following corollary.

Corollary 2. The number of symmetric 2-Motzkin paths of length n is
(

n+1
b(n+1)/2c

)
. If n is even, the

number of semi-symmetric 2-Motzkin paths of length n is also
(

n+1
b(n+1)/2c

)
.

Any given π ∈ P(n), Lemma 3 implies that there exist at most four line representations Lπ,
LH
π , LV

π , and LR
π for a graph Gπ. We define four subsets of P(n) as follows: (1) PH(n) = {π ∈

P(n) | Lπ is H-symmetric}, (2) PV(n) = {π ∈ P(n) | Lπ is V-symmetric}, (3) PR(n) = {π ∈ P(n) |
Lπ is R-symmetric}, and (4) PF(n) = PH(n) ∩ PR(n) ∩ PV(n).

Proposition 1. If n is odd, PH(n) and PV(n) are empty.

Proof. Both H-flip and V-flip exchange X and Y , which are determined uniquely by Lemma 2.
Thus PH(n) and PV(n) can be nonempty only if |X| = |Y |. Therefore, they are empty if |X| + |Y | is
odd. �

Proposition 2. PF(n) = PH(n) ∩ PV(n) = PV(n) ∩ PR(n) = PR(n) ∩ PH(n).

Proof. Let π ∈ PH(n) ∩ PV(n). Then Lπ = LH
π = LV

π . Since LR
π =
(
LH
π

)V
for any π, we have that

LR
π =
(
LH
π

)V
= LV

π = Lπ. Hence π ∈ PR(n). The remaining two cases are similar. �

Lemma 8. |Bn| = 1
4

(
|P(n)| + |PH(n)| + |PV(n)| + |PR(n)|

)
.

Proof. From Lemma 3 and Proposition 2, each connected bipartite permutation graph corresponds
to four, two, and one permutations if it has no, one, and three symmetricalness, respectively. Ac-
cording to the number of corresponding permutations, we can partition Bn into three sets B4

n, B2
n,

and B1
n. Each element of Bi

n corresponds to exactly i permutations in P(n): For G ∈ B1
n, there

exists π ∈ PF(n) such that G ' Gπ; For G ∈ B2
n, there exist two permutations π1 and π2 in

(PH(n)∪PV(n)∪PR(n))\PF(n) such that G ' Gπ1 ' Gπ2 ; For G ∈ B4
n, there exist four permutations

πi, 1 ≤ i ≤ 4, in P(n) \
(
PH(n) ∪ PV(n) ∪ PR(n)

)
such that G ' Gπi for 1 ≤ i ≤ 4. Combining the

inclusion-exclusion principle with Proposition 2 implies that

|PH(n) ∪ PV(n) ∪ PR(n)| = |PH(n)| + |PV(n)| + |PR(n)| − 2|PF(n)|.

8

So, we have that

|Bn| = |B1
n| + |B2

n| + |B4
n|

= |PF(n)| + 1
2

(
|PH(n)| + |PV(n)| + |PR(n)| − 3|PF(n)|

)
+

1
4

(
|P(n)| − |PH(n)| − |PV(n)| − |PR(n)| + 2|PF(n)|

)
=

1
4

(
|P(n)| + |PH(n)| + |PV(n)| + |PR(n)|

)
,

as required. �

Lemma 8 implies that it suffices to count the elements of P(n), PH(n), PV(n), and PR(n) to show
the size of Bn. For our random generation, we also count the elements in PF(n).

Lemma 9. |PV(n)| = C(n/2 − 1) for even n.

Proof. Let π ∈ PV(n). We claim that Zπ = (z1, . . . , zn) contains neither +0 nor −0. If zi = +0 for
some i, 1 ≤ i ≤ n, Lπ contains the lines (i, j) and (k, i) for some j and k, k < i < j. However, since
Lπ is V-symmetric, Lπ contains (j, i) as well. This implies that j = k, a contradiction. The proof
of zi , −0 is almost the same. Thus Zπ bijectively corresponds to a Dyck path of length n − 2, as
required. �

Lemma 10. |PR(n)| =
(

n−1
b(n−1)/2c

)
.

Proof. From Corollary 2, it suffices to show that π ∈ PR(n) if and only if the 2-Motzkin path Zπ is
symmetric and has positive height at point i with 1 < i < n.
(=⇒) Suppose zi = +1. Then the lines (i, j) and (k, i), i < j and i < k, are in Lπ. Since π ∈ PR(n),
we have that (n − j + 1, n − i + 1) and (n − i + 1, n − k + 1) are also in Lπ. Therefore, zn−i+1 = −1
since i < j and i < k. The case zi = −1 is similar.

Next, suppose zi = +0. Then the lines (i, j) and (k, i), k < i < j, are in Lπ. Since π ∈ PR(n), we
have that (n − j + 1, n − i + 1) and (n − i + 1, n − k + 1) are also in Lπ. Therefore, zn−i+1 = +0 since
k < i < j. The case zi = −0 is similar.
(⇐=) Clearly, π ∈ P(n). Let (i, j) ∈ Lπ. We show that (n − j + 1, n − i + 1) is also in Lπ. Without
loss of generality, we assume that i < j, namely (i, j) ∈ X. Let i and j be the kth endpoints of lines
in X, on L1 and L2, respectively. For 1 ≤ ` < i, the number of indices ` such that z` ∈ {+1,+0} is
k − 1. Since Zπ is symmetric, for n − i + 1 < ` ≤ n the number of indices ` such that z` ∈ {−1,+0}
is also k − 1. This implies that the point n − i + 1 on L2 is the (|X| − k + 1)th endpoint of a line in
X. Similarly, we can show that the point n − j + 1 on L1 is the (|X| − k + 1)th endpoint of a line in
X. Therefore, (n − j + 1, n − i + 1) ∈ Lπ. �

Lemma 11. |PH(n)| =
(

n−1
b(n−1)/2c

)
for even n.

9

Proof. The idea of proof is almost the same as the one of Lemma 10. From Corollary 2, it suffices
to show that π ∈ PH(n) if and only if the 2-Motzkin path Zπ is semi-symmetric and has positive
height at point i with 1 < i < n.
(=⇒) Let (i, j), (k, i) ∈ Lπ. Since π ∈ PH(n), we have that (n−i+1, n− j+1) and (n−k+1, n−i+1)
are also in Lπ. It is easy to see that (i, j) is positive if and only if (n− i+ 1, n− j+ 1) is negative. In
the same way, we can see that (k, i) is positive if and only if (n − k + 1, n − i + 1) is negative. Thus,
zi = −zn−i+1.
(⇐=) Clearly, π ∈ P(n). Let (i, j) ∈ Lπ. We show that (n − i + 1, n − j + 1) is also in Lπ. Without
loss of generality, we assume that i < j, namely (i, j) ∈ X. Let i and j be the kth endpoints of lines
in X, on L1 and L2, respectively. For 1 ≤ ` < i, the number of indices ` such that z` ∈ {+1,+0}
is k − 1. Since Zπ is semi-symmetric, for n − i + 1 < ` ≤ n the number of indices ` such that
z` ∈ {−1,−0} is also k − 1. This implies that the point n − i + 1 on L1 is the (|X| − k + 1)th endpoint
of a line in Y . Similarly, we can show that the point n − j + 1 on L2 is the (|X| − k + 1)th endpoint
of a line in Y . Therefore, (n − i + 1, n − j + 1) ∈ Lπ. �

Lemma 12. |PF(n)| =
(

(n−2)/2
b(n−2)/4c

)
for even n.

Proof. From Lemma 7, it suffices to show that π ∈ PF(n) if and only if the 2-Motzkin path Zπ is
a symmetric Dyck path and has positive height at point i with 1 < i < n. This is implied by the
proofs of Lemmas 9 and 11. �

Lemmas 8, 9, and Proposition 1 together show the number of elements of Bn. We use a well-
known relation 2

(
2m−1
m−1

)
=
(

2m
m

)
for the even case.

Theorem 13. For n ≥ 2, the number of connected bipartite permutation graphs of n vertices is
given by

|Bn| =
 1

4

(
C(n − 1) + C(n/2 − 1) +

(
n

n/2

))
if n is even,

1
4

(
C(n − 1) +

(
n−1

(n−1)/2

))
if n is odd.

Theorem 14. For any given positive integer n, a connected bipartite permutation graph with n
vertices can be generated uniformly at random in O(n) time and O(n) space.

Proof. Basically, using the same idea in [18] with Lemma 6, the algorithm generates a 2-Motzkin
path uniformly at random, and outputs the corresponding graph. However, this straightforward
algorithm does not generate a connected bipartite permutation graph uniformly at random since
it does not consider symmetricalness of the graph. That is, comparing to an asymmetric graph,
the chances of graphs with one symmetricalness and three symmetricalness are only a half and a
quarter, respectively. Hence the algorithm adapts the probability as follows. The algorithm first
chooses one of three sets Bn, B2

n ∪ B1
n, and B1

n with probabilities |Bn|/B, |B2
n ∪ B1

n|/B, and 2|B1
n|/B,

respectively, where B = |Bn| + |B2
n ∪ B1

n| + 2|B1
n| = |B4

n| + 2|B2
n| + 4|B1

n|.
Next, in each case, the algorithm generates each element uniformly at random from the chosen

set S . This is a natural extension of [18], and we can show the correctness in a similar way. In
each case, the algorithm selects as follows.

When S = Bn, the algorithm simply picks up an element by generating a 2-Motzkin path.

10

If S = B2
n∪B1

n, it meets three subcases; H-symmetric case, V-symmetric case, and R-symmetric
case (note that these cases are not disjoint). These subcases are chosen with probabilities propor-
tional to their sizes given by Lemmas 9, 10, and 11. In H-symmetric case, the algorithm first
constructs the left half of the graph. To do that, the algorithm generates a nonnegative 2-Motzkin
path of half length uniformly at random. Here, a nonnegative 2-Motzkin path is defined in a sim-
ilar way to the nonnegative Dyck path in [18]; it is a subpath of a 2-Motzkin path that ends at
(n, i) for some i ≥ 0. A nonnegative 2-Motzkin path of length n can be generated by adding each
consecutive pair in a nonnegative Dyck path of length 2(n − 1) after “+1” (Figure 2). Thus the
algorithm can generate a nonnegative 2-Motzkin path by modifying the algorithm in [18], that
generates the path backwardly. Then the right half can be constructed from the left half since the
resultant 2-Motzkin path has to be semi-symmetric. In V-symmetric case, the algorithm generates
a 2-Motzkin path that consists of only +1 and −1, or consequently, a Dyck path. Hence we can use
the same algorithm in [18]. The R-symmetric case is similar to H-symmetric case. The algorithm
first generates a nonnegative 2-Motzkin path of half length, and extends it to be symmetric.

In the last case, the algorithm picks up an element from B1
n. This case is a combination of the

three subcases above. Thus the algorithm has to generate a symmetric 2-Motzkin path that only
contains +1 and −1, which is a symmetric Dyck path. Thus we can use the same algorithm in [18]
again. �

In the RAM model, binomial coefficient
(

n
k

)
can be computed in O(k2 + k log k) time and O(k)

space with Iriyama’s algorithm [10]. Thus Catalan number and its generalization can be computed
in O(n2) time. Since we compute the generalized Catalan number n/2 times in the R-symmetric
and H-symmetric cases, our random generation algorithm can be performed in O(n3) time. Note
that |Bn| is exponentially larger than |B2

n ∪ B1
n| and 2|B1

n| so the probability of selecting the case
S = Bn is close to 1. Therefore our algorithm runs in O(n2) expected time on the RAM model.

4. Enumeration

In this section we give an efficient algorithm to enumerate all bipartite permutation graphs of n
vertices. Our algorithm can enumerate such graphs in O(1) time for each.

Our approach is to repeatedly enumerate all bipartite permutation graphs of the specified
number of vertices. If we can enumerate all bipartite permutation graphs with p = |X| and
q = |Y |, such graphs of n vertices can be enumerated by repeating the method for each pair of
(p, q) = (dn

2e, b
n
2c), (d

n
2e + 1, bn

2c − 1), . . . , (n − 1, 1). By the above observation and Lemma 3, it is
sufficient to enumerate all canonical representations of bipartite permutation graphs with p = |X|
and q = |Y |.

We first define a tree structure, family tree, among the set of canonical representations. The
algorithm traverses the family tree efficiently. As a result, we can enumerate all canonical repre-
sentations.

Let S p,q be the set of canonical representations of bipartite permutation graphs of p vertices in
X and q vertices in Y . We assume p ≥ q without loss of generality. The root Rp,q in S p,q is the
smallest representation in S p,q; s(Rp,q) = [[· · · []] · · ·][[· · · []] · · ·] (Figure 3). As we will see, the
root corresponds to the root vertex in a tree structure among S p,q.

11

L1

L2

Figure 3: R4,3 in S 4,3.

L1

L2

L1

L2

(a)

L1

L2

(b)

L1

L2

i j

kl

Figure 4: Examples of the parents.

Let L = (L1, L2) be a representation in S p,q \ {Rp,q}. Let s(L) = x1x2 · · · x2n, s1(L) = x1x2 · · · xn,
and s2(L) = xn+1xn+2 · · · x2n. Now we define “the parent” P(L) of the representation L in S p,q as
follows. We have two cases.
Case (a): s1(L) , s1(Rp,q). Let i be the index of s1(L) such that xi = ‘]’ and xi′ = ‘[’ for all
i′ < i, and j be the index of s1(L) such that x j = ‘[’ and x j′ = ‘]’ for all i ≤ j′ < j. Then j is the
swappable point of L. P(L) is the representation obtained from L by swapping two endpoints at
j − 1 and j on L1 (Figure 4(a)).

Case (b): s1(L) = s1(Rp,q). In this case we define P(L) by swapping two endpoints on L2. Let k
be the index of s2(L) such that xk = ‘[’ and xk′ = ‘]’ for all k < k′, and l be the index of s2(L) such
that xl = ‘]’ and xl′ = ‘[’ for all l < l′ ≤ k. Then l is called the swappable point of L. P(L) is the
representation obtained from L by swapping two endpoints at l and l + 1 on L2. See Figure 4(b).

P(L) is called the parent of L and L is called a child of P(L). We can observe that s(P(L)) is
smaller than s(L), and the parent P(L) of L in S p,q \ {Rp,q} is always defined, since there exists the
swappable point of L. Since L is canonical, so is P(L). The next lemma shows we finally obtain
the root in S p,q by repeatedly finding the parent.

Lemma 15. LetL be a representation in S p,q \ {Rp,q}. The sequence obtained by repeatedly finding
the parent ends up with the root Rp,q.

12

Figure 5: Family tree of S 4,3.

Proof. For a representation L with s(L) = x1x2 · · · x2n, we define a potential function f (L) =
Σ2n

i=122n−ig(xi), where g(‘[’) = 0 and g(‘]’) = 1. f (L) is a mapping from L into a non-negative
integer. We can observe that f (Rp,q) is the smallest among values of representations in S p,q.

Let j be the swappable point of L. In Case 1, we have f (P(L)) = f (L) − 22n−(j−1) + 22n− j =

f (L) − 22n− j < f (L) by the definition of the parent and the potential function. Similarly, in Case
2, we have f (P(L)) = f (L) − 22n−(j+n) + 22n−(j+n+1) = f (L) − 22n−(j+n)−1 < f (L). Therefore
f (P(L)) < f (L) holds. Since the parent of L is always defined for L in S p,q \ {Rp,q}, we eventually
obtain Rp,q by repeatedly finding the parent of the derived representation, which completes the
proof. �

By merging all these sequences we have the family tree Tp,q of S p,q; the root of Tp,q corresponds
to Rp,q, the vertices of Tp,q correspond to representations in S p,q, and each edge corresponds to a
relation between a representation in S p,q \ {Rp,q} and its parent. See Figure 5 for an example.

Now we give an algorithm that enumerates all representations in S p,q. The algorithm traverses
a family tree and enumerates canonical representations corresponding to the vertices of the family
tree. To traverse a family tree, we design finding all children of a given canonical representation.

We need some definitions. L1[i] is the line representation obtained from L by swapping two
endpoints at i and i + 1 on L1, and similarly L2[i] is the line representation obtained from L by
swapping two endpoints at i − 1 and i on L2. If L = P(L1[i]) (and L = P(L2[i])), we say i is
a nominated point on L1 (and L2, respectively). L1[i] (and L2[i]) is a child of L only if i is a
nominated point on L1 (and L2) and L1[i] (and L2[i], respectively) is connected and canonical.

For a string s(L) = x1x2 · · · x2n, we define the connectivity value c(i) for i = 0, 1, . . . , 2n as

13

follows: c(0) = c(n) = 0, and

c(i) =
{

c(i − 1) + 1 if (xi = ‘[’ and i < n) or (xi = ‘]’ and i > n)
c(i − 1) − 1 if (xi = ‘]’ and i < n) or (xi = ‘[’ and i > n)

Intuitively, c(i) for i < n is the number of ‘[’s minus the number of ‘]’s in x1x2 · · · xi, and c(i) for
i > n is the number of ‘]’s minus the number of ‘[’s in xn+1xn+2 · · · xi. A bipartite permutation
graph is connected if and only if we have c(i) , c(n + i) for each i = 1, 2, . . . , n − 1. We say L is
connected if c(i) , c(n + i) for each i = 1, 2, . . . , n − 1.

All children can be enumerated as follows. We construct L1[i] for each i = 1, 2, . . . , n − 1,
then check whether or not (1) i is a nominated point on L1, (2) L1[i] is connected and (3) L1[i] is
canonical. If all conditions are satisfied, L1[i] is a child. Similarly, we check whether or not L2[i]
is a child for each i = 2, 3, . . . , n. This method takes much running time.

To improve the running time, We show that (1) the list of nominated points can be maintained
efficiently, and (2) efficient way to check if a representation is connected and canonical.

Lemma 16. Let L = (L1, L2) be a representation in S p,q. There exist at most 3 nominated points
on L1 and L2.

Proof. Let s(L) = x1x2 · · · x2n. We consider the following two cases.

Case 1: s1(L) , s1(Rp,q). Let i be the index of s1(L) such that xi = ‘]’ and xi′ = ‘[’ for all i′ < i.
Then i−1 is a nominated point on L1. Let j be the index of s1(L) such that x j = ‘[’ and x j′ = ‘]’ for
all i ≤ j′ < j. If x j+1 = ‘]’ holds, then j is a nominated point. Other points on L1 are not nominated
points and there is no nominated point on L2.

Case 2: s1(L) = s1(Rp,q). Clearly we have one nominated point p on L1, where p is equal to the
number of ‘[’s in x1x2 · · · xn. Now we consider nominated points on L2. Let k be the index of s2(L)
such that xk = ‘[’ and xk′ = ‘]’ for all k < k′. Then k + 1 is a nominated point on L2. Let l be
the index of s2(L) such that xl = ‘]’ and xl′ = ‘[’ for all l < l′ ≤ k. If xl−1 = ‘[’ holds, then l is a
nominated point on L2. Other points on L2 are not nominated. �

We have the following lemma.

Lemma 17. Given L and its nominated points, we can construct the list of nominated points of
each child in O(1) time.

Proof. We first consider the nominated points on L1. Let n1, n2 (n1 < n2) be two nominated points
on L1. We consider each case of L1[n1] and L1[n2].

Case 1: L1[n1]. If xn1+2 = ‘[’ then n2 = n1 + 2 holds or L has only one nominated point n1. In
this case L1[n1] has one nominated point n1 − 1 on L1. Otherwise, xn1+2 = ‘]’, L1[n1] has two
nominated points n1 − 1 and n1 + 1 on L1. L1[n1] has no nominated point on L2.

Case 2: L1[n2]. If xn2+2 = ‘[’, then L1[n2] has one nominated point n1. Otherwise, xn2+2 = ‘]’,
L1[n2] has two nominated points n1 and n2 + 1.

Therefore each nominated point of L1[n2] and L2[n2] (1) appears in the previous or next point
of n1 or n2, (2) disappears from the list, or (3) is identical to one of L’s.

The case on L2 is symmetric and hence omitted. �

14

Algorithm 1: find-all-children(L)
begin1

for each nominated point i on L1 do2

if L1[i] is connected and canonical then find-all-children(L1[i])3

end4

for each nominated point i on L2 do5

if L2[i] is connected and canonical then find-all-children(L2[i])6

end7

end8

Now we have Algorithm 1, that generates all children of a given representation L. For each
nominated point i on L1 (and L2), it first checks if L1[i] (and L2[i]) is connected and canonical,
and next recursively calls it for L1[i] (and L2[i], respectively) if it satisfies the conditions. By
calling the algorithm recursively at Rp,q in S p,q, we can traverse the family tree Tp,q and enumerate
all representations in S p,q.

By Lemma 17, steps 2 and 5 can be done in O(1) time in each recursive call. The remaining
task is checking whether or not L is connected and canonical efficiently.

We first consider the check of connectivity of a representation. By symmetry we only consider
L1[i] without loss of generality. Assume L is connected. Then L1[i] is connected only if c(i) ,
c(n + i) and c(i + 1) , c(n + i + 1). We can check such conditions in O(1) time using an array of
size 2n to maintain the sequences of connectivity values of L1[i]. Update of the array also can be
done in O(1) time. Therefore, the connectivity of L1[i] can be checked in O(1) time.

Next we check whether or not L is canonical. When p , q, s(L) is canonical if s(L) is the
smallest string among s(LV), s(LH) and s(LR). If p = q, we need more discussions. Let L be a
representation in S p,q and G be the bipartite permutation graph corresponding to L. Then there
exists a line representation L′ obtained from L by swapping lines corresponding to vertices in X
and ones in Y . Similarly, we denote byLV′ ,LH′ ,LR′ the representations obtained fromLV ,LH,LR

by swapping lines corresponding to vertices in X and ones in Y , respectively. Then L is canonical
if and only if s(L) is the smallest string among s(LV), s(LH), s(LR), s(L′), s(LV′), s(LH′) and
s(LR′). Using a similar idea in [18], we have the following lemma.

Lemma 18. One can determine whether or not L = (L1, L2) is canonical in O(1) time.

Proof. Let s(L) = x1x2 · · · x2n and s(I) = y1y2 · · · y2n for any I ∈ {LH,LV ,LR, L′,LV′ ,LH′ ,LR′}.
We maintain a doubly linked list L in order to check s(L) < s(I) in O(1) time. The list L maintains
the indices of different characters in s(L) and s(I). L is empty if and only if s(L) = s(I). We can
check whether s(L) < s(I) by comparing xL[1] and yL[1], where L[i] is the ith element in L.

The update of L is as follows. Let n1, n2 be the nominated points on L1 of L. We maintain i
such that L[i] ≤ n1 < L[i + 1] and j such that L[j] ≤ n2 < L[j + 1]. It is easy to see we can update
L using i and j in O(1) time. Since the nominated point n1 (and n2) is updated by n1 or n1 − 1 (and
n1 + 1 or n2 + 1, respectively) by Lemma 16, i and j can be updated in O(1) time. The case on L2

is similar and hence omitted. �

15

L1

L2

L1

L2

Figure 6: Construction of a representation in S 7,4 from the jump representation in S 6,5.

Therefore steps 3 and 6 in Algorithm 1 can be computed in O(1) time.

Lemma 19. Our algorithm uses O(n) space and runs in O(|S p,q|) time.

By Lemma 19, our algorithm generates each representation in O(1) time “on average”. Al-
gorithm 1 may return from the deep recursive calls without outputting any representation after
generating a representation corresponding to the leaf of a large subtree in a family tree. This delay
can be canceled by outputting the representations in the “prepostorder” in which representations
are outputted in the preorder (and postorder) at the vertices of odd (and even, respectively) depth
of a family tree (see [13] for the further details). Thus we have the following lemma.

Lemma 20. After outputting the root in O(n) time, our algorithm enumerates every representation
in S p,q in O(1) time in worst case.

Now we turn to enumerate all canonical representations corresponding to bipartite permutation
graphs of n vertices. By applying Lemma 20 for each (p, q) = (d n

2e, b
n
2c), (d

n
2e+ 1, bn

2c − 1), . . . , (n−
1, 1) in this order, we can enumerate all representations; every non-root representation is generated
in O(1) time. However, Rp,q in S p,q is not constructed from the last outputted representation in
S p−1,q+1 in O(1) time.

This delay can be canceled as follows. Let L = (L1, L2) be a representation in S p,q. Then L
is jump representation if s1(L) = s1(Rp,q) and s2(L) = []] · · ·][[· · · [] (see Figure 6). When jump
representation in S p,q is generated, we construct a representation K in S p+1,q−1 by swapping the
three lines (p, n), (n−1, n−2), (n, n−1) to (p, n−1), (n−1, n), (n, n−2), respectively. We note that
the line (n − 1, n − 2) is switched to a line corresponding to a vertex in X, and K can be generated
from L in O(1) time. Then we enumerate all representations in S p+1,q−1 by traversing Tp+1,q−1 as
follows. After K is generated, the descendants of K in Tp+1,q−1 are enumerated by Algorithm 1,
and we construct P(K). Then we traverse the descendants of P(K) except the subtree rooted at K
and construct P(P(K)). We repeat this process until the root is generated. We note that P(K) can
be generated in O(1) time by maintaining the swappable point and its data structure can be updated
in O(1) time.

We note that (1) swapping two endpoints of a canonical representation corresponds to adding or
removing one edge in the corresponding graph and (2) a graph can be constructed from the graph
corresponding to a jump representation by a constant number of operations to add and remove
edges. Therefore we have the following theorem.

16

Theorem 21. (1) After outputting the root in S d n
2 e,b

n
2 c, one can enumerate every canonical represen-

tation of a bipartite permutation graph of n vertices in O(1) time. (2) The algorithm enumerates
every connected bipartite permutation graph of n vertices in O(1) time.

Reference

[1] K. P. Bogart and D. B. West. A Short Proof that ‘Proper=Unit’. Disc. Math., 201:21–23,
1999.

[2] A. Brandstädt, V.B. Le, and J.P. Spinrad. Graph Classes: A Survey. SIAM, 1999.

[3] C.J. Colbourn. On Testing Isomorphism of Permutation Graphs. Networks, 11:13–21, 1981.

[4] X. Deng, P. Hell, and J. Huang. Linear-time Representation Algorithms for Proper Circular-
arc Graphs and Proper Interval Graphs. SIAM J. on Comp., 25(2):390–403, 1996.

[5] E. Deutsch and L. W. Shapiro. A Bijection Between Ordered Trees and 2-Motzkin Paths and
Its Many Consequences. Disc. Math., 256(3):655–670, 2002.

[6] R. Geary, N. Rahman, R. Raman, and V. Raman. A Simple Optimal Representation for
Balanced Parentheses. Theoretical Computer Science, 368(3):231–246, 2006.

[7] M.C. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Annals of Disc. Math. 57.
Elsevier, 2nd edition, 2004.

[8] R.L. Graham, D.E. Knuth, and O. Patashnik. Concrete Mathematics. Addison-Wesley Pub-
lishing Company, 1989.

[9] Y. Koh and S. Ree. Connected Permutation Graphs. Disc. Math., 307(21):2628–2635, 2007.

[10] Y. Komaki, and M. Arisawa. Nano Piko Kyoushitsu (in Japanese). Kyouritsu shuppan, 1990.

[11] S.-i. Nakano. Efficient Generation of Plane Trees. IPL, 84(3):167–172, 2002.

[12] S.-i. Nakano, R. Uehara, and T. Uno. A New Approach to Graph Recognition and Applica-
tions to Distance-hereditary Graphs. J. of Computer Science and Technology, 24(3):517–533,
2009.

[13] D.E. Knuth. Generating All Trees, History of Combinatorial Generation, Vol. 4, Fascicle 4
of The Art of Computer Programming. Addison-Wesley Publishing Company, 2005.

[14] G.S. Lueker and K.S. Booth. A Linear Time Algorithm for Deciding Interval Graph Isomor-
phism. J. of the ACM, 26(2):183–195, 1979.

[15] J. I. Munro and V. Raman. Succinct Representation of Balanced Parentheses and Static Trees.
SIAM J. on Comp., 31:762–776, 2001.

17

[16] F. S. Roberts. Indifference Graphs. In F. Harary, editor, Proof Techniques in Graph Theory,
pages 139–146. Academic Press, 1969.

[17] T. Saitoh, Y. Otachi, K. Yamanaka, and R. Uehara. Random Generation and Enumeration of
Bipartite Permutation Graphs. In ISAAC 2009, pages 1104–1113. LNCS Vol. 5878, Springer-
Verlag, 2009.

[18] T. Saitoh, K. Yamanaka, M. Kiyomi, and R. Uehara. Random Generation and Enumeration
of Proper Interval Graphs. In WALCOM 2009, pages 177–189. LNCS Vol. 5431, Springer-
Verlag, 2009.

[19] J.P. Spinrad. Efficient Graph Representations. AMS, 2003.

[20] R.P. Stanley. Enumerative Combinatorics, Vol. 1. Cambridge, 1997.

[21] R.P. Stanley. Enumerative Combinatorics, Vol. 2. Cambridge, 1999.

[22] R. Uehara, S. Toda, and T. Nagoya. Graph Isomorphism Completeness for Chordal Bipartite
Graphs and Strongly Chordal Graphs. Disc. App. Math., 145(3):479–482, 2004.

18

