
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title A Formal Framework for Access Rights Analysis

Author(s) Li, Xin; Hua, Vy Le Thanh

Citation

Research report (School of Information Science,

Japan Advanced Institute of Science and

Technology), IS-RR-2012-001: 1-17

Issue Date 2012-09-11

Type Technical Report

Text version publisher

URL http://hdl.handle.net/10119/10721

Rights

Description
リサーチレポート（北陸先端科学技術大学院大学情報

科学研究科）

Submitted to:

A Formal Framework for Access Rights Analysis

Xin Li ∗

School of Information Science
Japan Advanced Institute of Science and Technology

Nomi, Japan

li-xin@jaist.ac.jp

Hua Vy Le Thanh
School of Information Science

Japan Advanced Institute of Science and Technology
Nomi, Japan

thanhvy.hua@jaist.ac.jp

A stack-based access control mechanism is to prevent untrusted codes from accessing protected re-
sources in distributed application systems, such as Java-centric web applications and Microsoft .NET
framework. Such an access control mechanism is enforced at runtime by stack inspection that in-
spects methods in the current call stack for granted permissions. Nowadays practiced approaches
to generating policy files for an application are still manually done by developers based on domain-
specific knowledges and testing, due to overwhelming technical challenges involved and engineering
efforts in the automation.

This paper presents a formal framework of access rights analysis for Java applications, which
includes both policy generation and checking. The analysisof policy generation automatically gen-
erates access control policies for the given program that necessarily ensure the program to pass stack
inspection. The analysis of policy checking takes as input apolicy file and determines whether ac-
cess control in the concerned domain always succeed or may fail. The answer can either help detect
redundant inspection points or refine the given policies. All of our analysis algorithms are novelly
designed in the framework of conditional weighted pushdownsystems, and are expected to achieve
a high level of precision in the literature.

1 Introduction

Access control is often the first step to protect safety-critical systems. In modern Web platforms, such
as Java-centric web applications or Microsoft .NET framework, applications comprise components from
different origins with diverse levels of trust. Astack-based access controlmechanism is employed in
an attempt to prevent untrusted codes from accessing protected resources. Access control policies are
expressed in terms ofpermissionsthat are granted to codes grouped by different domains, and developers
can set checkpoints in their programs, and access control isenforced dynamically at runtime bystack
inspection. When a stack inspection is triggered, the current call stack will be inspected in a top-down
manner to see whether methods in the stack is granted the required permission until a privileged method
is found. A caller can be marked as being “privileged”, and the stack inspection stops at a caller that is
marked as “privileged”. If all callers have the specified permission, access control is passed and stack
inspection returns quietly, and the program execution willbe interrupted immediately otherwise.

From a practical perspective, such runtime inspection may cause a high overhead cost. If access
control at some checkpoints always succeed at runtime, the runtime overhead can be reduced by remov-
ing such redundant checkpoints. Moreover, to our knowledgeof practiced approaches, nowadays policy
files are still generated manually by developers based on domain-specific knowledges, and measured by
a trial-and-error testing as to whether the policy file allows the application to run properly. Since testing
cannot cover all program behaviors, the application could malfunction due to the authorization failures
given the misconfigured policies. On the other hand, if the policy file is too conservative, i.e., some codes

∗Corresponding author.

2 A Formal Framework for Access Rights Analysis

are granted permissions than necessary, it violates the so-called PLP (Principle of Least Privilege), and
such codes become vulnerable points and can be manipulated by malicious attacks.

Example 1.1 (Semantics of Java Stack Inspection)Consider the code snippet in Fig. 1.1 that we bor-
row from [7] and modify to explicitly show the control flows tocheckpoints of stack inspection.

1 p u b l i c c l a s s Lib {
2 p r i v a t e s t a t i c f i n a l S t r i n g d i r = ”C: ” ;
3 p r i v a t e s t a t i c f i n a l S t r i n g l o g F i l e = ” / l og . t x t ” ;
4 p r i v a t e s t a t i c f i n a l S t r i n g domain = ”JAIST . AC. JP”;
5 p u b l i c s t a t i c void c r e a t e S o c k e t (f i n a l S t r i n g h o s t) throws Excep t i on {
6 checkConnect (hos t , 8080) ;
7 P r i v op = new P r i v (d i r , l o g F i l e) ;
8 A c c e s s C o n t r o l l e r . d o P r i v i l e g e d (op) ;
9 System . ou t . p r i n t l n (”Enough p e r m i s s i o n s gran ted . ”) ;

10 }
11 p u b l i c s t a t i c void checkConnect (S t r i n g host ,i n t p o r t) throws Excep t i on {
12 S o c k e t P e r m i s s i o n p =new S o c k e t P e r m i s s i o n (h o s t +” : ” + por t ,” connec t ”) ;
13 A c c e s s C o n t r o l l e r . checkP erm iss i o n (p) ;
14 }}
15 c l a s s P r i v implements P r i v i l e g e d E x c e p t i o n A c t i o n{
16 p r i v a t e f i n a l S t r i n g d i r ;
17 p r i v a t e f i n a l S t r i n g name ;
18 P r i v (f i n a l S t r i n g d i r , f i n a l S t r i n g name) {
19 t h i s . d i r = d i r ;
20 t h i s . name = name ;
21 }
22 p u b l i c Objec t run () throws Excep t i on {
23 S t r i n g fn = d i r + F i l e . s e p a r a t o r + name . s u b s t r i n g (1) ;
24 checkAccess (fn) ;
25 }
26 p u b l i c s t a t i c void checkAccess (S t r i n g fn)throws Excep t i on {
27 F i l e P e r m i s s i o n p =new F i l e P e r m i s s i o n (fn ,” w r i t e ”) ;
28 A c c e s s C o n t r o l l e r . checkP erm iss i o n (p) ;
29 }}
30 p u b l i c c l a s s F a c u l t y {
31 p u b l i c void connec tToF ac u l t y () throws Excep t i on {
32 S t r i n g h o s t = Lib . domain . toLowerCase () +” / f a c u l t y ” ;
33 Socket s = Lib . c r e a t e S o c k e t (h o s t) ;
34 }}
35 p u b l i c c l a s s S t u d e n t {
36 p u b l i c void connec tToS tuden t ()throws Excep t i on {
37 S t r i n g h o s t = Lib . domain . toLowerCase () +” / s t u d e n t ” ;
38 Socket s = Lib . c r e a t e S o c k e t (h o s t) ;
39 }}

Figure 1: An Example for Java Stack Inspection

In Fig. 1.1, there are two library classesLib and Priv, and two application classesFaculty and
Student. At the beginning of each program execution, the Java VM assigns all classes along with their
related methods to a set of permissions specified by a security policy. At runtime, the two clients require
to connect to their corresponding domains by creating a socket (Line 33 and 38, respectively). Such a

Xin Li, Hua Vy Le Thanh 3

request will trigger stack inspection at Line 13 by the APIcheckPermission(Permission) from the class
AccessController with taking a single parameter of typePermission or its subclasses.Student is required
to posses the permission perms = “ SocketPermission(jaist.ac.jp/student:8080, connect)” and Faculty
is required to hold permf = “ SocketPermission(jaist.ac.jp/faculty:8080, connect)”.

Moreover, the socket construction process should be loggedin C:/log.txt by the system for later
observation. A file access permission perma = “ FilePermission(C:/log.txt, write)” is required on the
system to perform this task, and another stack inspection istriggered at Line 28. But note thatStudent
andFaculty reside on the current call stack yet should not posses perma. To avoid authorization failures
while logging,Lib invokes the APIdoPrivileged (Line 8) from the classAccessController with passing
an instanceop of Priv, and by Java semantics,op.run() will be executed with full permissions granted
to its caller, and the stack inspection stops atcreateSocket without requiring perma from clients ofLib.

As shown in Example 1.1, analysis on security policies is centered around reasoning permissions.
A permission analysis demands points-to analysis for identifying objects ofPermission type, and string
analysis for resolving string parameters of relevant security APIs. Especially, since string operations
are prevalent, e.g., string variables may be created through concatenation (Line 23, 32, 37), substring
operation (Line 23), case conversion (Line 32, 37), etc., string analysis plays an important role. It is
known challenging to design a precise and scalable algorithm for either string or points-to analysis. On
the other hand, it is not clear how to utilize these analysis results seamlessly in access rights analysis,
and we are aware of no such investigations.

This paper presents a formal framework of access rights analysis for Java applications, which in-
cludes both policy generation and checking. The analysis ofpolicy generation automatically generates
access control policies for the given program that necessarily ensure the program to pass stack inspec-
tions. The analysis of policy checking takes as input a policy file and determines whether access control
in the concerned domain always succeed or may fail. The answer can either help detect redundant in-
spection points or refine the given policies. All of our analysis algorithms are designed in the framework
of conditional weighted pushdown systems [13] that are capable of reasoning properties over the stack.

Our analysis framework has many novel features. First of all, we define an abstraction over the
calling contexts that are uniformly adapted in context-sensitive string and points-to analysis, as a bridge
for different analysis modules in the same analysis framework. Moreover, instead of conducting analysis
on call graphs as usual, we model the analysis problem in terms of a type of context-sensitive call graph,
taking into account the dynamic features of Java languages.Another reason why call graph does not
suffice for the analysis is that Java objects (here we are concerned with objects of thePermissiontype) can
be created and referred to anywhere in the program, by either(i) accessing the heap, i.e., field access, or
by (ii) passing and returning parameters to method calls that are finished before stack inspection. In either
case, the data flow of permission objects is beyond the scope of the current call stack that is inspected
by access control. In view of the aforementioned reasons, instead of conducting analysis on context-
sensitive call graphs alone, we also unify the program modelover dependency graphs. The combined
model enables us to precisely infer permission requirements at each checkpoint of stack inspection. We
expect our analysis algorithms enjoy a high precision in theliterature.

The rest of our paper is organized as follows. Section 2 recalls conditional weighted pushdown
model checking. Section 3 defines abstractions on the program and the system of security policy, as well
as pre-assumed points-to analysis and string analysis. Section 4 formalizes our idea of policy generation
and policy checking regarding stack inspection problems, and Section 5 gives realization algorithms in
the framework of conditional weighed pushdown systems. Related work is discussed in Section 6, and
we conclude in Section 7.

4 A Formal Framework for Access Rights Analysis

2 Preliminary

Definition 2.1 A pushdown systemP is (P,Γ,∆, p0,ω0), where P is a finite set of control locations,Γ is
a finite stack alphabet,∆⊆P×Γ×P×Γ∗ is a finite set of transitions, p0 ∈P is the initial control location,
and ω0 ∈ Γ∗ is the initial stack contents. A transition(p,γ ,q,ω) ∈ ∆ is written as〈p,γ〉 →֒ 〈q,ω〉. A
configuration is a pair〈q,ω〉 with q∈P andω ∈ Γ∗. A set of configurations C isregular if {ω | 〈p,ω〉 ∈
C} is regular. A relation⇒ on configurations is defined, such that〈p,γω ′〉 ⇒ 〈q,ωω ′〉for eachω ′ ∈ Γ∗

if 〈p,γ〉 →֒ 〈q,ω〉, and the reflective and transitive closure of⇒ is denoted by⇒∗.

A pushdown system can be normalized (or simulated) by a pushdown system for which|ω | ≤ 2 for
each transition rule〈p,γ〉 →֒ 〈q,ω〉 [19]. In sequel, we always assume such normalized forms.

Definition 2.2 A bounded idempotent semiringS is (D,⊕, ⊗, 0̄ , 1̄), where0̄, 1̄∈ D, and

1. (D,⊕) is a commutative monoid with̄0 as its unit element, and⊕ is idempotent, i.e., a⊕a= a for
all a ∈ D;

2. (D,⊗) is a monoid with̄1 as the unit element;

3. ⊗ distributes over⊕, i.e., for all a,b,c∈ D, we have
a⊗ (b⊕c) = (a⊗b)⊕ (a⊗c) and(b⊕c)⊗a= (b⊗a)⊕ (c⊗a) ;

4. for all a∈ D,a⊗ 0̄= 0̄⊗a= 0̄;

5. A partial ordering⊑ is defined on D such that a⊑ b iff a⊕b= a for all a,b∈ D, , and there are
no infinite descending chains in D.

By Def. 2.2, we have that̄0 is the greatest element. From the standpoint of abstract interpretation,
PDSs model the (recursive) control flows of the program, weight elements encodes transfer functions,⊗
corresponds to function composition, and⊕ joins data flows. A weighted pushdown system (WPDS) [18]
is a generalized analysis framework for solving meet-over-all-path problems for which data domains
comply with the bounded idempotent semiring.

Definition 2.3 A weighted pushdown systemW is (P,S , f), whereP = (P,Γ,∆, p0,ω0) is a push-
down system,S = (D,⊕,⊗, 0̄, 1̄) is a bounded idempotent semiring, and f: ∆ → D is a weight assign-
ment function.

Let σ = [r0, ..., rk] with r i ∈ ∆ for 0 ≤ i ≤ k be a sequence of pushdown transition rules. A value
associated withσ is defined byval(σ) = f (r0)⊗ ...⊗ f (rk). Givenc,c′ ∈P×Γ∗, we denote bypath(c,c′)
the set of transition sequences that transform configurations fromc into c′.

Definition 2.4 Given a weighted pushdown systemW = (P,S , f) whereP = (P,Γ,∆, p0,ω0), and
regular sets of configurations S,T ⊆ P×Γ∗, themeet-over-all-pathproblem computes

MOVP(S,T) =⊕{val(σ) | σ ∈ path(s, t),s∈ S, t ∈ T}

We refer to weighted pushdown model checking byMOVP(S,T,W) sometime when there are more
than one weighted pushdown systems. WDPSs are extended toConditional WPDSsin [13], by further
associating each transition with regular languages that specify conditions over the stack under which a
transition can be applied.

Xin Li, Hua Vy Le Thanh 5

Definition 2.5 A conditional pushdown systemis Pc = (P,Γ,∆c,C , p0,ω0), where P is a finite set of
control locations,Γ is a finite stack alphabet,C is a finite set of regular languages overΓ, ∆c ⊆ P×Γ×
C ×P×Γ∗ is a finite set of transitions, p0 ∈ P is the initial control location, andω0 ∈ Γ∗ is the initial

stack contents. A transition(p,γ ,L,q,ω) ∈ ∆c is written as〈p,γ〉 L
→֒ 〈q,ω〉. A computation relation⇒c

on configurations is defined such that〈p,γω ′〉 ⇒c 〈q,ωω ′〉 for all ω ′ ∈ Γ∗ if there exists a transition

r : 〈p,γ〉
L
→֒ 〈q,ω〉 andω ′ ∈ L, written as〈p,γω ′〉 ⇒c 〈q,ωω ′〉. The reflective and transitive closure of

⇒c is denoted by⇒∗
c. We define cpre∗(C) = {c′ | c′ ⇒∗

c c,c∈C} and cpost∗(C) = {c′ | c⇒∗
c c′,c∈C}

for any C⊆ P×Γ∗.

Definition 2.6 A conditional weighted pushdown system(CWPDS)Wc is (Pc,S , f), wherePc =
(P,Γ,C ,∆c, p0,ω0) is a conditional pushdown system,S = (D,⊕,⊗,0,1) is a bounded idempoten-
t semiring, and f: ∆c → D is a weight assignment function.

We lift the model checking problem on WPDSs in Definition 2.4 to CWPDSs and refer it byMOVP.

3 Abstraction and Prerequisites

3.1 Abstraction of Java Programs

Definition 3.1 (Program Points) We denote byM the set of all methods in a program, and byL the
set of program line numbers each of which contains a statement. Let Tag= {c, r}. A program point
is characterized by its enclosing method m∈ M , line number l∈ L , and a tag∈ Tag, and the set of
program points is denoted by ProgPoint⊆ M ×L ×Tag. Moreover, we denote by

• CallSite⊆ M ×L ×{c}: the set of call sites, such that l contains a method invocation for any
(m, l ,c) ∈CallSite; and

• RetPoint⊆ M ×L ×{r}: the set of return points of method invocations, such that(m, l , r) ∈
RetPoint is the unique return point of a call site(m, l ,c) ∈CallSite; and

We use variablesχ to range overProgPoint and ζ to range overRetPoint. Let N denote the set
of natural numbers. For any finite setS= {s0, . . . ,sk}, we defineΠ S= {si0si1 . . .sik | {i0, . . . , ik} is a
permutation ofS}. For any wordω = si0si1 . . .si j ∈ S∗ with 0≤ j ≤ k and 0≤ i j ≤ k, we defineΣ(ω) =
{si0,si1, . . . ,si j }.

Definition 3.2 (Call Graph) A call graph G= (N,E,s,ncheck) is a directed graph, where N⊆ M is the
set of nodes, E⊆ M ×CallSite×M is the set of edges, s∈ N is the initial node with no incoming
edges, and ncheck∈ N is the final state with no outgoing edges which in particulardenotes the method
checkPermission from the classAccessController. We also denote by npriv ∈ N the methoddoPrivileged
from the classAccessController. We write n→ n′ if (n,χ ,n′) ∈ E, and let→∗ be the transitive and
reflective closure of→.

G is built by call graph construction algorithms which is known to be cyclically dependent of points-
to analysis. If call graph construction detects thatmcallsm′ at line l , we have(m,(m, l ,c),m′) ∈ E.

Definition 3.3 (Calling Contexts) We denote by Context⊆RetPoint∗ the set of program calling contexts
in terms of call site strings. Given a call graph G= (N,E,s,ncheck), the calling contexts of a method m
is defined byφ : M → 2Context, such that

φ(m) = {ζk . . .ζ1ζ0 ∈Context| ∃k∈ N : m0 = s, mk+1 = m,

(mi ,χi ,mi+1) ∈ E,χi = (mi, l i ,c),ζi = (mi , l i , r), for each0≤ i ≤ k}

6 A Formal Framework for Access Rights Analysis

The calling contexts of a method (equivalently, local variables within this method scope) is the (finite)
set of finite yet unbounded sequences of return points that may lead tom from the program entry.

Definition 3.4 (Abstract Calling Contexts) We denote by AbsCtxt⊆ 2RetPoint the set of abstract pro-
gram calling contexts in terms of sets of call sites along each call sequence, as an over approximation
of calling contexts Context. An abstraction functionα : Context→ AbsCtxt is defined byα(c) = Σ(c)
for each c∈ Context. A concretization functionγ : AbsCtxt→ 2Context is defined byγ(C) = Π C for
each C∈ AbsCtxt. The powerset extension ofα and γ are denoted byα̃ : 2Context → 2AbsCtxt and
γ̃ : 2AbsCtxt→ 2Context, respectively.

The abstract calling contexts of a method m is defined byφmethod: M → 2AbsCtxt, such that

φmethod(m) = {Σ(ctxt) | ctxt∈ φ(m),and c′ /∈ φmethod(m) if c′ ⊆ c and c∈ φmethod(m)}

It is not hard to conclude that(2Context, α̃ , γ̃ ,2AbsCtxt) is a Galois connection in abstract interpretation.

3.2 Pre-assumed Analysis

Our framework for access rights analysis assumes context-sensitive points-to analysis, context-sensitive
string analysis. The precision of our analysis depends on the precision of points-to and string analysis.

Definition 3.5 (Context-Sensitive Points-to Analysis)Given a reference variable v of the method m∈
M , a context-sensitive points-to analysis, denoted by pta(v), returns the finite set of abstract heap object-
s that v may refer to at runtime under certain calling contexts. Each object o∈ pta(v) is represented as a
triplet o= (type, loc,c), where type is the object type, loc is the object allocation site, and c∈ φmethod(m)
is the calling contexts under which the object is constructed, and

⋃

(type,loc,c)∈pta(v){c} = φmethod(m).

Definition 3.6 (Context-Sensitive String Analysis)Given a string variable v of the method m∈ M , a
context-sensitive string analysis, denoted by sa(v), returns the finite set of string constants that v may
contain at runtime under certain calling contexts. Each element in sa(v) is represented as a pair(sv,c),
where sv is the string value and c∈ φmethod(m) is the calling contexts under which sv is constructed, and
⋃

(sv,c)∈sa(v){c}= φmethod(m).

The two dominating approaches to obtaining context-sensitivity in program analysis are known as
context-cloning and context-stacking. The former resembles to inline expansion that copies the called
procedures at each call site if possible and as such has an inherent limit if there exist recursive proce-
dural calls. The latter refers to model the program as a pushdown system and the analysis problem as
model checking problems, e.g., in the framework of WPDSs. Since the stack of pushdown systems are
unbounded, it can naturally model recursive procedure calls.

It is relatively straightforward to adapt a stacking-basedanalysis to our needs, since WPDSs have
the advantage of handling data flow queries as regular languages of pushdown configurations. Consider
the stacking-based points-to analysis Japot [12]. For eachreference variablev of the methodm, we can
computepta(v) by

⋃

Tctxt

MOVP(S,Tctxt) whereSis the source configurations, andTctxt = {〈v,mω〉 |Σ(ω)⊆

ctxt} for eachctxt ∈ φmethod(m). For string-analysis, the analysis in [5] based on context-cloning (k-
CFA) can be reformulated in the framework of WPDSs, and then adapted to a context-sensitive analysis
similarly to points-to analysis.

To adapt cloning-based analysis to our needs demands a context-cloning method that is in line with
approaches ofk-CFA or approximating loops. Given a call graphG = (N,E) that is commonly the
starting point of program analysis. We construct another graphGclone= (Nclone,Eclone), whereNclone⊆

Xin Li, Hua Vy Le Thanh 7

2AbsCtxt×N is the set of nodes, andEclone ⊆ Nclone×CallSite×Nclone is the set of edges. For each
n∈ N, (ctxt,n) ∈ Nclone for eachctxt ∈ φmethod(n), and((ctxt,n),(ctxt′ ,n′)) ∈ Eclone if ctxt ⊆ ctxt′ and
(n,n′) ∈E for any(ctxt,n),(ctxt′ ,n′)∈ Nclone. We can then obtain context-sensitive analysis by applying
context-insensitive analysis toGclone, e.g., the well-known points-to analysis framework Spark [11] can
be lifted to a context-sensitive analysis easily by cloningits points-to graph (i.e., product with the call
graph) in this manner, and the most influential string analysis JSA (Java String Analyzer) [6] can be lifted
to a context-sensitive counterpart as well by cloning its front-end flow graph, with no need to modify the
back-end analysis algorithms.

3.3 Abstraction of Policy System

Definition 3.7 (Policy System)Let Domain denote a finite set of protection domains, and Perms denote
the universe of all permissions involved in the given program. We denote by

• dom : M −→ Domain the mapping from methods to their protection domains.

• perm : Domain−→ 2Permsthe mapping that grants a set of permissions to each protection domain.

Letperm be extended element-wise and let policy= perm◦dom.

Recall that, all classes in a protection domain are granted the same set of permissions. Consequently,
all methods and all program points in it will possess the samepermissions granted. Especially, all
methods belonging to the system domain, e.g., methoddoPrivileged from the classAccessController, are
granted all permissions inPerms.

Definition 3.8 (Check Points) We define CheckPoint as the set of call sites that directly call the method
checkPermission, by CheckPoint= {χ | ∃n∈ N,χ ∈CallSite: (n,χ ,ncheck) ∈ E}.

Let φperm : Perms→ 2Context be a mapping from each permission to the calling contexts under which
the permission is constructed. We generatePermsandφpermas follows. Initially,Perms= /0, andφperm=
λx. /0. For each call siteχ = (m, l ,c) ∈ CheckPointwhere l is supposed to contain the expression of
“checkPermission(pv)”, we first call points-to analysispta(pv). For each(Type, loc,c) ∈ pta(pv),
the heap allocation site referred to byloc is supposed to contain expressions in one of the following form
according to the Java API specification,

npv = new Type(target,action) (1)
npv = new Type(target) (2)
npv = new Type() (3)

Assumeloc belongs to the methodm′. We add each of the following permissionpermto Perms,

perm=

(Type,sv1,sv2) where(sv1,c1) ∈ sa(target),(sv2,c2) ∈ sa(action),c1 = c2,
andφperm(perm) = φperm(perm)∪{c1} for (1)

(Type,sv) where(sv,c′) ∈ sa(target)
andφperm(perm) = φperm(perm)∪{c′} for (2)

Type whereφperm(perm) = φperm(perm)∪φmethod(m′) for (3)

8 A Formal Framework for Access Rights Analysis

4 Formalization

Definition 4.1 (Context-Sensitive Call Graph) A context-sensitive call graph Gcs= (G,φedge) consists
of a call graph G= (N,E,s,ncheck) and a mappingφedge: E → 2AbsCtxt, such that for each node n∈ N,

• φedge(e)⊆ φmethod(n) for each edge e= (n,χ ,n′) ∈ E; and

•
⋃

e=(n,χ ,n′)∈E φedge(e) = φmethod(n).

We define a mappingφroute : (→∗)→ 2AbsCtxtby, for each n→i n′,

φroute(n→i n′) =

{

φedge(n→ n′) if i = 1
{ctxt∪ctxt′ | ctxt∈ φroute(n→i−1 n′′),ctxt′ ∈ φedge(n′′ → n′)} if i > 1

Definition 4.2 (Valid Paths) Given a context-sensitive call graph Gcs= (G,φedge) where G= (N,E,s,
ncheck), we define

• the set of paths from s to a node n∈ N by

path(n) = {e0e1 . . .ek | ∃k∈N : n0 = s, nk+1 = n, ei = (ni ,χi ,ni+1) ∈ E for each0≤ i ≤ k}

• the set of subsequences of path(n) that are truncated by the node npriv as

t path(n) = {e0e1e2 . . .ek | ∃k∈ N : n0 = s, nk+1 = n, n0 →
∗ npriv,

e0 = (npriv,χ0,n1),ei = (ni ,χi ,ni+1) for each1≤ i ≤ k}

• the set of valid paths from s to a node n∈ N by

vpath(n) = {σ ∈ path(n) | ∃ctxt∈ φroute(σ) : ctxt⊆ sites(σ)}

where given a node n∈ N, we define sites(σ) = {ζ = (n, l , r) | e= (n,χ ,n′) ∈ Σ(σ) andχ =
(n, l ,c)} for a pathσ = e0e1...ek ∈ path(n) with k∈ N.

A context-sensitive call graph is constructed during call graph construction, given a context-sensitive
points-to analysis. One such algorithm is given in [13], where for each call edgee∈ E, ctxt ∈ φedge(e)
specifies a calling context under whiche is valid. In Java, due to polymorphism and late biding, that
target method of a dynamic dispatched call (e.g.,r. f un(· · ·)) depends on the runtime type of receiver
objects (i.e.,r). Therefore, a call edge is conditioned by receivers’ points-to information (which is
further conditioned by calling-contexts), so does a path inthe call graph. We refer to [13] for details, but
illustrate in Example 1.1 the semantics for “privileged” codes specific to access control.

Example 4.3 Consider the code snippet in Fig. 2 that consist in methods m1, m2, OnePrivAction.run(),
AnotherPrivAction.run(), and npriv,ncheck. Methods are grouped by dotted circles. OnePrivAction and
AnotherPrivAction are classes that implement the interface PrivilegedAction. There are call edges
{e1, · · · ,e6}, e.g., e1 = (m1,(m1, l2,c) and e5 = (OnePrivAction.run,(OnePrivAction.run, l5,c),ncheck).
We do not explicitly show the call site inside npriv. Since doPrivilege and checkPermission are static,
φedge(ei) = /0 for i ∈{1,2,5,6}. Assume(OnePrivAction, l1,ctxt)∈ pta(x) and(AnotherPrivAction, l3,ctxt′)∈
pta(y). We have ctxt∈ φedge(e3) and ctxt′ ∈ φedge(e4).

Xin Li, Hua Vy Le Thanh 9

m1 OnePrivAction.run()

l1 : x= new OnePrivAction(· · ·) //do privileged things

l2 : AccessController.doPrivilege(x) l5 : AccessController.checkPermission(· · ·)

npriv ncheck

l3 : y= new AnotherPrivAction(· · ·) //do privileged things

l4 : AccessController.doPrivilege(y) l6 : AccessController.checkPermission(· · ·)

m2 AnotherPrivAction.run()

e1

e2

e3

e4

e5

e6

Figure 2: An Example for Context-Sensitive Call Graph

Definition 4.4 (Dependency Graph)Given a program in SSA (Static Single Assignment) form. Let
Tperm denote the class (or type)Permission or any of its subclassses. LetLalloc ⊆ L be the set of
program lines that allocate objects of Tperm, and let AllocPerm⊆ M ×Lalloc.

A dependency graph Gdep of the program is a directed graph(Ndep,Edep,Sdep,Fdep), where Ndep⊆
M ×L is the set of nodes, Edep⊆ Ndep×Ndep is the set of edges, Sdep= AllocPerm is the set of initial
nodes with no incoming edges, and Fdep⊆CheckPoint is the set of final nodes without outgoing edges.

Moreover, Edep is the smallest set that contains(n,n′) where n= (m, l) and n′ = (m′, l ′) if the variable
(more specifically, local variables like x, static fields like A. f , and instance fields like o. f where o denotes
the abstract heap object resolved by points-to analysis) ofreference type Tperm defined in l is used in l′.

Definition 4.5 (Dependency Paths)Give a dependency graph Gdep= (Ndep,Edep,Sdep,Fdep), we define
the set of dependency paths from Sdep to a node n∈ Ndep by

dpath(n) = {e0e1 . . .ek | ∃k∈ N : n0 ∈ Sdep, nk+1 = n, ei = (ni ,ni+1) ∈ Edep for each0≤ i ≤ k}

Definition 4.6 (Relate Dependency Paths to Permissions)Given a context-sensitive call graph Gcs=
(G,φedge) where G= (N,E,s,ncheck), and a dependency graph Gdep= (Ndep,Edep,Sdep,Fdep).

Given a node n∈ Ndep, and a dependency pathπ = e0e1 · · ·ek ∈ dpath(n) for k ∈ N, where ei =
(ni ,ni+1) for each0≤ i ≤ k, and nj = (mj , l j) for each0≤ j ≤ k+1. We define

ωr = ζi0 · · ·ζi j

where0 ≤ i0 ≤ i1 · · · ≤ i j ≤ k+ 1, 0 ≤ j ≤ k+1, and for each im ∈ {i0, · · · , i j}, ζim = (mim, l im, r),
(nim−1,(mim, l im)) ∈ Edep, and lim−1 is a method return statement. Specifically,ωr = ε if such im does
not exist .

n0 = (m0, l0) is the initial node ofπ. Letσ = e′0e′1 · · ·e
′
h ∈ vpath(m0) be a path from s to m0 in G for

h∈ N, where e′i = (n′i ,χ ,n′i+1) for each0≤ i ≤ h. We define

ωl = χ0 · · ·χh

Let [(m,l) denote(m, l ,c) ∈ CallSite and let](m,l) denote(m, l , r) ∈ RetPoint. The set of all such
parentheses induced by CallSite∪RetPoint is denoted byΣc f l. We sayπ matches withσ if ωl ωr , called
a valid flow, is a context-free language overΣc f l. The set of all suchσ for π is denoted by match(π).

Given a permission perm∈ Perms, we sayπ relates toperm, if there exists(i) σ ∈ match(π), i.e.,π
matches withσ , and(ii) ctxt∈ φperm(perm) such that ctxt= sites(σ).

10 A Formal Framework for Access Rights Analysis

Definition 4.7 (Relate Valid Paths to Dependency Paths)Given a context-sensitive call graph Gcs =
(G,φedge) where G= (N,E,s,ncheck), and a dependency graph Gdep= (Ndep,Edep,Sdep,Fdep).

Given a node n∈ Ndep, and a dependency pathπ = e0e1 · · ·ek ∈ dpath(n) for k ∈ N, where ei =
(ni ,ni+1) for each0≤ i ≤ k, and nj = (mj , l j) for each0≤ j ≤ k+1. We define nodes(π) = {mi | 0≤
i ≤ k+1}.

Given a node n′ ∈ N, and a pathσ = e0e1 · · ·eh ∈ vpath(n′) for some h∈N where ei = (m′
i ,χ ′

i ,m
′
i+1)

for each0≤ i ≤ h, we define nodes(σ) = {m′
i | 0≤ i ≤ h+1}

We sayσ relates toπ if there exists a pathσ ′ ∈ match(π) such that nodes(σ) ⊆ nodes(π) ∪
nodes(σ ′)∪{ncheck}.

Definition 4.8 (Policy Generation) We define policy: M →2Permsby, for each valid pathσ ∈ vpath(ncheck),
and each dependency pathπ ∈ dpath(n) for each n∈ Fdep

perm∈ policy(m) for each m∈ nodes(σ) if npriv /∈ nodes(σ),σ relates toπ, andπ relates to perm
perm∈ policy(m) for each m∈ nodes(σ ′) if npriv ∈ nodes(σ),σ relates toπ, andπ relates to perm

andσ ′ is a suffix ofσ for someσ ′ ∈ t path(ncheck)

Note that bothπ andσ in Def. 4.8 can be infinitely many.

Definition 4.9 (Policy Checking) Given a policy: M → 2Permsand a policy′ : M → 2Permsgenerated
by Def.4.8. All stack inspections triggered in the program always succeed if policy′(m)⊆ policy(m) for
each m∈ M , and may fail otherwise.

Example 4.10 Consider the code fragments in Fig. 3, where in the dependency graph each node corre-
sponds to a permission manipulation statement and connected by the dashed arrows. The underlying call
graph is shown for which each node is grouped by the dotted circles and connected by the solid arrows.
The following permissions are involved in this example.

perm1 : SocketPermission(“domain: 80′′, “connect′′) at “npv= expr′′2
perm2 : FilePermission(“ public′′ , “ read′′) at “npv= expr′′1
perm3 : FilePermission(“ personal′′ , “ read′′) at “npv= expr′′1

where perm1 is created and referred to by methods in the current call stack when the inspection is
triggered, whereas perm2, perm3 are created/passed by finished method calls that do not reside on the
current call stack of stack inspection, and stored/referred by field access such that their data flows are
beyond the control flow to the the checkpoints. By Def. 4.6 and4.7, we have the dependency path
π : (4)(5)(6)(7)(9)(10)(11) relates to the valid pathσ : (0)(1)(3) and thus to perm2, and the valid path
σ ′ : (0)(11)(12) relates toπ and thus to perm2. Other permission requirements can be similarly inferred.

5 Realization Algorithms

5.1 Policy Generation

Definition 5.1 (Modelling Context-Sensitive Call Graph) Given a context-sensitive call graph Gcs=
(G,φedge) where G=(N,E,s,ncheck), we define a conditional pushdown systemPc=({·},Γ,C ,∆c,{·},s),
where the set of control locations is a singleton{·}, the stack alphabetΓ ⊆ M ∪RetPoint is encoded

Xin Li, Hua Vy Le Thanh 11

from nodes of G and return points. We writeα
C
→֒ ω for each(·,α ,C, ·,ω) ∈ ∆c. ∆c is constructed as

follows, for each edge e= (n,χ ,n′) ∈ E whereχ = (n, l ,c), let ζ = (n, l , r), we have

n
Ce
→֒ n′ζ

where Ce =
∨

ctxt={γ0,γ1,··· ,γ|ctxt|}∈φedge(e)

∨

{i0,i1,··· ,i|ctxt|}∈Ξ(ctxt)

Γ∗γi0Γ∗γi1Γ∗ · · ·γi|ctxt|
Γ∗

whereΞ(S) denote the set of all permutations of{0,1, · · · , |S|} for a finite set S, and
∨

denote the set
union of regular expressions.

Definition 5.2 (Modeling Dependency Graph)Give a dependency graph Gdep=(Ndep,Edep,Sdep,Fdep),
we define a conditional pushdown systemP ′

c = ({·},Γ,C ′,∆′
c), where∆′

c is constructed as follows, for
each edge e= (n,n′) ∈ Edep where n= (m, l) and n′ = (m′, l ′), we have

m
Ce
→֒ ε and(m′, l ′, r)

Ce
→֒ m′

if l is a method return statement, where Ce = Γ∗, i.e., no conditions.

Definition 5.3 (Program Modeling) We define a conditional pushdown systemPprog = ({·},Γ,Cprog,
∆prog,{·},s) whereΓ ⊆ M ×RetPoint,Cprog = C ∪C ′, and∆prog = ∆c∪∆′

c, by combining the condi-
tional pushdown systemPc andP ′

c generated for Gcs and Gdep, respectively.

Definition 5.4 (Weight Domain) We define a bounded idempontent semiringSgen=(Dgen,⊕gen,⊗gen, 0̄, 1̄),

where Dgen⊆ 22M×2M×2M×2M

∪{0̄}, and1̄= {(/0, /0, /0, /0)}. For any d,d′ ∈ Dm, d⊕gend′ = d∪d′, and

d⊗gend′ = {(M1∪M′
1\M′

2,M2,M3∪M′
3,M4∪M′

4) | (M1,M2,M3,M4) ∈ d,(M′
1,M

′
2,M

′
3,M

′
4) ∈ d′}

It is not hard to prove that both⊗m and⊕m are associative, and⊕m is commutative and distributive
over⊗m, which holds for a bounded idempontent semiring.

Definition 5.5 (Modeling Policy Generation) We define a conditional weighted pushdown systemWgen=
(Pprog,Sgen, fgen). For each transition ruleδ ∈ ∆gen, fgen(δ) is defined as follows,

• if δ is a push rule m
Ce
→֒ m′(m, l ,c),

{

fgen(δ) = {({m},Γ, /0,{m})}, if m= npriv;
fgen(δ) = {({m}, /0, /0,{m})}, otherwise

• if δ is a pop rule m
Ce
→֒ ε and((m, l),(m′, l ′)) ∈ Edep, fgen(δ) = {(/0, /0,{m′}, /0)}.

• otherwise fgen(δ) = 1̄

Definition 5.6 (Algorithm for Policy Generation) Given a conditional weighted pushdown systemWgen=
(Pprog,Sgen, fgen) constructed by Def. 5.5. For any d= (M1,M2,M3,M4) ∈ MOVP({〈·,s〉},T,Wprog)
where T= {〈·,ncheckω〉 | ω ∈ Γ∗}, and perm∈ Perms, we say perm is required by d if there exists ctxt∈
φperm(perm) such that ctxt⊆M4. For each m∈M1\M3, we have perm∈ policy(m) if perm is required by d.

For eachd in Def. 5.6,M4 is the calling history before stack inspection is triggered, M1 is the calling
history truncated bynpriv, M2 is supposed to be /0 by our modeling, andM3 is methods that do not reside
on the current call stack.

12 A Formal Framework for Access Rights Analysis

5.2 Policy Checking

Another popular need in access rights analysis is checking whether the program function properly, e.g.,
codes from trusted domains always pass access control, given a policy file that is commonly generated
by the application developers. By Def. 4.9, one approach to policy checking is first generating a policy
required by passing stack inspections by Def. 4.8, and then check whether the given policy includes
the required policy. Instead of generating the required policy in advance, an alternative is on-demand
checking whether all methods in the current call stack are granted required permissions at checkpoints.
The two approaches to policy checking is quite in line with the two ways of implementing the stack
inspection mechanism by virtual machines in an eithereageror lazymanner.

We present the on-demand checking algorithm in this section. Given a trusted domain, our approach
consists of three steps of

• determining analysis pointswithin codes of the given domain that trigger stack inspection; and

• identifying permission requirementsinvolved in policy checking on each analysis point; and

• checking policywhich determines whether stack inspections triggered by a concerned domain
always succeed or may fail.

5.2.1 Determining Analysis Points

Definition 5.7 (Boundary) Given a call graph G= (N,E,s,ncheck). Let l : N → Domain be a mapping
from methods to their belonging protection domains. Aboundaryof a domain dm∈ Domain, denoted
byB(dm), is defined by

B(dm) = {n∈ N | (n,χ ,n′) ∈ E, l(n) = dm, l(n) 6= l(n)}

The boundary of a domaindm refers to the set of methods with outgoing edges to methods from
different domains, e.g., Java libraries typically.

Definition 5.8 (Analysis Points) Assume the conditional pushdown system encoded by Def. 5.1.We
defineanalysis pointsof a given domain dm∈ Domain by

AnalysisPoints(dm) = {ζ = (n, l , r) ∈ RetPoint| n∈ B(dm), l ∈ L ,

∃n′ ∈ Γ,ω ,ω ′ ∈ Γ∗ : 〈·,n′ζω ′〉 ∈ cpost∗({〈·,s〉})∩cpre∗({〈·,ncheckω〉})}

5.2.2 Identifying Permission Requirements

Definition 5.9 (Modeling Permission Requirements)We define a conditional weighted pushdown sys-
tem Wctx = (Pprog,Sctx, fctx) wherePprog is the conditional pushdown system defined before, and

• the idempotent semiringSctx = (Dctx,⊕ctx,⊗ctx,0,1) , where D= 22M

∪{0}, 1 = /0, ⊕ctx is set
union, and⊗ctx is element-wise set union;

• for eachδ : α
C
→֒ ω ∈ ∆gen, fctx(δ) = {{n′}} if ω = nζ , ζ = (n′, l , r), and fctx(r) = 1̄ otherwise.

Definition 5.10 (Identifying Permission Requirements)Given a domain dm∈ Domain and an analy-
sis pointζ =(n, l , r)∈AnalysisPoints(dm), we computeφmethod(n) = MOVP(S,T,Wctx) where S= {〈·,s〉},
T = {〈·,nω | ω ∈ Γ∗}. We define permission requirements on n by

PermReqs(ζ) = {perm∈ Perms| ∃ctxt∈ φmethod(n),ctxt′ ∈ φperm(perm) : ctxt′ ⊆ ctxt}

Xin Li, Hua Vy Le Thanh 13

5.2.3 Permission Checking

We adopt the semiringScheck= (Dcheck,⊕check,⊗check,0,1) in [14] given a a PER (Partial Equivalence
Relation)-based abstraction with 2-point domain{ANY, ID}, whereDcheck= {λx.ANY,λx.ID,0,1} with
the orderingλx.ANY⊑ 1⊑ λx.ID ⊑ 0.

Definition 5.11 (Modeling Policy Checking) Given a context-sensitive call graph Gcs=(G,φedge) where
G= (N,E,s,ncheck), we define a conditional weighted pushdown systemWcheck= (Pcheck,Scheck, fcheck),
wherePcheck= ({·},Γcheck,Ccheck,∆check,{·},s) with ∆check= ∆c∪∆cp andΓcheck= Γ∪{ecp,xcp}. ∆c is
defined in Def. 5.1, and∆cp is constructed as follows, for each perm∈ Perms, we have

δ : ecp
L&C
→֒ xcp ∈ ∆cp fcheck(δ) = λx.ID

δ : ecp
(!L)&C
→֒ xcp ∈ ∆cp fcheck(δ) = λx.ANY

where L= (α∗)+ (α∗)βα(Γ∗
check) and !L is thecomplement ofL, with

• α = {(n, l , r) ∈ Γcheck| perm∈ policy(n),n ∈ N},

• β = α ∩{(n, l , r) ∈ Γcheck| m= npriv}.

• C= Γ∗
check(ζ0+ζ1+ · · ·+ζk)Γ∗

check, where{ζ0,ζ1, . . . ,ζk}= {ζ | perm∈ PermReqs(ζ)} for k∈N

.

Definition 5.12 (Algorithm for Policy Checking) Given a domain dm∈Domain, and let{ζ0,ζ1, · · · ,ζk}=
AnalysisPoints(dm). We compute result= MOVP(S,T,Wcheck), where S= {〈·,s〉} and T= {〈·,xcpω〉 |
ω = Γ∗

check(ζ0 + ζ1 + · · ·+ ζk)Γ∗
check}. We say access control for dm may fail if result= λx.ANY and

always succeed if result= λx.ID.

6 Related Work

From the theoretical aspect, Banerjee et al. in [1] gived a denotational semantics and hereby proved the
equivalence of eager and lazy evaluation for stack inspection. They further proposed a static analysis of
safety property, and also identified program transformations that help remove redundant runtime access
control checks. The problem to decide whether a program satisfies a given policy properties via stack
inspection, was proved intractable in general by Nitta et al. in [15]. They showed that there exists a
solvable subclass of programs which precisely model programs containingcheckPermission of Java 2
platform. Moreover, the study concluded the computationalcomplexity of the problem for the subclass
is linear time in the size of the given program.

Chang et al. [4] provided a backward static analysis to approximate redundant permission checks
with must-fail stack inspection and success permission checks with must-pass stack inspection. This
approach was later employed in a visualization tool of permission checks in Java [9]. But the tool didn’t
provide any means to relieve users from the burden of deciding access rights. In addition to a policy
file, users were also required to explicitly specify which methods and permissions to check. Two control
flow forward analysis, Denied Permission Analysis and Granted Permission Analysis, were defined by
Bartoletti et al. [2] [3] to approximate the set of permissions denied or granted to a given Java bytecode at
runtime. Outcome of the analysis were then used to eliminateredundant permission checks and relocate
others to more proper places in the code.

Koved et al. in [10] proposed a context-sensitive, flow-sensitive, and context-sensitive (1-CFA) data
flow analysis to automatically estimate the set of access rights required at each program point. In spite

14 A Formal Framework for Access Rights Analysis

of notable experimental results, the study suffered from a practical matter, as it does not properly handle
strings in the analysis. Being a module of privilege assertion in a popular tool – IBM Security Workbench
Development for Java (SWORD4J) [8], the interprocedural analysis for privileged code placement [17]
tackled three neat problems: identifying portions of codesthat necessary to make privileged, detecting
tainted variables in privileged codes, and exposing useless privileged blocks of codes, by utilizing the
technique in [10].

In all aforementioned works, they all assume the permissions required at everycheckPermission(perm)
point. In other words, they either ignored or employed limited computation ofString parameters. Corre-
spondingly, the access rights analysis become too conservative, e.g., many false alarms may be produced
in policy checking.

To the best of our knowledge, the modular permission analysis proposed in [7] is the most relevant
to our work . On one hand, it was also concerned with automatically generating security polices for
any given program, with particular attention on the principle of least privilege. On the other hand,
they were the first to attempt to reflect the effects of string analysis in access rights analysis in terms
of slicing. The authors also developed a tool Automated Authorization Analysis (A3) to assess the
precision of permission requirements for stack inspection. However, their algorithms are based on a
context-insensitive call graph and the analysis results can be polluted by invalid call paths. Moreover,
their slicing algorithms are also context-insensitive.

Although stack inspection is widely adopted as a simple and practical model in stack-based access
control, it has a number of inherent flaws, e.g., an unauthorized code which is no longer in the call stack
may be allowed to affect the execution of security-sensitive code. A worth highlighting alternate model
is IBAC (Information-based Access Control) proposed by Pistoia et al. in [16] for programs with access
control based on execution history.

7 Conclusions

We have presented in this paper a formal framework of access rights analysis for Java programs, includ-
ing analysis of automatically generating security policies for any given program and analysis of policy
checking on whether stack inspection from the concerned domain always succeed or may fail, given a
policy file. Our analysis integrates with both points-to analysis and string-analysis in a unified abstract
framework. All analysis algorithms are novelly designed inthe framework of conditional weighted push-
down systems, which is modeled after combining a context-sensitive call graph and dependency graph of
the target program and precisely identifies permission requirements at checkpoints of stack inspection.
We expect a high precision of our analysis, which means low false alarms in policy checking and high
compliance with the principle of least privilege.

8 Bibliography

References

[1] Anindya Banerjee & David A Naumann (2001):A simple semantics and static analysis for Java securi-
ty. Technical Report, Stevens Institute of Technology. Available athttp://citeseerx.ist.psu.edu/
viewdoc/download?doi=10.1.1.14.6307&rep=rep1&type=pdf.

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.14.6307&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.14.6307&rep=rep1&type=pdf

Xin Li, Hua Vy Le Thanh 15

[2] Massimo Bartoletti & Pierpaolo Degano (2001):Static analysis for stack inspection. Electronic Notes in The-
oretical Computer Science54, pp. 706–80, doi:10.1016/S1571-0661(04)00236-1. Available athttp://
www.sciencedirect.com/science/article/pii/S1571066104002361.

[3] Massimo Bartoletti & Pierpaolo Degano (2004):Stack inspection and secure program transforma-
tions. International Journal of Information. Available at http://www.springerlink.com/index/
P1LL0C8M558B3C7A.pdf.

[4] BM Chang (2006):Static check analysis for Java stack inspection. ACM SIGPLAN Notices41(3), p. 40,
doi:10.1145/1140543.1140550. Available at http://dl.acm.org/citation.cfm?id=1140543.
1140550.

[5] Tae-Hyoung Choi, Oukseh Lee, Hyunha Kim & Kyung-Goo Doh (2006):A practical string analyzer by the
widening approach. In: Proceedings of the 4th Asian conference on Programming Languages and Systems,
APLAS’06, Springer-Verlag, Berlin, Heidelberg, pp. 374–388, doi:10.1007/11924661_23. Available at
http://dx.doi.org/10.1007/11924661_23.

[6] Aske Simon Christensen, Anders Møller & Michael I. Schwartzbach (2003):Precise analysis of string ex-
pressions. In: Proceedings of the 10th international conference on Staticanalysis, SAS’03, Springer-Verlag,
Berlin, Heidelberg, pp. 1–18. Available athttp://dl.acm.org/citation.cfm?id=1760267.1760269.

[7] Emmanuel Geay, Marco Pistoia, Barbara G. Ryder & Julian Dolby (2009):Modular string-sensitive permis-
sion analysis with demand-driven precision. 2009 IEEE 31st International Conference on Software Engi-
neering, pp. 177–187, doi:10.1109/ICSE.2009.5070519. Available athttp://ieeexplore.ieee.org/
lpdocs/epic03/wrapper.htm?arnumber=5070519.

[8] Ted Habeck, Larry Koved, Marco Pistoia & Yorktown Heights (2008):SWORD4J : Security WORkbench
Development environment 4 Java. Technical Report, IBM.

[9] Yoonkyung Kim (2007): Visualization of permission checks in java using static analysis. Infor-
mation Security Applications, pp. 133–146. Available athttp://www.springerlink.com/index/
3r6167p185551545.pdf.

[10] Larry Koved, Marco Pistoia & Aaron Kershenbaum (2002):Access rights analysis for Java. In: Proceedings
of the 17th ACM SIGPLAN conference on Object-oriented programming, systems, languages, and applica-
tions, 37, ACM, pp. 359—-372, doi:10.1145/583854.582452. Available athttp://portal.acm.org/
citation.cfm?doid=583854.582452http://dl.acm.org/citation.cfm?id=582452.

[11] Ondřej Lhoták & Laurie Hendren (2003):Scaling Java points-to analysis using SPARK. In: Proceedings of
the 12th international conference on Compiler construction, CC’03, Springer-Verlag, Berlin, Heidelberg, pp.
153–169. Available athttp://dl.acm.org/citation.cfm?id=1765931.1765948.

[12] Xin Li & Mizuhito Ogawa (2009): Stacking-based context-sensitive points-to analysis forJava. Hard-
ware and Software: Verification and Testing, pp. 133–149. Available athttp://www.springerlink.com/
index/W6242785246N3500.pdf.

[13] Xin Li & Mizuhito Ogawa (2010): Conditional weighted pushdown systems and applications. Proceed-
ings of the ACM SIGPLAN 2010 workshop on Partial evaluation and program manipulation - PEPM
’10, p. 141, doi:10.1145/1706356.1706382. Available athttp://portal.acm.org/citation.cfm?
doid=1706356.1706382.

[14] Xin Li, Daryl Shannon, Indradeep Ghosh, Mizuhito Ogawa, Sreeranga P. Rajan & Sarfraz Khurshid
(2008): Context-Sensitive Relevancy Analysis for Efficient Symbolic Execution. In: Proceedings of the 6th
Asian Symposium on Programming Languages and Systems, APLAS ’08, Springer-Verlag, Berlin, Hei-
delberg, pp. 36–52, doi:10.1007/978-3-540-89330-1_4. Available athttp://dx.doi.org/10.1007/
978-3-540-89330-1_4.

[15] Naoya Nitta & Yoshiaki Takata (2001):An efficient security verification method for programs with stack
inspection. Computer and Communications Security, pp. 68–77. Available athttp://dl.acm.org/
citation.cfm?id=501994.

http://dx.doi.org/10.1016/S1571-0661(04)00236-1
http://www.sciencedirect.com/science/article/pii/S1571066104002361
http://www.sciencedirect.com/science/article/pii/S1571066104002361
http://www.springerlink.com/index/P1LL0C8M558B3C7A.pdf
http://www.springerlink.com/index/P1LL0C8M558B3C7A.pdf
http://dx.doi.org/10.1145/1140543.1140550
http://dl.acm.org/citation.cfm?id=1140543.1140550
http://dl.acm.org/citation.cfm?id=1140543.1140550
http://dx.doi.org/10.1007/11924661_23
http://dx.doi.org/10.1007/11924661_23
http://dl.acm.org/citation.cfm?id=1760267.1760269
http://dx.doi.org/10.1109/ICSE.2009.5070519
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5070519
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5070519
http://www.springerlink.com/index/3r6167p185551545.pdf
http://www.springerlink.com/index/3r6167p185551545.pdf
http://dx.doi.org/10.1145/583854.582452
http://portal.acm.org/citation.cfm?doid=583854.582452 http://dl.acm.org/citation.cfm?id=582452
http://portal.acm.org/citation.cfm?doid=583854.582452 http://dl.acm.org/citation.cfm?id=582452
http://dl.acm.org/citation.cfm?id=1765931.1765948
http://www.springerlink.com/index/W6242785246N3500.pdf
http://www.springerlink.com/index/W6242785246N3500.pdf
http://dx.doi.org/10.1145/1706356.1706382
http://portal.acm.org/citation.cfm?doid=1706356.1706382
http://portal.acm.org/citation.cfm?doid=1706356.1706382
http://dx.doi.org/10.1007/978-3-540-89330-1_4
http://dx.doi.org/10.1007/978-3-540-89330-1_4
http://dx.doi.org/10.1007/978-3-540-89330-1_4
http://dl.acm.org/citation.cfm?id=501994
http://dl.acm.org/citation.cfm?id=501994

16 A Formal Framework for Access Rights Analysis

[16] Marco Pistoia, Anindya Banerjee & David Naumann (2007): Beyond stack inspection: A unified access-
control and information-flow security model. Security and Privacy, 2007. Available athttp://ieeexplore.
ieee.org/xpls/abs_all.jsp?arnumber=4223221.

[17] Marco Pistoia, R Flynn & Larry Koved (2005):Interprocedural analysis for privileged code placement
and tainted variable detection. ECOOP 2005-Object-Oriented, pp. 362–386. Available athttp://www.
springerlink.com/index/8hhv386p25ee0417.pdf.

[18] Thomas Reps, Stefan Schwoon, Somesh Jha & David Melski (2005):Weighted pushdown systems and their
application to interprocedural dataflow analysis. Science of Computer Programming58(1-2), pp. 206–263,
doi:10.1016/j.scico.2005.02.009. Available athttp://linkinghub.elsevier.com/retrieve/
pii/S0167642305000493.

[19] Stefan Schwoon (2002):Model-Checking Pushdown Systems. Ph.D. thesis, Technische Universitat Munchen.
Available athttp://www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/schwoon-phd02.pdf.

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4223221
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4223221
http://www.springerlink.com/index/8hhv386p25ee0417.pdf
http://www.springerlink.com/index/8hhv386p25ee0417.pdf
http://dx.doi.org/10.1016/j.scico.2005.02.009
http://linkinghub.elsevier.com/retrieve/pii/S0167642305000493
http://linkinghub.elsevier.com/retrieve/pii/S0167642305000493
http://www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/schwoon-phd02.pdf

Xin Li, Hua Vy Le Thanh 17

f n1 = “ public′′ s

pv= m1(f n1)

o1.g= pv m1 m0

r = m0(argm1) npv= expr1

f n2 = “ personal′′ return r return npv

pv= m1(f n2)

o2.g= pv m3

m3(...) pv′ = o1.g

checkPermission(pv′) ncheck

m4(...) pv′ = o2.g

checkPermission(pv′)

npv= expr2 m4

checkPermission(npv)

m2

(0)

(1)

(2)

(3)

(12)

(4)

(9)

(5)

(6)

(7)

(8)

(10)

(11)

expr1 : abbreviates “new FilePermission(argm1 , “ read”)′′

expr2 : abbreviates “new SocketPermission(“domain: 80′′, “connect”)′′

mi(0≤ i ≤ 4),s,ncheck: methods grouped by the dotted circles

−→: edges in the call graph

−→: edges in the dependency graph

checkPermission(· · ·) : final nodes of the dependency graph

npv= new· · · : initial nodes of the dependency graph

Figure 3: An Example for Dependency Graph with Call Graph
.

	Introduction
	Preliminary
	Abstraction and Prerequisites
	Abstraction of Java Programs
	Pre-assumed Analysis
	Abstraction of Policy System

	Formalization
	Realization Algorithms
	Policy Generation
	Policy Checking
	Determining Analysis Points
	Identifying Permission Requirements
	Permission Checking

	Related Work
	Conclusions
	Bibliography

