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Abstract

The main objective of linguistic multi-expert decision making (MEDM) is to select the best alternative(s)

using linguistic judgements provided by multiple experts. This paper presents a probabilistic model for

linguistic MEDM, which is able to deal with semantic overlapping in linguistic aggregation and decision-

makers’ preference information in choice function. In linguistic aggregation phase, the vagueness of each

linguistic judgement is captured by a possibility distribution on a set of linguistic labels. A confidence

parameter is also incorporated into the basic model to model experts’ confidence degree. The basic idea of

this linguistic aggregation is to transform a possibility distribution into its associated probability distribution.

The proposed linguistic aggregation results in a set of labels having a probability distribution. As a choice

function, a target-oriented ranking method is proposed, which implies that the decision-maker is satisfactory

to choose an alternative as the best if its performance is as at least “good” as his requirements. A comparative

analysis with prior research is also given to show the advantages of our model via an example borrowed from

the literature. The main advantage of our model is its capacity to deal with linguistic labels having partial

semantic overlapping as well as incorporate experts and decision-makers’ preferences.

Keywords: Decision making; Linguistic assessments; Linguistic aggregation; Semantic overlapping;

Experts’ confidence; Decision-makers’ preferences.

1. Introduction

Multi-expert decision making (MEDM) is a common and important human activity, in which the inherent

complexity and uncertainty necessitate the participation of many experts in the decision making process. In

practice, the uncertainty, constraints, and even the vague knowledge of the experts imply that the informa-

tion cannot be assessed precisely in quantitative form, but may be in a qualitative one (Herrera and Mart́ınez,
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2000). A possible way to solve such situation is the use of the fuzzy linguistic approach (Zadeh, 1975a,b,c),

which deals with linguistic information that is represented in qualitative terms by means of linguistic vari-

ables. Also, the process of activities or decisions usually creates the need for computing with words. As

a methodology, computing with words provides a foundation for a computation theory of perceptions or

linguistic descriptions (Zadeh, 1999). A key aspect of computing with words is the fusion/aggregation of

linguistic variables and computation with vague concepts.

The use of fuzzy sets as the foundation of computing with words is introduced by Zadeh (1975a,b,c).

The fuzzy set or membership function associated with each linguistic label is used to represent its semantic.

One linguistic computational approach is making use of the associated membership function for each label

based on the extension principle, (Degani and Bortolan, 1988; Lin and Wu, 2008, e.g.). Another approach

is the symbolic one (Delgado et al., 1993). The idea is that the convex combination of linguistic labels

resulting from two linguistic labels should be an element in the set. In these two approaches, however,

the results usually do not match any of the initial linguistic labels, hence an approximation process must

be developed to express the result in the initial expression domain. This produces the consequent loss of

information and lack of precision (Carlsson and Fullér, 2000). To overcome this limitation, a 2-tuple fuzzy

linguistic representation model is proposed in Herrera and Mart́ınez (2000). A new approach to extend

different classical aggregation operators with the 2-tuple linguistic model is also developed by Herrera and

Mart́ınez (2001). Taking a different track, Huynh and Nakamori (2005) have proposed a satisfactory-oriented

approach to linguistic MEDM problems by means of the voting mechanism based label semantics proposed

by Lawry (2001, 2004). The main idea is that the linguistic MEDM problem is viewed as a decision making

under uncertainty (Savage, 1954) framework, and then a probabilistic approach for the pairwise comparison

between one alternative and all the others is used to obtain the choice function, i.e., an alternative is the

best if its performance is as at least good as all the others. Although such approaches have no loss of

information (in some sense) when one applies them in a computational stage for computing with words,

they do not directly take into account the underlying vagueness of the linguistic labels, in other words, they

assume that any neighboring linguistic labels have no semantic overlapping (Lawry, 2001).

Several approaches have been proposed in an attempt to involve the underlying vagueness of the words in

linguistic MEDM problems. In Wang and Hao (2006), Wang and Hao have proposed a new version of 2-tuple

fuzzy linguistic representation model based on the symbolic proportion. The main idea of their model is that

the experts can express their opinions by not just one label, but spreading that opinion using two adjacent

ordinals which are assigned by the experts. Although such approach can model the label overlapping, only

two adjacent labels are considered. Also, it is difficult for experts to directly provide precise probability

values. Ben-Arieh and Chen (2006a,b) have proposed a fuzzy linguistic OWA (FLOWA) operator, which

assigns fuzzy membership functions to all linguistic labels by linearly spreading the weights from the labels

to be aggregated. The aggregating result changes from a single label to a fuzzy set with membership levels
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of each label. Tang (2008) has introduced a collective linguistic MEDM model to capture the underlying

vagueness of linguistic labels based on the semantic similarity relation (Tang and Zheng, 2006), in which

the similarities among linguistic labels are derived from fuzzy relation of linguistic labels. However, such

an approach violates the bounded property of the linguistic aggregation. For more details of the properties

of linguistic aggregation, see Delgado et al. (1993). Moreover, it assumes that the same label assessed by

different experts has the same label overlapping.

The linguistic judgement provided by one expert implies that the expert makes an assertion. Lawry’s

epistemic stance (Lawry, 2008) implies that when making assertions some things can be correctly asserted

while others cannot. Also, the dividing line between those labels are and those that are not appropriate to

use may be uncertain, and the assumption that such as division exists would be a natural precursor to any

decision making process of the kind just described. Thus when an expert assesses some alternatives (op-

tions) with a linguistic label, it is assumed that other linguistic label are appropriate to describe the option.

Possibility theory (Dubois et al., 2000) provides a convenient tool to represent experts’ uncertain assess-

ments. Furthermore, even if two different experts have assessed an option with the same linguistic label, the

appropriateness degree of other linguistic labels may be different according to experts’ confidence degree,

i.e., to what extent the experts are sure that other linguistic labels are appropriate to describe the option.

Finally, our another motivation comes from the fact that experts are not necessarily the decision-makers,

but only provide an advice (Shanteau, 2001). For instance, in the upgrading computer resources problem

in Section 5, there are two agents: a distribution company and four consulting departments. Here, the

distribution company acts as the decision-maker and the consulting departments act as the experts. The

decision-makers’ preference information plays an important role in choice of alternatives, which is missed in

most research.

In light of the above observations, we summarize our main contributions as follows. First, we propose

a probabilistic approach to linguistic aggregation involving the semantic overlapping. We assume that the

appropriate labels are linearly distributed around the linguistic label provided by the expert with a possibility

distribution. The label provided by the expert will be called prototype label. Here, possibility has an

additional role, namely, that of describing or representing probability distributions. And then based on the

basic mass function, we can obtain the probability distribution on the linguistic labels as the aggregation

result. Fuzzy modifiers (Zadeh, 1975b) are also used to model some expert’ confidence quantifying how

he is sure of the appropriateness of other linguistic labels. Our linguistic aggregation approach results in

a set of linguistic labels having a probability distribution. Second, we propose a target-oriented ranking

method incorporating decision-makers’ preferences. We think that the human behavior should be modeled

as satisficing instead of optimizing. Intuitively, the satisficing approach has some appealing features because

thinking of targets is quite natural in many situations. Third, a thorough comparative analysis is also given

to illustrate advantages of our model in terms of four aspects; this point will be manifested in Section 6.
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The rest of this paper is organized as follows. Section 2 presents some basic knowledge of linguistic MEDM

problems. Section 3 proposes a probabilistic approach to linguistic aggregation involving vague concepts.

Section 4 proposes a ranking procedure based on target-oriented decision model, in which decision-makers’

preferences are considered. Section 5 provides an illustrative example. Section 6 compares our research with

prior approaches in terms of four aspects. Finally, Section 7 presents some concluding remarks.

2. Preliminaries

Linguistic variables provide a means to approximate human activities and human decisions. The concept

of a linguistic variable was first introduced in Zadeh (1975a,b,c). In any linguistic approach to solving

a linguistic MEDM problem, the label set of a linguistic variable and its associated semantics must be

defined first to supply the users with an instrument by which they can naturally express their information.

Syntactically, there are two main approaches to generating a linguistic label set. The first one is based on a

context-free grammar (Zadeh, 1975a,b,c). This approach may yield an infinite label set. However, according

to observations in Miller (1956), the generated language does not have to be infinite. The second approach

is to directly supply a finite label set and consider all labels as primary ones, distributed on a scale on which

a total order is defined (Bordogna et al., 1997). For our purpose in the following, we only consider linguistic

variables with a finite label set. Also, the linguistic label set is totally ordered. For simplicity of notation,

we will use an ordered linguistic label set L = {L0, . . . , Ln, . . . , LN} with L0 < · · · < Ln < · · · < LN to

represent a linguistic variable.

In order to accomplish the objective of choosing the appropriate linguistic descriptors and their semantics

for the label set of a linguistic variable, an important aspect need to analyze is the granularity of uncertainty,

i.e., the level of discrimination among different counts of uncertainty. Typical values of cardinality used in

the ordinary linguistic models are odd ones, such as 5, 7, 9, 11, where the middle label presents an assessment

of “it may” or “approximately” 0.5, and with the rest of the labels being placed symmetrically around it.

In fuzzy environment, a common characteristic of the MEDM problems, as shown in Table 1, is a finite set

of experts, denoted by E = {E1, . . . , Ek, . . . , EK}, who are asked to assess another finite set of alternatives (or

options) A = {A1, . . . , Am, . . . , AM}. The linguistic assessment provided by expert Ek regarding alternative

Am is presented as xm
k ∈ L, where L is a finite, but totally ordered label set of linguistic variables with

an odd cardinality, i.e., L = {L0, . . . , Ln, . . . , LN} with Ln > Ll for n > l. Also, each expert is assigned a

degree of importance or weight wk, denoted as W = [w1, . . . , wk, . . . , wK ].

According to Herrera and Herrera-Viedma (2000), there are mainly three steps to solve this linguistic

decision analysis problem:

1. Choice of the linguistic label set.

2. Choice of the aggregation operator for linguistic information.
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Table 1: Linguistic MEDM problem

Alter.
Experts

E1 : w1 . . . Ek : wk . . . EK : wK

A1 x1
1 . . . x1

k . . . x1
K

...
...

...
...

...
...

Am xm
1 . . . xm

k . . . xm
K

...
...

...
...

...
...

AM xM
1 . . . xM

k . . . xM
K

3. Choice of the best alternatives : It is carried out in two phases.

(a) Aggregation phase: Obtaining collective linguistic evaluations of the alternatives by aggregating

the individual evaluations by means of the chosen aggregation operator.

(b) Exploitation phase: Establishing a ranking order among the alternatives according to the collec-

tive linguistic evaluations.

The first two steps serve the aggregation phase in the third step. From the literature of linguistic decision

analysis, there are two general decision models: the first model is mainly based on an aggregation-ranking

scheme, and the second one is based on consensus-reaching oriented solution scheme. The model proposed

in this paper belongs to the first general class.

3. A Probabilistic Approach to Linguistic Aggregation Involving Semantic Overlapping

In this section we propose a probabilistic approach to linguistic aggregation quantifying an expert’s

subjective beliefs concerning which labels are appropriate to describe a particular instance (alternative or

option). The basic idea of this model is to transform a possibility distribution on linguistic labels into its

associated probability distribution based on the mass assignment function.

3.1. Linguistic Aggregation Involving Vague Concepts

Let us return to the linguistic MEDM problem, as shown in Table 1. With the linguistic judgements

for alternative Am provided by a set of experts E , we can obtain a linguistic judgement vector as Xm =

(xm
1 , . . . , xm

k , . . . , xm
K), where xm

k ∈ L, k = 1, . . . ,K. When there is no possibility of confusion, we shall drop

the subscript m to simplify the notations. Our main objective is to aggregate the linguistic judgement vector

X for each alternative A, and then select the best alternatives according to the aggregated results.

The linguistic judgement provided by one expert implies that the expert makes an assertion. It seems

undeniable that humans posses some kind of mechanism for deciding whether or not to make certain asser-

tions (e.g., ‘The evaluation of a computer system is high’). Furthermore, although the underlying concepts
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are often vague the decision about the assertions are, at a certain level, bivalent. That is to say for an alter-

native A and a linguistic label L, you are either willing to assert ‘A is L’ or not. Nonetheless, there seems to

be an underlying assumption that some things can be correctly asserted while others cannot. Exactly where

the dividing line between those labels are and those that are not appropriate to use may be uncertain, but

the assumption that such as division exists would be a natural precursor to any decision making process of

the kind just described. This is the main idea of epistemic stance proposed by Lawry (2008).

Motivated by the epistemic stance, we assume that any neighboring basic linguistic labels have partial

semantic overlapping in linguistic MEDM. Thus, when one expert Ek evaluates alternative A using linguistic

label xk ∈ L, other linguistic labels besides xk in L may also be appropriate for describe A, but which of these

linguistic labels is uncertain. Here, similar with Lawry and Tang (2009), the linguistic label xk will be called

prototype label. Lawry (2004, 2008) introduced a new framework for label semantics where the semantics

of linguistic labels are described by appropriateness degrees. The main idea is that the appropriateness

measure means the beliefs that linguistic label is appropriate for describing an alternative. If experts

can directly assign the appropriateness degrees of all linguistic labels, then we can obtain a possibility

distribution. However, the need of experts’ involvement creates the burden of decision process. Without

additional information, we assume that the appropriate labels are distributed around the prototype label

xk with a linear possibility distribution. Possibility theory is convenient to represent consonant imprecise

knowledge (Dubois et al., 2000). The basic notion is the possibility distribution, denoted π. A possibility

distribution describes the more or less plausible values of some uncertain variable, i.e., the appropriateness

degree of what labels are appropriate for describing an alternative.

It is very rare that when all individuals in a group share the same opinion about the alternatives (options),

since a diversity of opinions commonly exists (Ben-Arieh and Chen, 2006b). With the linguistic judgement

vector X for alternative A, we can define

Lmin = mink=1,...,K{xk} (1a)

Lmax = maxk=1,...,K{xk} (1b)

where xk ∈ L, Lmin < Lmax, and Lmin, Lmax are the smallest and largest linguistic labels in X , respectively.

The label indices of the smallest and largest labels in judgement vector X are expressed as indmin and

indmax, respectively. Also, the label index of the prototype label xk provided by expert Ek is denoted as

pIndk.

Note that, the result of linguistic aggregation should lie between Lmin and Lmax (including Lmin and

Lmax). In addition, if two label indices have the same distance to the index of the prototype label xk, we

assume that they have the same appropriateness (possibility) degree. Furthermore, recall that the linguistic

judgement provided by one expert implies that the expert makes an assertion. As Lawry (2008) pointed

out,
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Figure 1: Possible prototype label and its appropriate labels under [L1, L5]

An assertability judgement between a ‘speaker’ and a ‘hearer’ concerns an assessment on the

part of the speaker as to whether a particular utterance could (or is like to) mislead the hearer

regarding a proposition about which it is intended to inform him.

Thus if one expert is viewed as a ‘speaker’, then other experts will act as ‘hearer’. Accordingly, we first

define a parameter as

∆k = max{pIndk − indmin, indmax − pIndk}. (2)

We then define a possibility distribution of around the prototype label xk ∈ L on linguistic labels Ln as

follows

π(Ln|xk) =































1−
pIndk−n
∆k+1 , if indmin ≤ n < pIndk

1, if n = pIndk

1−
n−pIndk
∆k+1 , if pIndk < n ≤ indmax

0, if n /∈ [indmin, indmax].

(3)

where n = 0, . . . , N . Assume that there is a set of seven linguistic labels L = {L0, . . . , L6}. Also, we have

Lmin = L1 and Lmax = L5. Then for a possible prototype label x, according to Eq. (3), we obtain the

possibility distribution of appropriate labels as shown in Fig. 1.

The possibility distribution π(Ln|xk) can be viewed as a fuzzy subset. Here, the fuzzy sets play a

role of describing or representing probability distributions and the mass assignments provide a seman-

tic for the possibility distributions (Lawry, 2001, 2004). Note π(Ln|xk) is a possibility distribution of

around prototype label xk on the linguistic label set L, then the possibility degrees are reordered as

{π1(xk), . . . , πi(xk), . . . , πm(xk)} such that 1 = π1(xk) > π2(xk) > · · · > πm(xk) ≥ 0. Then we can

derive a consonant mass assignment function mxk
for the possibility distribution function π(Ln|xk), such
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Table 2: Probability distribution on the N + 1 labels regarding each alternative

Alter.
Linguistic labels

L0 . . . Ln . . . LN

A1 p10 . . . p1n . . . p1N
...

...
...

...
...

...

Am pm0 . . . pmn . . . pmN
...

...
...

...
...

...

AM pM0 . . . pMn . . . pMN

that

mxk
(φ) = 1− π1(xk)

mxk
(Fi) = πi(xk)− πi+1(xk), for i = 1, . . . ,m− 1

mxk
(Fm) = πm(xk)

(4)

where Fi = {π(Ln|xk) ≥ πi(xk)}, i = 1, . . . ,m and {Fi}
m
i=1 are referred to as the focal elements of mxk

.

The notion of mass assignment suggests a means of defining probability distribution for any prototype

label. Then we can obtain the least prejudiced distribution (Lawry, 2001) of around the prototype label xk

on the linguistic label set L as follows:

p(Ln|xk) =
∑

Fi:Ln∈Fi

mxk
(Fi)

|Fi|
(5)

where Ln ∈ L, n = 0, . . . , N , mxk
is the mass assignment of π(xk) and {Fi}i is the corresponding set of

focal elements. The idea underlying this probability distribution is that, for each focal set F containing

linguistic label L, a uniform proportion 1
|F | is allocated to L. In other words, the value p(Ln|xk) reflects the

probability that Ln ∈ L belongs to the extensions of the prototype label xk.

Note that each expert is assigned a degree of importance or weight wk, the weighting vector is denoted

as W = [w1, . . . , wk, . . . , wK ]. The collective probability distribution on the linguistic label set L is then

defined as follows:

pn = p(Ln) =

K
∑

k=1

p(Ln|xk) · wk (6)

where n = 0, . . . , N . We then obtain a N + 1-tuple probability distribution on the linguistic label set L as

follows (p0, . . . , pn, . . . , pN) for each alternative A. The probability distributions of all alternatives on the

label set L are shown in Table 2.

Example 1. Assume there are four experts E1, E2, E3, and E4 to evaluate an alternative A. Each one

8



Table 3: Possibility distribution and probability distribution on the 7 labels regarding alternative A

Prototype label
π(L) p(L)

L0 L1 L2 L3 L4 L5 L6 L0 L1 L2 L3 L4 L5 L6

L1 0 1 3
4

2
4

1
4 0 0 0 25

48
13
48

7
48

3
48 0 0

L3 0 1
3

2
3 1 2

3 0 0 0 3
36

7
36

19
36

7
36 0 0

L4 0 1
4

2
4

3
4 1 0 0 0 3

48
7
48

13
48

25
48 0 0

chooses a linguistic label from the set L to express his opinion. Let us use a linguistic label set as

L = {L0, L1, L2, L3, L4, L5, L6}.

Suppose the linguistic evaluations for alternative A provided by the four experts are X = {x1 = L1, x2 =

L3, x3 = L4, x4 = L4}. Also, the importance weights of the four experts are w1 = 0.25, w2 = 0.25, w3 = 0.25,

and w4 = 0.25, respectively.

Now let us aggregate the linguistic judgement vector using our proposed method. First, we know Lmin =

L1 and Lmax = L4, then according to Eq. (3) we can build the possibility distribution of around prototype

label as shown from columns 2 − 8 of Table 3. According to the basic mass assignments Eq. (4) and the

prejudiced probability distribution Eq. (5), we obtain the corresponding probability distribution on the 7

linguistic labels, as shown from columns 9− 15 of Table 3.

According to Eq. (6) and the weights of the four experts, we can obtain the final probability distribution

on the 7 linguistic labels as

(

0.0

L0
,
0.1823

L1
,
0.1892

L2
,
0.3038

L3
,
0.3247

L4
,
0.0

L5
,
0.0

L6

)

.

3.2. Incorporating Experts’ Confidences into Linguistic Aggregation Involving Vague Concepts

Now we extend the basic model to a general case. In this extended model, we introduce a parameter α to

model the confidence/certain degree of an expert. It quantifies to what extent the expert is sure that other

linguistic labels around the prototype label are appropriate to describe an alterative. With the confidence

character α, we define the possibility distribution of around prototype label xk ∈ L on linguistic label Ln

as follows:

π(Ln|xk, α) =































[

1−
pIndk−n
∆k+1

]α

, if indmin ≤ n < pIndk

1, if n = pIndk
[

1−
n−pIndk
∆k+1

]α

, if pIndk < n ≤ indmax

0, if n /∈ [indmin, indmax].

(7)
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where α is a linguistic modifier and α > 0. When α > 1 it means that the expert has an optimistic

attitude (he is more sure that the prototype label is appropriate to describe an alternative); when α = 1 it

means that the expert has a neutral attitude (it is equivalent to the basic model); when α < 1 it means that

the expert has a pessimistic attitude (he is less sure that the prototype label is appropriate to describe an

alternative). Without possibility of confusion, the confidence factor will be also called attitude character.

The larger the parameter α is, the more sure the expert is about his assertion, i.e., other labels around the

prototype label have small possibilities. Specially, when an expert assigns α → +∞,

π(Ln|xk, α) =







1, if n = pIndk;

0, if n 6= pIndk.
(8)

where pIndk is the label index of the prototype label xk. It means that the expert Ek is absolutely sure

that the prototype label xk ∈ L is appropriate enough to describe alternative A, whereas other linguistic

labels are not appropriate to describe A.

Note that each expert can assign different confidence values according to his preferences or belief.

In order to better represent expert’s attitude factor, we introduce another parameter β, where α = 2β.

Although α and β have continuous forms, for purposes of simplicity, we assign β integer values dis-

tributed around 0. For example, β = {−∞, . . . ,−3,−2,−1, 0, 1, 2, 3, . . . ,+∞}, consequently we get α =

{2−∞ . . . , 1/8, 1/4, 1/2, 1, 2, 4, 8, . . . , 2+∞}. In order to help experts conveniently express their confidence

degree, we construct a totally ordered linguistic label set with an odd cardinality. According to observations

in Miller (1956), in practice human beings can reasonably manage to keep about seven labels in mind. We

can define the following set of linguistic labels to represent experts’ confidence degrees.

V = {V0 = absolutely unsure, V1 = very unsure, V2 = unsure,

V3 = neutral,

V4 = sure, V5 = very sure, V6 = absolutely sure}

α ={2−M , 1/4, 1/2, 1, 2, 4, 2M}

β ={−M,−2,−1, 0, 1, 2,M}

(9)

where M is big enough positive integer to make sure that [π(Ln|xk)]
2M

→ 0 if indmin ≤ n < pIndk or

pIndk < n ≤ indmax.

And then according to the procedure mentioned in the basic model, Eqs. (4)-(6), we can infer a collective

probability distribution for each alternative.

Example 2. We continue to use the aforementioned example. We also assume that the four experts provide

four confidence characters, expressed as {V6, V3, V1, V5}, the corresponding probability distribution of each

expert on the 7 linguistic labels are shown in Table 4.
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Table 4: Probability distribution on the 7 labels regarding A with different attitudes

Experts
p(L)

L0 L1 L2 L3 L4 L5 L6

E1 0.0 1.0 0.0 0.0 0.0 0.0 0.0

E2 0.0 0.0833 0.1944 0.5278 0.1944 0.0 0.0

E3 0.0 0.1768 0.2214 0.2662 0.3356 0.0 0.0

E4 0.0 0.0010 0.0205 0.1475 0.8311 0.0 0.0

It is easily seen that, although expert E3 and E4 choose linguistic label L4 as their prototype label, as

they have different confidence degrees, thus the derived probability distributions on the linguistic label set

L are different. Expert E4 has a stronger confidence V5 than the confidence degree V1 provided by expert

E3, thus the probability of L4 derived by E4 is bigger than that by E3. Also, we know that expert E1 has

a “absolutely sure” attitude, thus the probability of L1 is 1.

According to Eq. (6) and the weights of the four experts, we obtain the final probability distribution on

the 7 linguistic labels as
(

0.0

L0
,
0.3153

L1
,
0.1091

L2
,
0.2354

L3
,
0.3403

L4
,
0.0

L5
,
0.0

L6

)

.

4. Ranking Based on Target-Oriented Decision Model

After linguistic aggregation, the next step of linguistic MEDM is to exploit the best option(s) using a

choice function. Most MEDM process is basically aimed at reaching a “consensus”, e.g. Bordogna et al.

(1997); Herrera-Viedma et al. (2002). Consensus is traditionally meant as a strict and unanimous agreement

of all the experts regarding all possible alternatives. The decision model presented below assumes that

experts do not have to agree in order to reach a consensus. This assumption is well grounded in research,

many of the early decision theories argue that agreement between experts is a necessary condition for

expertise. However, experimentation consistently refuted this hypothesis (Einhorn, 1974). An excellent

review of this phenomenon of expert disagreement in different domains can be found in Shanteau et al.

(2002). There are several explanations that allow for experts not to converge to a uniform opinion. It is well

accepted that experts are not necessarily the decision-makers, but provide an advice (Shanteau, 2001). Due

to this observation, the linguistic judgements provided by the experts does not represent the decision-makers’

preferences.

The inferred probability distribution on a set of linguistic labels for each alternative, as shown in Table 2,

could be viewed as a general framework of decision making under uncertainty (Savage, 1954), in which there

are N + 1 states of nature, whereas the probability distributions are different. In this section, we provide a
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ranking method considering decision-makers’ preferences. Before giving our method, we first briefly recall

some basic knowledge of target-oriented decision model.

4.1. Target-Oriented Decision Analysis

The problem of decision making under uncertainty (DUU) (Savage, 1954) that can be most effectively

described as follows. Am(m = 1, . . . ,M) represent the alternatives available to a decision-maker, one of

which must be selected. The elements Sn(n = 1, . . . , N) correspond to the possible values/states associated

with the so-called state of nature S. Each element cmn of the matrix is the value the decision-maker receives if

the alternative Am is selected and state Sn occurs. The uncertainty associated with this problem is generally

a result of the fact that the value of S is unknown before the decision maker must choose an alternative

Am. Assume a probability distribution pS on S = {S1, . . . , Sn, . . . , SN}.

As is well-known, the most commonly used method for valuating alternatives Am to solve the DUU

problem is to use the expected utility function:

V (Am) , EU(Am) =

N
∑

n=1

pS(Sn)U(cmn ) (10)

where U is a utility function defined over universe.

On the other hand, each alternative Am can be formally considered as a random outcome having the

probability distribution pn defined, with an abuse of notation, as follows:

pm(Am = x) = pS({Sn : cmn = x}) (11)

Then, the target-based model (Bordley and Kirkwood, 2004; Bordley and LiCalzi, 2000) suggests using the

following value function

V (Am) , Pr(Am ≥ T )

=
∑

x

Pr(x ≥ T ) · pm(Am = x)

=

N
∑

n=1

Pr(cmn ≥ T ) · pS(Sn)

(12)

where the random target T is stochastically independent of any random value Am, and Pr(x � T ) is the

cumulative distribution function of the target T .

The target-oriented decision model is equivalent to the expected utility model, i.e., probability and

utility have a duality. Moreover, target-oriented decision model lies its philosophical root in the bounded

rationality (Simon, 1955). As we mentioned previously, the experts are not necessarily the decision-makers,

in most cases the decision-makers may have a target in mind. In the sequel we propose a MEDM ranking

method based on target-oriented decision model.
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4.2. Ranking Based on Target-Oriented Decision Model

Now let us consider the ranking procedure for the probability distribution on N + 1 linguistic labels in

L, as shown in Table 2. We assume that the decision-maker has a target in his mind, denoted as T . We also

assume that the target is independent on the set of M alternatives and the linguistic judgements provided

by the experts. Based on these assumptions, we define the following function

V (Am) = Pr(Am � T )

=
∑

L∈L

pm(Am = L) · Pr(L � T )

=

N
∑

n=0

pmn · Pr(Ln � T )

(13)

We assume there exists a probability distribution on the uncertain target regarding each linguistic label

Ln, denoted as pT (Ln), where n = 0, . . . , N . Then we define the following function

V (Am) = Pr(Am � T )

=

N
∑

n=0

pmn ·

[

N
∑

l=0

u(Ln, Ll)pT (Ll)

]

(14)

Recall that the target-oriented model has only two achievement levels, thus we can define u(Ln, Ll) = 1, if

Ln ≥ Ll; 0, otherwise. Then we can induce the following value function

V (Am) = Pr(Am � T )

=

N
∑

n=0

pmn ·

[

n
∑

l=0

pT (Ll)

]

(15)

Now let us consider three special cases. Without additional information (if the decision-maker does not

assign any target), we can assume that the decision-maker has a uniform probability distribution on the

uncertain target T , such that

pT (Ln) =
1

N + 1
, n = 0, . . . , N. (16)

Then we can obtain the value of meeting the uniformly linguistic target as follows:

V (Am) =
N
∑

n=0

pmn ·

[

n
∑

l=0

pLl
(T )

]

=

N
∑

n=0

pmn ·
n+ 1

N + 1

(17)

If the decision-maker assigns a specific linguistic label Ll as his target, the probability distribution on

uncertain target is expressed as

pT (Ln) =







1, if Ln = Ll;

0, if Ln 6= Ll.
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where n = 0, . . . , N . Then the utility function (probability of meeting target) is as follows:

V (Am) = Pr(Am � Ll)

=

N
∑

n=0

pmn · Pr(Ln � Ll) =

N
∑

n=l

pmn

(18)

In most cases, the linguistic target T specified by the decision-maker is uncertain and it is not so easy for

the decision-maker to get the probability distribution of uncertain target on the set of linguistic labels. One

possible way to infer the probability distribution of uncertain target is to allow the decision-maker define

a a fuzzy target, i.e., a possibility distribution of uncertain target on a discrete interval [Ll1 , Ll2 ], where

Ll1 , Ll2 ∈ L. And then based on the least prejudiced distribution, we can induce its associated probability

distribution function.

Having obtained the utility (probability of meeting target), the choice function for linguistic MEDM

model is defined by

A∗ = arg max
Am∈A

{V (Am)} (19)

5. Illustrative Example

In this section, we demonstrate the entire process of the probabilistic model via an example borrowed

from Herrera and Mart́ınez (2000).

5.1. Problems Descriptions

A distribution company needs to renew/upgrade its computing system, so it contracts a consulting

company to carry out a survey of the different possibilities existing on the market, to decide which is the

best option for its needs. The options (alternatives) are the following:

A1 A2 A3 A4

UNIX WINDOWS-NT AS/400 VMS

The consulting company has a group of four consultancy departments

E1 E2 E3 E4

Cost System Risk Technology

analysis analysis analysis analysis

Each department in the consulting company provides an evaluation vector expressing its opinions for

each alternative. These evaluations are assessed in the set L of seven linguistic labels, which is expressed as

L = {L0 = none, L1 = very low, L2 = low,

L3 = medium,

L4 = high, L5 = very high, L6 = perfect}.

14



Table 5: Linguistic MEDM problem in upgrading computing resources

Alter.
Experts

E1 : 0.25 E2 : 0.25 E3 : 0.25 E4 : 0.25

A1 L1 L3 L4 L4

A2 L3 L2 L1 L4

A3 L3 L1 L3 L2

A4 L2 L4 L3 L2

in which Ln < Ll if and only if n < l. The evaluation matrix is shown in Table 5. Also, a weighting vector

for the four consultancy departments is W = [0.25, 0.25, 0.25, 0.25], i.e., each department is assigned a equal

importance.

5.2. Our Proposed Model

As usual, the selection model used to solve this problem consists of two steps:

1. Obtain a collective performance value for each alternative.

2. Apply a selection process based on the obtained collective performance vector

In parallel, our proposed model also uses a two-step scheme, but instead:

1. Calculate a group probability distribution for each alternative;

2. Carry out the selection process by the target-oriented model.

In this part, we shall apply our proposed model to solve the above problem.

The first step is to aggregate linguistic assessments involving vague concepts. With the linguistic evalua-

tion matrix (Table 5), we obtain the minimum and maximum linguistic labels for each alternative according

to Eq. (1) as follows:

A1 A2 A3 A4

[L1, L4] [L1, L4] [L1, L3] [L2, L4]

Without loss of generality, we assume that the four consultant departments have their own confidence

degrees. A set of seven linguistic labels, as shown in Eq. (9), is used to represent the consultant departments’s

confidence degrees. Each consultant department can assign different confidence degrees according to his

preference/belief. In this example, we consider four cases:

Case 1: all the four departments assign V6 = absolutely sure as their confidence degrees.

Case 2: all the four departments assign V3 = neutral as their confidence degrees.
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Table 6: Probability distributions on linguistic labels with respect to different cases

Cases Alter.
Linguistic labels

L0 L1 L2 L3 L4 L5 L6

Case 1

A1 0.0 0.25 0.0 0.25 0.5 0.0 0.0

A2 0.0 0.25 0.25 0.25 0.25 0.0 0.0

A3 0.0 0.25 0.25 0.5 0.0 0.0 0.0

A4 0.0 0.0 0.5 0.25 0.25 0.0 0.0

Case 2

A1 0.0 0.1823 0.1892 0.3038 0.3247 0.0 0.0

A2 0.0 0.2153 0.2847 0.2847 0.2153 0.0 0.0

A3 0.0 0.25 0.375 0.375 0.0 0.0 0.0

A4 0.0 0.0 0.375 0.375 0.25 0.0 0.0

Case 3

A1 0.0 0.1089 0.1398 0.2827 0.4685 0.0 0.0

A2 0.0 0.3078 0.2478 0.1959 0.2485 0.0 0.0

A3 0.0 0.238 0.3832 0.3788 0.0 0.0 0.0

A4 0.0 0.0 0.3282 0.4412 0.2306 0.0 0.0

Case 4

A1 0.0 0.2198 0.2367 0.272 0.2715 0.0 0.0

A2 0.0 0.2351 0.2649 0.2649 0.2351 0.0 0.0

A3 0.0 0.3021 0.3537 0.3442 0.0 0.0 0.0

A4 0.0 0.0 0.3442 0.3537 0.3021 0.0 0.0

Case 3: the four departments assign different values as {V1 = very unsure, V2 = unsure, V5 = very sure, V4 =

sure} as their confidence degrees, respectively.

Case 4: all the four departments assign V1 = very unsure as their confidence degrees.

According to linguistic aggregation with vague concepts, proposed in Section 3, we obtain different proba-

bility distributions for the four alternatives with respect to different cases, as shown in Table 6.

From Table 6, it is easily seen that when the four departments assign a absolutely sure attitude, it means

that they are absolutely sure that a label L is appropriate for describing an alternative. In this case, the

group probability distribution will depend only on the weight information. For instance, for alternative A2

under case 1, the four departments provide their judgements as {L3, L2, L1, L4} and they have equal weight

information, thus the probability distribution on the 7 labels is (0, 0.25, 0.25, 0.25, 0.25, 0, 0).

Having obtained the probability distributions on the 7 linguistic labels with respect to the four cases, now

let us rank the four alternatives according to the target-oriented ranking procedure proposed in Section 4.
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Table 7: Probability of meeting targets

Cases Targets
Alternatives

A1 A2 A3 A4

Case 1
T1 0.5714 0.5 0.4643 0.5357

T2 0.5 0.25 0.0 0.25

Case 2
T1 0.5387 0.5 0.4464 0.5536

T2 0.3247 0.2153 0.0 0.25

Case 3
T1 0.5873 0.4836 0.4487 0.5575

T2 0.4685 0.2485 0.0 0.2306

Case 4
T1 0.5136 0.5 0.4346 0.5654

T2 0.2715 0.2351 0.0 0.3021

In this example, the four consultant departments provide their advice, but do not make decisions. The

true decision maker is the distribution company. To renew a computer system, the distribution company

may simply looks for the first “satisfactory” option that meets some target. Having this in mind, we first

assume that the distribution company does not assign his target. In this case, the distribution company has

a uniform target, denoted as T1. The uniform probability distribution of his target is expressed as
(

1/7

L0
,
1/7

L1
,
1/7

L2
,
1/7

L3
,
1/7

L4
,
1/7

L5
,
1/7

L6

)

.

If the distribution company can provide a specific label as his target, for example, the company assigns his

target as T2 = L4 = high, it means that the distribution company is satisfactory to choose an alternative as

the best if its performance is at least “good” as high.

Table 7 shows the probability of meeting those two targets assigned by the distribution company with

respect to four cases of confidence degrees provided by the four consultant departments. From Table 7,

option A4 (VMS) or A1 (UNIX) is the best choice according to the confidence degrees provided by the four

departments and the targets provided by the distribution company. In our linguistic MEDM model, the

aggregation phase considers experts’ preference information and the choice function considers the decision-

makers’ preference information.

6. Comparative Analysis with Prior Research

Here, as a comparative analysis, we review four solutions to linguistic MEDM problems (Table 1), namely

solution based on two-tuple fuzzy linguistic representation model (Herrera and Mart́ınez, 2000), solution

based on satisfactory-oriented principle (Huynh and Nakamori, 2005), solution based on FLOWA (Ben-

Arieh and Chen, 2006a,b), and solution based on label similarity semantics (Tang, 2008). All these four
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Table 8: Comparisons between our research and related work

Approaches
Features

Label Bounded Preference

overlapping property Expert Decision-maker

Our model Yes (Probability distribution) Yes Yes Yes

2-tuple model (Herrera and Mart́ınez, 2000) No Yes No No

Satisfactory-oriented (Huynh and Nakamori, 2005) No Yes No No

FLOWA (Ben-Arieh and Chen, 2006a,b) Yes (Fuzzy membership) Yes No No

Similarity based (Tang, 2008) Yes (Probability distribution) No No No

approaches are based on the order-based semantics of linguistic labels as well as an aggregation-and-ranking

scheme. Table 8 shows the main differences between our model and these four approaches. In the sequel,

we compare our model with these four approaches one by one according to the example used in Section 5.

6.1. Solution Based on 2-Tuple representation model

To avoid the loss of information, the 2-tuple fuzzy linguistic representation model was proposed by

Herrera and Mart́ınez (2000). In this model, information is represented by means of two-tuple of the form

(L, α), where L ∈ L and α ∈ [−0.5, 0.5). Under such a representation, if a value β ∈ [0, N ] representing the

result of a linguistic aggregation operation, then the two-tuple that expresses the equivalent information of

β is obtained by means of the following transformation:

△: [0, N ] −→ L× [−0.5, 0.5)

β −→ (Ln, α)
(20)

with n = round(β) and α = β − n, where round(·) is the usual round operator and Ln means the linguistic

label having the closest index to β. Inversely, a two-tuple (Ln, α) ∈ L × [−0.5, 0.5) can be equivalently

represented by a numerical value in [0, N ] by the following transformations:

△−1: L× [−0.5, 0.5) −→ [0, N ] (21)

such that △−1 (Ln, α) = n+ α.

When K linguistic information expressed by 2-tuple is available, the aggregation result can be derived

by using weighted average operator as follows. Let x = {(r1, α1), . . . , (rk, αk), . . . , (rK , αK)} be a set of
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linguistic 2-tuples, the 2-tuple weighted average is computed as

△

(

K
∑

k=1

(rk + αk) · wk

)

(22)

The comparison of linguistic information represented by 2-tuples is defined as follows. Let (Ln, αn) and

(Lm, αm) be two tuples, then:

1. If n < m, then (Ln, αn) < (Lm, αm);

2. If n = m, then:

(a) If αn = αm, then (Ln, αn) = (Lm, αm);

(b) If αn < αm, then (Ln, αn) < (Lm, αm);

(c) If αn > αm, then (Ln, αn) > (Lm, αm).

Applying this approach to the renewing computing resources problem, we obtain the collective perfor-

mance value as

A1 A2 A3 A4

(L3, 0) (L3,−0.5) (L2, 0.25) (L3,−0.25)

which ranks alternatives in the order A1 ≻ A4 ≻ A2 ≻ A3.

Compared with our model, the 2-tuple based solution does not directly take into account the underlying

vagueness of the labels, i.e., it assumes that any neighboring linguistic labels have no semantic overlapping.

Moreover, it does not either consider the decision-maker’s preference information.

6.2. Satisfactory-oriented solution

Huynh and Nakamori (2005) proposed a satisfactory-oriented approach to linguistic MEDM. In their

framework, the decision matrix (Table 1) is viewed as a decision making under uncertainty, where the set of

experts plays the role of states of the world and the weights of experts play the role of subjective probabilities

assigned to the experts. Under such formulation, the problem induces M random preferences, denoted by

X1, . . . , Xm, . . . , XM , each Xm for an alternative Am with associated probability distribution Pm is defined

by

Pm(Xm = L) = PE({Ek ∈ E|xm
k = L}) (23)

for m = 1, . . . ,M , k = 1, . . . ,K, and L ∈ L.

They then proposed a choice function defined as follows:

V (Am) =
∑

n6=m

Pr(Xm ≥ Xn)

=
∑

n6=m

∑

L∈L






Pm(Xm = L)

∑

x∈L,

L≥x

Pn(Xn = x)







(24)
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Table 9: Probability distributions on seven linguistic labels: Solution based on Satisfactory-oriented principle

Alter.
Linguistic labels

L0 L1 L2 L3 L4 L5 L6

A1 0.0 0.25 0.0 0.25 0.5 0.0 0.0

A2 0.0 0.25 0.25 0.25 0.25 0.0 0.0

A3 0.0 0.25 0.25 0.5 0.0 0.0 0.0

A4 0.0 0.0 0.5 0.25 0.25 0.0 0.0

This choice function lies its root in the philosophy of satisfactory-oriented principle, i.e., it is perfectly

satisfactory to select an alternative as the best if its performance is as least “good” as all the others.

Applying the satisfactory-oriented approach to the computer updating problem, we first obtain the prob-

ability distribution on the linguistic labels as shown in Table 9. Compared with the probability distribution

in Table 6, if all the consulting departments share an absolutely sure confidence degree, the aggregation

step in our model reduces to Huynh and Nakamori’s framework, i.e., the weights of experts play the role of

subjective probabilities.

And then based on the satisfactory-oriented based solution, we obtain the final choice function values as

A1 A2 A3 A4

2.25 1.75 1.4375 1.9375

which ranks alternatives in the order A1 ≻ A4 ≻ A2 ≻ A3.

Although this model acts with the computation solely based on the order-based semantics of the linguistic

labels as well as yields the same ranking result in the application example (Huynh and Nakamori, 2005,

p. 188), it does not directly take into account the underlying vagueness of the labels. In addition, viewed

as a decision making under uncertainty, this model does not consider the decision maker’s requirements. In

general, in the aggregation step, our model generalizes Huynh and Nakamori’s work. In the choice function

step, although both our approach and Huynh and Nakamori’s work are based on the satisfactory-oriented

philosophy, we incorporate decision maker’s target preference.

6.3. FLOWA

Ben-Arieh and Chen (2006a,b) proposed a so-called fuzzy linguistic ordered weighted average (FLOWA)

aggregation operation. In particular, with the linguistic judgement vectorX = (x1, . . . , xk, . . . , xK) provided

by a set of experts E , there exists a totally ordered linguistic subset, expressed as R = {Li, . . . , Ln, . . . , Lj},

where R ⊆ L, Li is the smallest label and Lj is the largest one in X . With the weights of experts,

W = [w1, . . . , wk, . . . , wK ], we can obtain a weighting vector u = [ui, . . . , un, . . . , uj] for the linguistic labels
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in R, where
∑j

n=i un = 1. Note that Ben-Arieh and Chen (2006a,b) viewed the weights of experts as the

weights of linguistic labels. This is incorrect as more than one expert may provide the same linguistic label

as their judgements.

Then the FLOWA operation is defined as

FLOWA{Li, . . . , Ln, . . . , Lj} = {(Ln, µLn
)|Ln ∈ R} (25)

where µLn
is the fuzzy membership assigned to the n-th linguistic label Ln after aggregating the weights on

label sets. The fuzzy membership function is defined as

µLn
=

N
∑

m=0

µm
Ln

, (26)

where µm
Ln

is the membership function of the n-th linguistic label Ln generated from the weighted linguistic

label Lm, Lm ∈ R. Then Ben-Arieh and Chen (2006b) define µm
Ln

as

µm
Ln

=











































2(j−n)
(j−i)(j−i+1)wm, if m = i;

2(n−i)
(j−i)(j−i+1)wm, if m = j;

2(n−i)
(j−i)(m−i)wm, if i ≤ n ≤ m;

2(j−n)
(j−i)(j−m)wm, if m ≤ n ≤ j;

0, if m < i or m > j.

(27)

The aggregation result of is normalized, i.e.,
∑N

n=0 µLn
= 1.

Ben-Arieh and Chen (2006a,b) used Lee and Li’s fuzzy mean and standard deviation method (Lee and

Li, 1988) to rank the aggregation results, expressed as follows:

xµ(A
m) =

N
∑

n=0

n · µLn
(Am) (28a)

σµ(A
m) =

[

N
∑

n=0

n2 · µLn
(Am)− [xu(A

m)]
2

]1/2

(28b)

where xµ(A
m) and σµ(A

m) are the fuzzy mean and fuzzy spread of the aggregation result for alternative

Am, respectively. For two alternatives Am and An, the ranking relation is as follows:

1. If xµ(A
m) > xµ(A

n), then Am ≻ An;

2. If xµ(A
m) < xµ(A

n), then Am ≺ An;

3. If xµ(A
m) = xµ(A

n), then:

(a) If σµ(A
m) = σµ(A

n), then Am ∼ An;

(b) If σµ(A
m) < σµ(A

n), then Am ≻ An;

(c) If σµ(A
m) > σµ(A

n), then Am ≺ An.
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Table 10: Fuzzy memberships of the 7 labels, inferred from the FLOWA

Alter.
Fuzzy memberships

L0 L1 L2 L3 L4 L5 L6

A1 0.0 0.125 0.25 0.375 0.25 0.0 0.0

A2 0.0 0.125 0.375 0.375 0.125 0.0 0.0

A3 0.0 0.1667 0.5 0.3333 0.0 0.0 0.0

A4 0.0 0.0 0.3333 0.5 0.1667 0.0 0.0

where ≻, ≺, and ∼ represent “is preferred to”, “is less preferred to”, and ”indifference”, respectively.

Applying the FLOWA operator to the computer updating problem, we obtain the fuzzy membership

function for each alternative as shown in Table 10.

Finally, according to ranking criterion, Eq. (28), we obtain the fuzzy mean and fuzzy deviation of the

aggregation result as

A1 A2 A3 A4

(2.75, 0.9682) (2.5, 0.866) (2.1667, 0.6872) (2.8333, 0.6872)

which ranks alternatives in the order A4 ≻ A1 ≻ A2 ≻ A3.

This FLOWA model allows the aggregation result with a set of labels with a fuzzy membership function,

thus in some sense, it is an linguistic aggregation operation involving the underlying vagueness of linguistic

labels. However, there are some drawbacks in this model.

First, there is no theoretical formulation about the FLOWA operation in Ben-Arieh and Chen (2006a,b).

Even if the FLOWA operation is rational, the aggregation results should be interpreted as a probability

distribution, not a fuzzy membership function. Now let us formulate the FLOWA operator based on our

approach. The basic idea of our linguistic aggregation approach is to transform a possibility distribution

into its associated probability distribution. According to the judgement vector X = (x1, . . . , xk, . . . , xK),

there exists a totally ordered linguistic subset, expressed as R = {Li, . . . , Ln, . . . , Lj}, where R ⊆ L, Li is

the smallest label and Lj is the largest one in X . For a prototype label xk ∈ L, we can define the possibility

distribution of around the prototype label on the the set of linguistic labels as follows

π(Ln|xk) =































n−i
pIndk−i , if i ≤ n < pIndk

1, if n = pIndk
j−n

j−pIndk
, if pIndk < n ≤ j

0, if n /∈ [i, j].

In addition, Yager (2002) has proposed a proportional possibility-probability transformation method, ex-
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pressed as

p(x) =
π(x)

∑

x π(x)
. (29)

Using the weight information of experts, we can easily obtain the collective probability distribution on the

linguistic labels, which is equivalent to the FLOWA (Ben-Arieh and Chen, 2006a,b). Thus the FLOWA

aggregation result should be interpreted as a set of labels with a probability distribution, but not a fuzzy

membership function. Our linguistic aggregation approach is making use of mass function, which provides

a semantic for the possibility distribution. Thus, the FLOWA aggregation operation is not so rational as

ours.

Second, from FLOWA aggregation, Eqs. (26)-(27), we found that if some expert choose Li+1 as his

prototype label, then the possibility that linguistic label Li will be chosen is 0. Since Li and Li+2 have

the same distance to the prototype label Li+1, we think they should have the same appropriateness degree.

Thus FLOWA operator is unsuitable to capture the underlying vagueness of linguistic labels.

Third, the FLOWA aggregation operation cannot represent experts’ preference information. Different

experts may have different confidence degrees.

Finally, the ranking procedure also does not consider the decision-maker’s requirements.

6.4. Solution Based on Semantic Similarity Relation Amongst Linguistic Labels

Recently, Tang (2008) proposed a collective decision model based on the semantic similarities of linguistic

labels (Tang and Zheng, 2006) to deal with vague concepts and compound linguistic expressions. The

compound linguistic expressions is beyond the scope of our research, thus we only consider the vague

concepts in linguistic MEDM problems.

They first defined a similarity relation < R,L > for a set of basic linguistic labels, expressed as

R = [r(Lm, Ln)](N+1)×(N+1) , (30)

such that r(Lm, Ln) = r(Ln, Lm) ∈ [0, 1] and r(Ln, Ln) = 1 for m,n = 0, . . . , N .

Then the probability distribution of Ln on the linguistic label set L is defined by

∀L ∈ L, pLn,R(L) =
∑

F :L∈F

mLn
(F )

|F |
(31)

where mLn
is the consonant mass assignment of Ln and {F} is the corresponding set of focal elements.

In the linguistic MEDM problem (Table 1), for alternative Am, each expert Ek provides a linguistic

label xm
k . The collective probability distribution of linguistic label xm

k ∈ L of a given label Ln on the set of

linguistic labels L is as follows

pmn =

K
∑

k=0

pxm
k
(Ln) · wk (32)

where n = 0, . . . , N and wk is the weight of expert Ek.

To rank the alternatives, Tang (2008) suggested two methods expressed as follows:
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Table 11: Similarity matrix

Linguistic labels
Similarities

L0 L1 L2 L3 L4 L5 L6

L0 1.0 0.5 0.0 0.0 0.0 0.0 0.0

L1 0.5 1.0 0.5 0.0 0.0 0.0 0.0

L2 0.0 0.5 1.0 0.5 0.0 0.0 0.0

L3 0.0 0.0 0.5 1.0 0.5 0.0 0.0

L4 0.0 0.0 0.0 0.5 1.0 0.5 0.0

L5 0.0 0.0 0.0 0.0 0.5 1.0 0.5

L6 0.0 0.0 0.0 0.0 0.0 0.5 1.0

Table 12: Probability distribution on the 7 labels inferred from the similarity matrix

Alter.
Probability distribution inferred from similarities

L0 L1 L2 L3 L4 L5 L6

A1 0.0417 0.1667 0.0833 0.25 0.375 0.0833 0.0

A2 0.0417 0.2083 0.25 0.25 0.2083 0.0417 0.0

A3 0.0417 0.2083 0.2917 0.375 0.0833 0.0 0.0

A4 0.0 0.0833 0.375 0.2917 0.2083 0.0417 0.0

1. Expected value function (Ben-Arieh and Chen, 2006b)

V (Am) =

N
∑

n=0

n · pmn (33)

2. Pairwise comparison method based on the satisfactory-oriented principle (Huynh and Nakamori, 2005),

which is defined as

Pr(Am > Al) =
∑

L∈L

∑

L′>L

pl(L)pm(L′). (34)

Am > Al ⇔ Pr(Am > Al) > Pr(Al > Am). (35)

Let us apply the similarity based approach to the computer updating problem. The first step in their

approach is to define a similarity matrix for the 7 linguistic labels as shown in Table 11.

And then according to Eqs. (31)-(32), we obtain the collective probability distribution on the 7 linguistic

labels as aggregation results, as shown in Table 12.

According to the first ranking criterion, Eq. (33), we obtain the expected value for each alternative as
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Table 13: Probability distributions with respect to different cases

Pr(Am > An) A1 A2 A3 A4

A1 − 0.5139 0.5903 0.4826

A2 0.2847 − 0.4392 0.3316

A3 0.224 0.3316 − 0.2587

A4 0.3177 0.4392 0.4878 −

A1 A2 A3 A4

3.0 2.5 2.25 2.75

which ranks alternatives in the order A1 ≻ A4 ≻ A2 ≻ A3.

According to the second ranking criterion, the pairwise comparison matrix is shown in Table 13. Ac-

cordingly, the ranking order is A1 ≻ A4 ≻ A2 ≻ A3.

Although Tang’s work used a similarity semantic of linguistic labels to represent the label overlapping,

there are still some drawbacks.

First, the aggregation result by this model violates the bounded property of aggregation operation, i.e.,

for a subset R = {Li, . . . , Ln, . . . , Lj}, the aggregation result will have nonzero probability distribution

on other labels Lm /∈ R. For instance, from Table 12, the linguistic aggregation result of option A1 by

this model is a probability distribution having nonzero probabilities in [L0, L5]. However, in the original

evaluation matrix, as shown in Table 5, the assessed labels are L1, L3, L4, thus Tang’s approach violates the

bounded property of linguistic aggregation.

Second, even two experts assign the same linguistic label as their judgements, the overlapping among

linguistic labels may be different. In other words, Tang’s approach does not take into account experts’

preference information.

Third, Tang’s ranking procedure is based on Ben-Arieh and Chen (2006b) and Huynh and Nakamori

(2005), thus it does not take into account decision-makers’ requirements.

7. Conclusions

In this paper, we have proposed a probabilistic model for MEDM problem under linguistic assessments,

which is able to deal with linguistic labels having partial semantic overlapping as well as incorporate experts

and decision-makers’ preference information. It is well known that linguistic MEDM problems follow a

common schema composed of two phases: an aggregation phase that combines the individual evaluations

to a collective evaluations; and an exploitation phase that orders the collective evaluations according to a

given criterion, to select the best options. For our model, our linguistic aggregation does not generate a
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specific linguistic label for each alternative, but a set of labels with a probability distribution, which incor-

porates experts’ vague judgements. Moreover, experts’ confidence degree is also incorporated to quantify

the appropriateness of linguistic labels other than the prototype label. Having obtained the probability

distributions on linguistic labels, we have proposed a target-oriented choice function to establish a ranking

ordering among the alternatives. According to this choice function, the decision-maker is satisfactory to

select an alternative as the best if its performance is as at least “good” as his requirements.
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