
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
A study on Hierarchical Table of Indexes for

Multi-documents

Author(s) LE, Tho Thi Ngoc

Citation

Issue Date 2012-09

Type Thesis or Dissertation

Text version author

URL http://hdl.handle.net/10119/10752

Rights

Description
Supervisor: Professor Akira Shimazu, 情報科学研究

科, 修士

A Study on Hierarchical Table of Indexes for
Multi-documents

By LE Thi Ngoc Tho

A thesis submitted to
School of Information Science,

Japan Advanced Institute of Science and Technology,
in partial fulfillment of the requirements

for the degree of
Master of Information Science

Graduate Program in Information Science

Written under the direction of
Professor Akira Shimazu

September, 2012

A Study on Hierarchical Table of Indexes for
Multi-documents

By LE Thi Ngoc Tho (1010226)

A thesis submitted to
School of Information Science,

Japan Advanced Institute of Science and Technology,
in partial fulfillment of the requirements

for the degree of
Master of Information Science

Graduate Program in Information Science

Written under the direction of
Professor Akira Shimazu

and approved by
Professor Akira Shimazu

Associate Professor Kiyoaki Shirai
Professor Satoshi Tojo

August, 2012 (Submitted)

Copyright c© 2012 by LE Thi Ngoc Tho

Acknowledgements

I would like to express my gratitude to all those who gave me the possibility to complete
this thesis.
First and foremost, I am greatly indebted to Assistant Professor Nguyen Le Minh and

Professor Akira Shimazu for their valuable advices and consistent encouragement since
the early stage of my study. My deep appreciation is sent to Associate Professor Kiyoaki
Shirai, Professor Satoshi Tojo and Professor Hiroyuki Iida for reviewing and comments
this thesis. This thesis is dedicated to my colleagues in Shimazu-Shirai laboratory and
teachers at language center who has always helped me and believed that I could do it.
Second, it gives me great pleasure in acknowledging the support of the Vietnamese Min-

istry of Education and Training, VNU-HCM University of Science and Japan Advanced
Institute of Science and Technology to be studied in Japan.
Last but not least, I would like to show my great gratitude to my beloved family and

friends for giving me strength and motivation during the time at Master course.

i

Contents

1 Introduction 1

1.1 Research Context . 1

1.2 Goal of Thesis . 2

2 Background 4

2.1 Text Segmentation . 4

2.2 Clustering . 6
2.2.1 Clustering Algorithms in General 6
2.2.2 Clustering in Computational Linguistics 9

2.3 Text Similarity . 11
2.3.1 Similarity of Words . 12
2.3.2 Similarity of Sentences and Documents 13

2.4 Keyphrase Extraction . 14
2.4.1 Supervised Keyphrase Extraction 14
2.4.2 Unsupervised Keyphrase Extraction 15

3 Approach 16

3.1 Construct Hierarchical Tree of Segments (HTS) 18

3.2 Build Hierarchical Table of Indexes (HTI) 21
3.2.1 Extract Keyphrases from Single Segments 23
3.2.2 Extract keyphrases from Clusters 24

4 Experiments 26

4.1 Experiment Setup . 26

4.2 Evaluation . 30

5 Conclusions and Future Work 33

Bibliography 35

A Semantic Similarity of Text 39

B Affinity Propagation Clustering Algorithm 40

C Output of Hierarchical Table of Indexes 43

Publications 47

ii

List of Figures

2.1 An example on text segmentation . 5
2.2 The Hierarchical Agglomerative Clustering (HAC) algorithm 7
2.3 The K-Means algorithm . 8
2.4 The Expectation Maximization clustering (EM-clustering) algorithm 8
2.5 DBSCAN clustering algorithm . 9
2.6 Graph-based clustering algorithm . 10

3.1 The illustration of three steps in proposed framework 17
3.2 The HAC algorithm with flatten technique 18
3.3 The flowchart of constructing Hierachcial Tree of Segments (HTS) 19
3.4 Constructing hierarchical tree of segments based on clustering approach . . 20
3.5 The structure of hierarchical tree of segments 20
3.6 The flowchart of building Hierarchical Table of Indexes 22
3.7 Constructing graph to extract keyphrases from a segment. 23

4.1 A part of XML file used in experiment . 27
4.2 A part of text file parsed from XML file 27
4.3 A part of text being segmented . 28
4.4 Two messages used in Affinity Propagation 29
4.5 The output of HTI . 29
4.6 The illustration of output for Japanese law 30
4.7 Some extracted keyphrases in the root node (in English) 32
4.8 The questionnaire to evaluate the navigation of HTI (with answers) 32

B.1 Two messages used in Affinity Propagation 41
B.2 The illustration of Affinity Propagation . 42

C.1 The overall look of output HTI . 43
C.2 The keyphrases of HTI at the root node (tier 0) 44
C.3 The keyphrases of HTI at first branch (of tier 1) 45
C.4 The keyphrases of HTI at the second and third branch (of tier 1) 46

iii

List of Tables

4.1 Result of keyphrases extraction . 31
4.2 List of laws used in evaluation of navigation 31
4.3 Avarage time to find answer when search on original text and HTI 31

iv

Chapter 1

Introduction

1.1 Research Context

As we all known, to keep all activities in stable and smooth, our society is governed
by several kinds of rules and laws, such as the laws of Administration, Construction,
Environment, Finance, Tax, Education, Industrial, etc. With so many kinds of laws, there
is a need to support the laws systems. Legal Engineering is a new research field studies the
methodologies of how to apply information science to laws. Legal Engineering is not just
seen as a way of capturing and distribute knowledge, but also an analytical approach that
help to improve legal quality. There are many problems that Legal Engineering concerns
to, among of them, two needs which information science can be applied to :

1. A developing methodology to aid the design of big information processing system;
and

2. Supporting the law officers check related documents when look up information for
editing laws.

In this thesis, we concern the second need, and we study to generate a navigation tool
to help the law officers access to their interested law sections quickly as well as provide
them the general ideas of the laws when navigating. This research is about apply Natural
Language Processing (NLP) approaches to reply to the requirements. Specifically, this
research is a sub-field of NLP, called automatic summarization for multi-documents.
A summary of a document or a collection of documents is a ”condense” representation

of main ideas of the content. It is obvious that the summary of documents will help
the readers gain the general ideas of documents. However, in case of the output of the
summary for multiple documents, even if the summary is much shorter and more concise
than the original documents, it is still difficult for reader to understand all main ideas
in structural organization. So, while trying to summarize documents, we take into ac-
count not only the main ideas for multiple documents but also the organization of main
ideas as well. In order to do that, we generate a tree-based structure, called hierarchical
table of indexes. A table of indexes in hierarchical structure helps the readers under-
standing the content and the structure in semantics aspects. This hierarchical structure

1

of representation also provides a navigation for the readers to quickly refer to interested
information.
Hierarchical summarization has been noticed more than 10 years ago by work of Lawrie

et al. [23] [24]. In [23], the topic hierarchies is constructed based on probabilistic model,
but the output of this work are single words only, that may not express the ideas naturally.
In [24], the author introduced a framework for automatically building hierarchies for small
collections of texts, based on statistical models of language. However, this work does not
consider the semantic aspect of words. To improve these drawbacks, we represent the
output of hierarchical summary in form of a combination of words, called keyphrases,
which load the important information of the document. We also consider the semantic
aspect of the words when extracting them from multiple documents.
So far, Branavan et al.[4] and Nguyen et al.[45] have used supervised technique to

generate a tree wherein a node represents a segment of text and a title that summarizes
its content with assumption that the hierarchical tree of summary is available. Moreover,
those work applied for single documents without awareness of overlapping, supplementing
and contrasting in the content.
In this thesis, we also focus on the constructing of hierarchical tree while trying to

generate the summary of multiple documents. In details, we create a structural summary
in representation of a hierarchical table of indexes with an unsupervised approach. A
hierarchical table of indexes is similar to a table of indexes appearing at the back of
books. In addition the role as a representation the summary, it helps readers quickly
refer to their interested sections containing their interested key words. ”Hierarchical”
in HTI means the set of indexes in lower tier contain more specific information than
the higher one. To Legal Engineering, this work contributes a navigation which helps
law officers refer to the interested sections quickly while review the main ideas of the
law documents. To the sub-field automatic summarization of NLP, this works introduce
a new representation, in which the output of summary is a collection of keyphrases in
hierarchical structure.

1.2 Goal of Thesis

The specific problem statement of this thesis is: given a collection of related documents
in a specific theme (such as law documents), our main goals are:

(i) Generating a hierarchical table of indexes for representing the main ideas of multi-
documents; and

(ii) Providing a navigation to get details information quickly.

Generally, because of involving multiple sources of information, the challenges we have
to face is not only the overlapping of the ideas between documents, but some parts of a
document can supplement to some parts of another one, or the content between documents
becomes contradiction to each other. To treat such problems may occur, the redundancy
of information should be identified as well as recognized the novelty in the content; also,

2

the output summary should be ensured to be coherent and complete. So, in the scope of
this research, we assume:

(i) One segment should be belong to (only) one topic;

(ii) Two segments are in the same topic if they are semantic related, or they are similar
in semantic aspect.

Specifically, we take into account the organization of main ideas as well when trying to
get the summary of multiple documents. In order to do that, we generate a tree-based
structure, called hierarchical table of indexes (HTI). A table of indexes in hierarchical
structure will help the readers understanding the main ideas and their organizations
in semantics aspects. It also provides a navigation for the readers to quickly refer to
interested information. The process to generate HTI involves to three steps:

(i) Segment all documents into separate segments based on topics;

(ii) Construct hierarchical tree of segments (HTS);

(iii) Extract key-phrases from each segments, and generate HTI from HTS.

This thesis mainly focuses on making all the process automatic. The first step is
assumed to be available by apply existing methods of segmentation such as TextSeg[44],
MinCutSeg [30], BayesSeg [12] in which a document is separated into segments based on
topic by finding the maximum-probability segmentation. We will mainly focus on the
second and third step of the process.
In detail, this study concentrates on automatic process to construct a hierarchical tree

of segments (HTS) from segmented texts, and then to generate a HTI for multi-documents
based on the HTS by extracting keyphrases of each segment. To construct HTS, an unsu-
pervised clustering algorithm is applied recursively to construct the hierarchical structure;
after that HTI is drawn from HTS using an unsupervised keyphrase extraction algorithm.
It results in the summary of multi-documents in hierarchical structure (in bag-of-words
format) while generating the indexes. Experiments were applied for both English and
Japanese in the law field, which will serve as a task in contribution to Legal Engineering.
The thesis is organized as follows. Chapter 2 presents some background knowledge

about Text Segmentation, Clustering algorithms, Text Similarity, and Word Extraction.
Chapter 3 describes our proposed approach to solve the problem. Chapter 4 demonstrates
the proposed framework with some the experiments and preliminary results. Finally,
Chapter 5 presents a conclusion and future works.

3

Chapter 2

Background

In this chapter, we introduce some background knowledge relevant to our framework
to generate Hierarchical Table of Indexes. Corresponding to the first step, we provide
an overview of Text Segmentation in Section 2.1. For constructing Hierarchical Tree of
Segment in step 2, Clustering approaches and Text Similarity metrics will be presented
in Section 2.2 and Section 2.3, respectively. Also Key Word Extraction in Section 2.4 for
step 3 to extract keyphrases when building hierarchical table of indexes.

2.1 Text Segmentation

Text segmentation is one of the fundamental tasks in natural language processing problems
such as information retrieval or automatic summarization. In real world, the natural
language patterns usually appear without the explicit boundaries. The goal of this process
is to divide the text document into smaller unit based on the topic boundaries; in another
word, segmentation process is a task of finding the boundaries of segments in a stream of
text (see Figure 2.1).
On view point of methodology, we can divide segmentation into two main approaches:

supervised [34] [16] and unsupervised [18] [44] [30], where supervised approach requires
annotated data for training but unsupervised does not. On the other hand, segmentation
process can be divided into two types of representation output: linear [19] [44] [12] and
hierarchy [11] [6]; in which, linear segmentation separate text document into continuous
parts. In this research, we consider the unsupervised approach in text segmentation, and
the view of representation output.
In unsupervised textual segmentation, previous work on discourse segmentation indi-

cated that lexical cohesion [17] of text is a strong feature. Many algorithms such as
TextTiling [19], C99 [7], TextSeg [44], LCSeg [16], MinCutSeg [30], BayesSeg [12] assume
that variations in lexical distribution indicate topic changes, though each work explore
lexical cohesion in different aspects, such as similarity between words [21], the cosine simi-
larity between blocks of text [18], adaptive language model [1], word frequency model [38],
inter-sentence similarity matrix [7], lexical distribution [44], variation of cosine similarity
between sentence [30].

4

Figure 2.1: An example on text segmentation

Unsupervised cohesion-based approaches can be distinguished based on the metric used
in quantify cohesion and search technique. Lexical chains [16], which is defined as the
repetition of a given lexical item over a fixed-length window of sentences, are characterized
to be used in inference by selecting segmentation points at the local maxima of cohesion
function. Lexical chain. MinCutSeg [30] optimized a normalized minimum-cut criteria
based on a variation of the cosine similarity between sentences. TextSeg [44] search for

5

segmentations with compact language models using dynamic programming to search the
space of segmentations. Bayesian approach to segmentation [36] assume a set of docu-
ments is characterized by some number of hidden topics that are shared across multiple
documents, then linear segmentation is built by adding a switching variable to indicate
whether to topic distribution for each sentence is identical to that of its predecessor.
Recently, topic model or topic-based representation of text documents is a research

topic tendency. Topic model is a type of statistical model for discovering the abstract
”topics” that occur in a collection of documents. The first work on topic model is latent
semantic indexing (LSI) [10], using singular value decomposition (SVD) to capture the
most of variance in the collection and even some aspects of basic linguistic notions, though
the resulting concepts may be difficult to interpret. Then probabilistic LSI (pLSI) [20]
models each word in a document as a sample from a mixture model to capture the semantic
relationship within a text, but pLSI is not a generative model of new documents. To solve
the above drawbacks of previous work on topic model, Blei et al. presented a generative
model Latent Dirichlet Allocation (LDA) [3] by incorporating the Dirichlet priors for
topic mixtures shared by seen and unseen documents through the variational inference
procedure.
Topic model can be applied to linear text segmentation [12], and on hierarchical text

segmentation [11] [6] too. The first applying of Bayesian topic model are works of Blei
and Moreno [2] and Purver et al. [36], using HMM-like graphical models for linear seg-
mentation. Then, Eisenstein et al. in BayeseSeg [12] extent this model by marginalizing
the language model using Dirichlet compound multinominal distribution. Later, in [11]
multi-scale phenomenon of lexical cohesion is leveraged in Bayesian generative model for
hierarchical topic segmentation.

2.2 Clustering

With recent information explosion, people may encounter a large amount of information
which is stored as data for many purposes. One important task is that human have to
separate a set of data objects to separate groups for more relationships between them and
discover its structure to learn new knowledge in data mining process. To do that, machine
learning approach can be applied and let computer learn some pre-specified structure of
data, then distribute new data into appropriate structure then. However, annotating or
assign label for data to specific structure is a costly task, especially with a large amount
of data. Another difficulty is new given data might be outlier data samples that it is hard
to decide which group it should be belong to. That problems leads to a need to distribute
unlabelled data to groups, or to discover the structure of data.

2.2.1 Clustering Algorithms in General

Clustering is a automatic process of division unlabelled data into groups of similar objects.
Each cluster (so-called subset, group, or category) consists of objects that are similar
between themselves and dissimilar to objects of other groups. Specifically, clustering is

6

an unsupervised process of exploratory data analysis, the goal of clustering is deliver
unlabelled data set into a finite and discrete set of hidden data structure. It means data
is represented by a few clusters, though information may loss the simplification will be
achieved instead.
Depending on the properties of cluster, the understanding of cluster may vary in differ-

ent ways. The clusters can be exclusive, that means a data sample should belong to only
one cluster; or, there may be overlapping between two or more clusters, that means a
data sample may appear in more than one cluster. We will review some algorithms which
separate data in exclusive clusters. Because there is no best criteria to divide a data set
into clusters, it depends on the purposes or the problems that we design an appropriate
clusters criteria. On aspect of clustering model, there are various models with different
characteristics such as connectivity model, centroid model, distribution model, density
model, subspace model, graph-based model, and so on.
The idea of connectivity-based clustering algorithm is objects being more related to

nearby objects than the objects. A representative algorithm for this clustering model is
hierarchical clustering which can be either top-down (divisive) or bottom-up (agglomer-
ative). In detail, hierarchical agglomerative clustering (HAC), the bottom-up strategy,
considers each object as a cluster at first, then combine two nearest clusters into one until
all objects belongs to an exclusive cluster like demonstrated demonstrated in Figure 2.2.
In contrast, the top-down strategy considers all objects belong to a cluster at first, and
continuously divide the cluster until each object belongs to a separate cluster.

Figure 2.2: The Hierarchical Agglomerative Clustering (HAC) algorithm

In centroid-based clustering algorithms, clusters are represented as a single object
though the popular object may not really a member of data set. The objective of centroid-
based clustering algorithm is minimized the average distance between objects of the clus-
ter. A representative algorithm of this clustering model is K-Means. When the number
of cluster is fixed to K, from the data set K objects are selected randomly as initial
centres (so-called exemplars), then objects are assigned to the nearest cluster based on
distance. After that, new optimized centres are found by computing the average distance
of clusters. This process is repeated until the centres of cluster is unchanged or slightly
changed, and result the clusters with their members as in Figure 2.3. However, most

7

Figure 2.3: The K-Means algorithm

of centroid-based clustering algorithms is they require a pre-specified number of clusters
that lead to another optimal problem that is how to find the number of clusters K. An-
other disadvantage is that wrong assigning objects to cluster may cause the incorrect of
cut-borders between clusters.
The distribution-based clustering algorithms exploit distribution models to deliver ob-

jects to clusters. The key idea of this clustering model is objects belonging to the same
cluster are likely to have the same distribution, and each object is assumed to be gener-
ated by a probability distribution. Then, clustering becomes the process of estimating the
parameters of many underlying models. This method also provides the correlation and
dependence of attributes between objects. A famous algorithm representing for distribute-

Figure 2.4: The Expectation Maximization clustering (EM-clustering) algorithm

based model is Expectation Maximization clustering (EM-clustering) illustrated in Figure
2.4. But, this algorithm is applied on the assumption that the data is followed by Gaussian

8

distribution which is a strong assumption on data.
In density-based clustering algorithms, a cluster is defined as an area which has higher

density than other areas in the data set. This algorithm is able to capture the clusters in
”natural” arbitrary shapes. Other objects in sparse areas are considered as noise objects.
A famous algorithm based on density is density-based spatial clustering of applications with
noise (DBSCAN) illustrated in Figure 2.5. This kind of algorithm bases on the number of
objects in neighbourhood, each cluster continuously grows by recruiting neighbour objects
given that the objects satisfy a specific objective function.

Figure 2.5: DBSCAN clustering algorithm

Another clustering model is graph-based clustering algorithms. This method models a
complete graph from data set, where nodes in graph represent objects in data set, and the
edges between nodes are relations between objects. These relations can be the distances
or similarities between objects in data set. The key idea to find clusters of this clustering
model is separating the graph into many sub-graphs whose nodes in the same cluster are
closer than those in different clusters (Figure 2.6). This kind of clustering model will be
discussed more details in Section 2.2.2.

2.2.2 Clustering in Computational Linguistics

In the research context of natural language processing (NLP), we are going to review
the clustering algorithms applicable to computational linguistics. In the field of NLP,
graph-based clustering has gained the intention in recent years [5] though some formal
academic meeting such as annual workshop TextGraph 1. The applications of graph-based
clustering in NLP also varies in a wide range from document clustering, word clustering,
co-reference resolution, word sense disambiguation.
To divide objects to cluster, the data set is model as a graph G = (V,E,W), where

V = {v1, ..., vN} is the vertices of graph, with vi represents for an object in data set

1http://www.textgraphs.org/

9

http://www.textgraphs.org/

Figure 2.6: Graph-based clustering algorithm

(usually the object is word, phrase, sentence, segment, or document); the relationships
between objects is expressed in the set of E = {vij | i, j ∈ [1, N]} means the edges
between nodes of graph; the important of relations between objects are reflected by the
edge weights W which means is the distance between vertices in graph. In NLP the
distance of text is usually the text similarity that will be introduced in detail in Section
2.3.
Clustering a data set which can be modelled as a graph is equivalent to find subgraphs

of the complete graph. The key idea behind graph-based clustering algorithms is the
graph consists of dense subgraphs provide that the distances between vertices in the same
subgraph are closer than the external ones. There are two types of clustering algorithm
using graph-based approach, which are divisive and agglomerative. Divisive clustering is
top-down approach, previous work showed that divisive approaches are more efficient than
the other one. In its turn, divisive approach can be divided to several subclasses, namely,
cut-based clustering, spectral clustering, multilevel clustering, random walks, shortest path.
All algorithms follow divisive approach are based on the hypothesis that split a graph
to subgraphs recursively, and agglomerative clustering is bottom-up approach. Divisive
approach also results the hierarchy in output because of multi-level process of clustering.
There is a variety of problems in NLP can be naturally represented as graphs, such

as co-occurrence graphs, co-reference graphs, word/sentence/document graphs which are
use in NLP problems such as co-reference resolution, word clustering, and word sense
disambiguation.
Co-reference resolution is the problem of partitioning a set of mentions into entities,

with entity is an object or a set of objects in real world (e.g people, organization), and
mention is a textual reference to an entity. One of common approach for co-reference
resolution in early stage based on clustering involving to two steps:

(i) Classification step to compute how likely one mention co-refers with the others;

(ii) Clustering step to group the mentions into clusters such that all mentions in a cluster
refer to the same entity.

10

However, the early clustering approach to this problem suffers from a disadvantage that
they do not search all the possible clustering to find the co-reference. On the other hand,
this problem can be modelled as a graph such that the vertex represents a mention, and
edge weight carries the co-reference likelihood between two mentions. So that the clusters
can be identified globally, and graph-clustering approach applying to this problem yields
competitive results.
The problem of word clustering is defined as clustering a set of words in to group such

that similar words are in the same cluster. This technique takes benefit to many NLP
problems, e.g., text classification or word sense disambiguation. Word clustering can be
solved by follow these steps:

(i) Represent each word as a feature vector and computing the similarity of all pair of
words;

(ii) Cluster the words, such the the similar words are grouped together.

In word clustering, the co-reference graph is also constructed as previous problem, but the
relation between two vertices is usually computed by applying similarity measure (e.g.,
χ2, cosine) on a co-occurence matrix.
There is no general graph-based clustering algorithm [5] effective for all NLP problems.

Depend on the purposes or the problems, a clustering algorithm is proposed to optimize
some quality measure, and there is no perfect measure that can capture all characteristics
of cluster structure as well as there is no criteria to define the best characteristics of a
cluster.

2.3 Text Similarity

Text similarity (or text relatedness) is a concept measuring the degree of overlapping in
meaning between words, sentences, paragraphs, or documents in general. Measures of text
semantic similarity have been used in many applications of NLP and related areas. One of
earliest applications of text similarity is the vectorial model [39]. Text similarity has been
used in many problems in NLP such as text classification, word sense disambiguation,
extractive information, and text summarization. Specifically, given two texts (words,
sentences, documents), the purpose of measuring text similarity is to figure out a score
indicate their relations in meaning.
The simplest approach to find the similarity between two text segments is to use lexical

matching method, and compute the similarity score based on the number of lexical units
that occur in both input texts. To improve this simple method, weighting and factoriza-
tions [40] are considered, such as removing functional words (stop words), part of speech
tagging, longest subsequence matching. However, the semantic of text is still hard to
capture. For example, with two input I have a dog and I own an animal, lexical matching
approach fails to discover the link between dog and animal, and unaware the identical
meaning of have and own in this context. So, the purpose of finding text similarity score

11

is not only take into account the similarity on the word surface but also on the semantic
meaning.
To overcome the limit of semantic in lexical approaches, corpus-based and knowledge-

based approaches use a large corpus and thesaurus to capture the semantic aspect of word
[42] [25] [47] based on the probability and statistics of words in input text. These semantic
metrics have been successfully applied to NLP tasks such as word sense disambiguation
[35], and synonym identication [42]. The vector-based approach is also a common choice
to compare two strings of text in Information Retrieval systems [31]. This approach
represent a document as a vector, then comparing a pair of documents is equivalent to
compute the distance or similarity of a pair of vector (e.g Euclidean, cosine...).
Another well-known methods to compute similarity with corpus-based is the Latent

Semantic Analysis (LSA) [22]. LSA is a high-dimensional linear association model, it
analyses a large corpus of natural language text and generates a representation that get
the similarity of words and text messages.
We distinguish text similarity to two main levels. The basic level is the similarity

between words is mentions in Section 2.3.1. More advance in similarity is the semantic
similarity between sentences or document is given in Section 2.3.2.

2.3.1 Similarity of Words

There is a large number of word-to-word similarity metrics that were proposed using
distance-oriented measures computed from semantic networks, or using metrics based on
models of distribute similarity learned from a large thesaurus.
The approach using distance-oriented measures computed the similarity of words from

semantic networks such as WordNet [25] 2. This kind of metric considers the words as
concepts and calculates the similarity of concepts based on the distance of them on the
semantic networks. We recall some common metrics proposed in previous work based on
WordNet, such as:

• Leacock & Chodorow similarity [25], the length of the shortest path between two
concepts in WordNet is exploited using node counting and the maximum depth of
taxonomy D.

Sim = − log
length

2D

• Lesk similarity [26], the similarity of two concepts is defined as a function overlap
between the corresponding definitions in dictionary.

• Wu & Palmer similarity [47], the similarity of two concept is measured by the depth
of two concepts in the taxonomy and the depth of the least common subsumer
(LCS).

Sim =
2× depth(LCS)

depth(concept1) + depth(concept2)

2http://wordnet.princeton.edu/

12

• Resnik similarity [37] combines the probability of encountering an instance of LCS
to the information content (IC)

• Lin similarity [27] add a normalization factor consisting of the information content
of the input concepts.

Sim =
2× IC(LCS)

IC(concept1) + IC(concept2)

Recently, when the free encyclopaedia Wikipedia 3 become popular dictionary, most
concepts have been defined well by the the world community. Wikipedia become a promise
thesaurus to look up the definitions of concepts. So some works are based on Wikipedia to
find the similarity between concepts, such as uses snippets fromWikipedia to calculate the
semantic similarity between words by using cosine similarity and TF-IDF [48]. Another
use machine learning techniques to explicitly represent the meaning of any text as a
weighted vector of Wikipedia-based concepts, and calculate the similarity between words
as the cosine between the corresponding vectors [15].
Beside knowledge-based methods as introduced above, corpus-based methods are also

explored for usage in measure the similarity. Such as PMI-IR uses Pointwise Mutual
Information (PMI) and Information Retrieval (IR) to measure the similarity of pairs
of words [42] using data collected by information retrieval. PMI-IR is an unsupervised
measure for the evaluation of the semantic similarity of words. It is based on word co-
occurrence using counts collected over very large corpora. With LSA, term cooccurrences
in a corpus are captured by means of a dimensionality reduction operated by a singular
value decomposition (SVD) on the term-by-document matrix T representing the corpus.

2.3.2 Similarity of Sentences and Documents

The combination of word similarity might not reveal how similar of two sentences or
two documents, because word is just small unit in sentences or documents. Even word
stores significant meaning in sentence and document, its meaning may vary depending on
the context and usages. Then, the similarity (relatedness) between two sentences or two
documents is still a challenge in NLP because of the meaning of text may vary in different
context, or the complex pragmatic of sentences or document depends on the their usages.
From the first stage, the text similarity between sentences or documents can be easy fig-

ured out by vectorial representation, then various improvements proposed recently for such
techniques towards inventing more sophisticated weighting schemes for the text words,
such as TF-IDF and its variations (Aizawa, 2003). Though those techniques achieve cer-
tain results, the semantic aspect is still remained to be researched more. Usually, word-to-
word similarity can be extended to more general text similarity [9]. Co-occurrence method
in word-to-word similarity is extended to pattern matching method [9] which is often used
in text mining, this technique relies on the assumption that documents are more similar if

3http://www.wikipedia.org/

13

they contain more words in common. The word, in its turn, is also considers in concepts
aspect, or the semantic similarity of words rather than the lexical similarity.
A measure of relatedness between text segments must take into account both the lexical

and the semantic relatedness between words. Omiotis [41], a thesaurus-based similarity
method exploits only a word thesaurus in order to devise implicit semantic links between
words, which measure of semantic relatedness between texts which capitalizes on the word-
to-word semantic relatedness measure (SR) and extends it to measure the relatedness
between texts. Other approach employs the sentence syntax as SyMSS [33] to measure
the similarity for short texts. SyMSS captures and combines syntactic and semantic
information to compute the semantic similarity of two sentences. Semantic information
is obtained from a lexical database and through a deep parsing process that finds the
phrases in each sentence.
Despite the research has been doing for a long time, text semantic similarity also need

to be considered to other languages beside English, such as Asian languages. Among of
Asian languages, Chinese is perhaps the language under the focus of research while its
other sibling languages such as Japanese and Korean have not been considered on aspect
of similarity.

2.4 Keyphrase Extraction

Keyword and keyphrase are word or a multi-words (or term) that describe the con-
tent of documents. From now on, we mention to both of them as keyphrase generally.
When the readers read a whole document, the remaining ideas in their mind are usually
some keyphrases representing for the general and main information of the document. In
other words, keyphrases give the reader a brief summary or main ideas of the document.
Keyphrase extraction provided as essential step in many task of NLP such as document
classification, clustering and summarization. There are two main approaches to extract
keyphrases: supervised and unsupervised.

2.4.1 Supervised Keyphrase Extraction

Supervised approach for extracting keyphrases require training data. A typical work in
supervised approach is GenEx algorithm [43] regards extraction as a classification task,
in which a document is treated as a set of phrases, and apply a train model to determine
whether a candidate phrase is significant to be keyphrase or not based on statistical and
linguistic feature. Other proposed a procedure for keyphrase extraction based on the
naive Bayes learning scheme [13]. In addition, some work on generating table-of-contents
[4] [45] capture both the global dependencies across different tittles and local constrains
with a section of document
A disadvantage of supervised approach is it need a considerable amount of training

data. In real world, the annotated data does not always available for training phase,
especially when the information is continuously increased and vary in many domains, the
task of labelling data becomes a time-consuming and costly task. On the other hand, the

14

increasing of information lead to the need of extracting important information. So, it is
necessary to extract information from document even in case the annotated data is not
available.

2.4.2 Unsupervised Keyphrase Extraction

The first approach appear in our mind when thinking about unsupervised approach to
extract keyphrases is to count and find the most frequent phrases and consider them as
the keyphrases representing for document. The approach using term frequency - inverse
document frequency (TF-IDF) [8] to extract keyphrases achieved some certain results.
The term frequency (TF) takes the role as the measurement of how importance of a term
in document, and the inverse document frequency (IDF) measures the important of a
term in a collection of documents. The combination of TF-IDF measure the significant
of a term in a document provide that it is included in a specific corpus, that it can get
the context of the corpus.
Recently, in unsupervised approaches, the state of the art method is graph-based rank-

ing with the first work is TextRank [32]. The variation of TextRank is SingleRank and
ExpandRank [46]. This kind of algorithm first build a graph from candidate words in
document, then measure the important of these words by calculating the scores. After
that, the high ranked candidate words are considered as the keyphrase of the document.
To extract keyphrases form a document, a typical system consists of three steps:

(i) Candidate words selection. This step choose potential key words from documents
using heuristics such as removing stop words [29], choosing words with specific part-
of-speech tags (e.g., nouns, verbs, adjectives) [28] [32];

(ii) Cadidate words ranking. When the list of candidate words is obtained, the relations
between words should be design in order to rank these words and get the important
candidate words. The relations can be the co-occurrence of candidate words in a
fixed-size window, in a document, or in a corpus;

(iii) Keyphrase formation. In this step, top ranking words are collapsed to form the
phrases.

Others consider extracting keyphrases as clustering task [28], and the exemplars of
clusters are the keyphrases representing for the document. The clustering-based keyphrase
extraction algorithm first filters out the stop words from a given document and treats the
remaining unigrams as candidate words. Then, for each candidate word, compute its
relatedness by co-occurrence with a window in size W or by statistics metrics. After that,
candidate words are clustered based on their mutual relatedness.Finally, the exemplars or
the centres for clusters resulted by clustering step are treated as the keyphrases of given
document. The unsupervised method provide us a promising option to extract keyphrases
from document without spending a lot of time on annotating the data for training. It
has another advantage that the number of keyphrases is not fixed, but it depends on the
length of document.

15

Chapter 3

Approach

In this chapter, we introduce our proposed approach to generate hierarchical table of
indexes. A hierarchical table of indexes (HTI) is similar to a table of indexes appearing
at the back of books, which help the readers tracing to sections relating to given key
words. Beside the role as a representation the summary (or the overview, general ideas) of
documents in structural organization, HTI also helps readers quickly refer to the sections
containing their interested key words.
Hierarchical in HTI means the set of indexes in lower tier contain more specific infor-

mation than the higher one. Given a collection of related documents in a specific field,
our target is generating a hierarchical table of indexes. Because of involving multiple
sources of information, the challenges we have to face is not only the overlapping of the
ideas between documents, but some parts of a document can supplement to some parts
of another one, or the content between documents becomes contradiction to each other.
To treat such problems may occur, the redundancy of information should be identified as
well as recognized the novelty in the content; also, the output summary should be ensure
to be coherent and complete. The HTI is generated under assumptions:

(i) One segment should be belong to (only) one topic;

(ii) Two segments are in the same topic if they are semantic related.

To achieve the target, we proposed a framework involving to three steps as illustrated
in Fingure 3.1 for more intuitively:

1. Segment all documents into separate segments based on topics;

2. Construct hierarchical tree of segments (HTS);

3. Extract key-phrases from each segments, and generate HTI from HTS.

To make the process automatic, all three steps in the framework are unsupervised al-
gorithms. We assumed the text segmentation in first step is available with various of
existing algorithms such as TextTiling [18], C99 [7], TextSeg [44], LCSeg [16], MinCut-
Seg [30], BayesSeg [12], which are introduced in Section 2.1. These text segmentation

16

Figure 3.1: The illustration of three steps in proposed framework

algorithms aim to partition text document into coherent segments, where each segment
refers to distinguished topics comparing to its adjacent segments. So that, when apply-
ing segmentation algorithms on a (collection of) documents, the output will be a set of
segments.
We mainly focus on two other steps of the framework. The constructing of a hierarchical

tree of segments is described in Section 3.1. Then, the description of how to generate
hierarchical table of indexes will be given in Section 3.2.

17

3.1 Construct Hierarchical Tree of Segments (HTS)

At first, the constructing of Hierarchical Tree of Segments (HTS) may be done by com-
bining segments into composite tree in order to reflect the internal hierarchical structure,
using Hierarchical Agglomerative Clustering (HAC) algorithm. HAC algorithm merges
two clusters until all clusters have been merged into a single cluster [8]. However, the
structure of HAC is not ”natural” when apply to construct HTS. Even if ”flatten” the
HAC dendrogram (Figure 3.2) to get the hierarchical structure more natural, because
HAC algorithm does not require that all objects within a cluster be similar to a single
center, two segments that should not belong to the same cluster may be grouped together
by an unfortunate sequence of pairwise grouping [14].

Figure 3.2: The HAC algorithm with flatten technique

Because the above reasons, we employ another clustering technique which is Affinity
Propagation [14] to clustering the segments. Affinity Propagation takes input measure
of similarity between pairs of data points. Real-valued messages are exchanged between
data points until a high-quality set of ”exemplars” (centres of clusters) and corresponding
clusters gradually emerges. The advantage of Affinity Propagation clustering algorithm
is not only self-determine the number of clusters, but also the data points are grouped
in more natural clusters by considering the distance between all data points to a single
centre.
The key idea to construct Hierarchical Tree of Segments is: divide the set of segments

into groups based on its semantic similarity until all groups can not be divided. We
visualize this idea in the Figure 3.3.
Let consider the set of segments obtained from first step to be a set of data points.

The HTS is constructed by modelling the set of data points as a weighted graph, and
dividing the set of data points of graph into clusters based on their semantic distances;
then, each cluster will be re-divided into smaller pieces until it cannot be splitted; the
sub-clusters obtained will form lower tier of hierarchical tree structure as described in
details in Algorithm 1.
We demonstrate this idea in Figure 3.4 for more visually. The original set of data

points originally be viewed as a cluster, it will be first divided into three clusters, then

18

Figure 3.3: The flowchart of constructing Hierachcial Tree of Segments (HTS)

cluster 1 and cluster 2 are continuously divided until we cannot divide any cluster into
smaller clusters. As a result, the division process form the hierarchical structure of the
data points based on the relation between data points as in Figure 3.5. In other word,
this process construct the hierarchical structure of the set of segments based on semantic
relations between them.
Technically, the graph is modelled as a triple of G = (V,E,W), where:

(i) V = {v1, ..., vN} is set of vertices, each vertex represent a segment;

(ii) E ⊆ V × V is set of edges;

(iii) W = (wij)i,j=1,...,N is adjacency matrix, with each element wij is the weight of edge
between two vertices vi and vj and wij ∈ [0, 1].

The weight of edge means how related between two data points, or the semantic similarity
[9] of two segments, the more related of two segments the more higher similarity it will

19

Figure 3.4: Constructing hierarchical tree of segments based on clustering approach

be. To cluster the set of segments, the Affinity Propagation algorithm [14] is applied, so
that the number of clusters is drawn by algorithm automatically, and the segments within
a cluster are all similar to a center segments.

Figure 3.5: The structure of hierarchical tree of segments

At each tier, a threshold θ is applied to cut off the edge weights smaller than it, so that
it will make the ideas in lower tier become more distinguishable than the higher one. In
details, the completed graph at initial tier 0 is divided into some clusters; then, graphs
corresponding to clusters are formed in which edges’ weight lower than θ are removed.
At tier 0, threshold θ = 0 means all relations between segments are remained. At tier 1,
threshold θ is initialized to θ = c. From now on, threshold θ at child node is larger than
its ancestor by adding a percentage γ ∈ [0, 1] to its ancestor’s threshold. The recursive
process will be stopped when the graph cannot be divided into clusters. As the result, the
depth and the width of HTS are drawn automatically. In output, the root node of HTS
includes branch node(s), the branch node contains other branch nodes or leaf nodes, and
the leaf node includes segments.

20

Algorithm 1: Construct Hierarchical Tree of Segments

input : Graph G = (V,E,W), Threshold θ
output: Hierarchical Tree of Segments

1 Clustering graph G to get a set of clusters C;
2 if number of clusters in C > 1 then
3 θk = θ + θ × γ ; // constant γ is increasing coefficient

4 foreach cluster Ck ∈ C do
5 Construct sub-graph Gk = (Vk, Ek,Wk), where Vk ∈ Ck and

eij ∈ Ek | i, j ∈ Vk, wij ≥ θk;
6 ConstructHTS(Gk, θk);

7 end

8 end

As the result, the Affinity Propagation algorithm gives a proper solution to the con-
structing of the hierarchical structure in our problem, where the segments ”overlapping”
in content (meaning) will be grouped together by similarity measures, and sub-clusters
are served as the ”supplement” for the content of clusters.

3.2 Build Hierarchical Table of Indexes (HTI)

In previous work, the table of contents (TOC) [4] [45], which appear at the beginning
of every book, is explored and considered as a hierarchical summary for single document
by generating sentences from text segments. Those work capture both the global depen-
dencies across different tittles and local constrains with a section of document. Although
those work result quite good TOC in fixed length, they need a lot of training data which
is not always available when change application to other domains. Especially, when apply
to multiple documents, the overlapping and supplement of content are not considered,
caused by using hierarchical segmentation [4] and assumption of available hierarchical
structure of content. Another work captures the hierarchical structure of word [23] but,
it outputs single word only, though the combination of words (keyphrases) is used more
natural in real world. So, this thesis proposed an approach to extract keyphrases from
multiple documents using unsupervised technique.
The hierarchical table of indexes (HTI) is build agglomeratively from the HTS in pre-

vious step using ranking approach [32]. This tasks includes two phases:

(i) Extract keyphrases from each segment in leaf nodes, and consider these keyphrases
as indexes for corresponding segments.

(ii) Select representing keyphrases of a cluster among keyphrases of its segments or
sub-clusters.

For more specifics, each segment in the leaf nodes of HTS is modelled as a graph to
extract keyphrases. All graphs of a leaf node are then merged into a graph, then extract

21

keyphrases representative for the merged graph. The merged graph of a leaf node, in its
turn, will be merge to other graphs to form bigger graph until reach the root node. To
make clear, we visualize this idea in flowchart in Figure 3.6 and in Algorithm 2.

Figure 3.6: The flowchart of building Hierarchical Table of Indexes

In the research context, keyphrase means a word or a group of words standing together
and containing significant information of the segment. Usually, in English text, keyphrases
of news or technical materials are the combination of adjective and noun [citation] which
contain meaningful concepts. But, in the context of this research, the keyphrase may
include verb, article (a, an, the), preposition (of, on, in ...) or conjunctions (and, or,
...). For example an English keyphrase ”a balance sheet and profit and loss statement”
corresponding to Japanese keyphrase ”貸借照表及び損益計算書”,where the conjunction
”and” in English and ”及び” in Japanese does not load any meaning but the link of
concepts in the keyphrase. In addition, even there is no conjunction, keyphrase ”損益計
算書” means ”profit and loss statement” still contains conjunction ”and” in its meaning.

22

3.2.1 Extract Keyphrases from Single Segments

To extract keyphrases from segment, the segment is modelled as a graph G = (V,E),
where:

(i) V={words ∈ S} is set of vertices which are candidate words from segment text; and

(ii) E is the relation between vertices determining by sliding a co-occurrence window in
size of N on the text, there will be a relation between two vertices if they occur in
the window.

The candidate words are those contain meaning such as nouns, verbs, adjectives, adverbs,
numbers. When get the graph of candidate words and their relations, compute the vertex
weights in graph with following formula until convergence 1 [9]:

WS(Vi) = (1− d) + d×
∑

Vj∈In(Vi)

WS(Vj)∑
Vk∈Out(Vj)

wjk

Where, d is damping factor and usually set d = 0.85; In(Vi) and Out(Vi) are in-degree and
out-degree of vertex Vi or the number of edges go from and point to vertex Vi respectively.
In this case, In(Vi) = Out(Vi) because graph in use is undirected. The vertex weights will
served as the rank of vertices, so then candidate keyphrases are extracted by combining
high ranked key words with the dependencies of words in sentence. These candidate
keyphrases also be added to graph as vertices, with relations to candidate words they
contain (illustrasted in Figure 3.7). This graph is ranked again, and keyphrases for each
segment are the top ranked vertices from the graph.

Figure 3.7: Constructing graph to extract keyphrases from a segment.

1The convergence is achieved when the change of vertices’ weight (or the value of Sk+1(Vi)− Sk(Vi))
in graph falls below a given threshold, falls bellow the given threshold.

23

3.2.2 Extract keyphrases from Clusters

From HTS, a cluster may include other sub-clusters or segments. The approach to extract
keyphrases from a cluster including many sub-clusters is similar to those including many
segments. The idea to extract is choosing high ranked keyphrases from the graph combined
from children’s graph recursively. In the hierarchical structure, clusters including segments
are leaf nodes, those including other sub-clusters but be included in another cluster are
branch nodes, and the biggest cluster is the root node. The nearer a node to root the
more general of keyphrases will be, and the more nearer to leaf node the more specific of
keyphrases of the node is.
To extract keyphrases of a cluster which includes many segments, all graphs modelled

from segments are merged together, then compute the vertices’ weight of combined graph,
after that extract top ranked vertices as keyphrases for the cluster. When combine two
graphs, the two sets of vertices from two graphs are aggregated into one set. To ensure
the value of a vertex is unique in the graph, in the union set of vertices, if two vertices
have the same value (the words it contains are the same), these vertices will be collapsed
into one, and their corresponding edges from two identical vertices are connected to the
unique one. The complete process to extract keyphrases from a single segment and from
a cluster to build up HTI is described in Algorithm 2 specifically.

Algorithm 2: Construct Hierarchical Table of Indexes

input : Hierarchical Tree of Segment HTS T
output: Hierarchical Table of Indexes HTI

1 if T does not contain child node then // tree node T is leaf node

2 foreach segment S ∈ T do
3 Construct graph G = (V,E), where V={words ∈ S}, E={eij | i, j ∈ V and

i, j appear in co-occurrence window};
4 Compute all vertices’ weight until convergence;
5 Rank graph vertices by descending order of vertices’ weight;
6 From S extract keyphrases K={combination of words appear at p% top

ranked in graph with sentence dependencies};
7 Construct new graph G′ = (V ′, E ′), where V ′ = V +K and

E ′={eij | i ∈ V, j ∈ K and ∃w ∈ j, w = i};
8 end

9 else // tree node T is root or branch node

10 From graphs (Gi = (Vi, Ei))i=1,...,N constructed from the children of T , construct
graph H = (Vh, Eh), where Vh = {V1 ∪ · · · ∪ VN}, Eh = {E1 ∪ · · · ∪ EN ∪ E} with
E = {eij | ∃w ∈ j ∈ Ep, ∃v ∈ j ∈ Eq, w = v};

11 end
12 Compute all vertices’ weight until convergence;
13 Rank all graph vertices again;
14 Extract top ranked vertices to be keyphrases for the current node;

24

We argue that, by combining the graph together, the content overlapping between
segments (clusters) which is important will appear in the output by ranking process.
Furthermore, the keyphrases in lower tiers content more details information than those
in higher tiers, so that, the content of a cluster at lower tier are considered as supplement
for the content of its ancestor.

Compare to Original TextRank

To extract keyphrases in original TextRank [32], documents should be scanned twice, the
first time is to find the candidate words and their relationships, the second time is to take
context when collapsing candidate words to form keyphrases. Assume that in a cluster, all
segments content is concatenate into one to apply TextRank for extracting keyphrases of
cluster. When using the original technique to build HTI, it will take 2×the height of HTS
times scanning over documents to construct graph and extract keyphrases.
In contrast, the proposed method need to scan over all segments twice only. Moreover,

merging vertices whose value are the same in different graph still get the relation of
words, or in another words, the the context of words still remain when ranking to get
the keyphrases for cluster. For those reasons, we believe that proposed merging graph
technique is more efficient than the original TextRank when apply to extract keyphrase
for long text or multiple documents.

25

Chapter 4

Experiments

Data Preparation

Experiment data is Pension Law in both Japanese and English version collected from
Japanese Law Translation 1. The data includes 315 documents filed in 12 categories. The
documents collected for experiment are in XML format.

4.1 Experiment Setup

The experiment is performed by following steps:

1. Preprocess data for experiment: parse data from XML format to text format

2. In first step, all documents are then be segmented based on topics.

3. In the second step, construct HTS with approach described in Section 3.1

4. In the last step, keyphrases are extracted from the segments of leaf nodes of HTS
to generate HTI using approach described in Section 3.2.

Step 0: Preprocessing

The text of documents are read from XML documents (Figure 4.1) and parsed to text
file (Figure 4.2). Note that the title and heading of documents are omitted from text
document, and each sentence is placed in a line of text file.

Step 1: Text Segmentation

In first step, all documents are then be segmented by TextSeg [44], which is an unsuper-
vised text segmentation method. The boundaries betweem segment in output is marked
by Choi notation (==========) as Figure 4.3.

1http://www.japaneselawtranslation.go.jp/

26

http://www.japaneselawtranslation.go.jp/

Figure 4.1: A part of XML file used in experiment

Figure 4.2: A part of text file parsed from XML file

27

Figure 4.3: A part of text being segmented

Step 2: Construct Hierarchical Tree of Segments

In the second step, we model complete graph G = (V,E,W) from set of segments, with
vertices are candidate words (e.g., nouns, verbs, adjectives, adverbs, cardinals), and edge
weight is text similarity computed in semantic aspect as described in [9] (see Appendix
A). Next, we apply Algorithm 1 and existing unsupervised clustering algorithm Affinity
Propagation [14] (see Appendix B) to construct HTS. Initial threshold θ = 0.5 and increase
coefficient γ = 50%. Figure 4.4a shows a part of HTS which is understood as represented
in 4.4b.

28

(a) Output of HTS (b) Visualization of HTS

Figure 4.4: Two messages used in Affinity Propagation

Step 3: Build Hierarchical Table of Indexes

In the last step, keyphrases are extracted from the segments of leaf nodes of HTS to
generate HTI using Algorithm 2 (see Figure 4.5).

Figure 4.5: The output of HTI

29

4.2 Evaluation

The evaluation of experiment is judged by human. The experiments will be evaluated by
two criteria:

i How good the summary is;

ii How quick the relevant sections can be navigated to.

Evaluation of the Summary

To evaluate the summary, specifically the quality of extracted keyphrases, we illustrate
the proposed approach on a document named Act on Controls on the Illicit Export and
Import and other matters of Cultural Property in category of Education and Culture.
The experiment is run in both English and Japanese version of law. A piece of the

result in Japanese is illustrated in the Figure 4.6, where the leftmost box is the root
containing the highest ranked indexes for all, it is decomposed into branches with more
specific indexes added into lower tier. The demonstration in English version is provided
in Appendix C.

Figure 4.6: The illustration of output for Japanese law

Table 4.1 describes the result and manual evaluation on the generating of HTI for the
given document. In each language, the total number of keyphrases is the number of all
keyphrases in HTI generated by proposed approach. The HTI is then showed to human
and get the respond of which keyphrase in HTI is acceptable or it is important to the
main ideas of the text. Because of the characteristics of language, the phrase in English
and Japanese content different kind of part-of-speeches, it causes an approximately 5%
different between the rate of English and Japanese.

30

Language Total number of keyphrases Keyphrases accepted by human Precision
English 150 68 45.3%
Japanese 96 39 40.6%

Table 4.1: Result of keyphrases extraction

Evaluation of Navigation

The evaluation of the navigation on hierarchical tree is implemented in English version,
we use 08 documents from category Tax and Financial affairs, which are list in Table 4.2.

No. Law Name
1 National Tax Collection Act
2 Act on General Rules for National Taxes
3 Income Tax Act(Limited to the provisions related to nonresidents and foreign

corporations)
4 Order for Enforcement of the Income Tax Act(Limited to the provisions related

to nonresidents and foreign corporations)
5 Ordinance for Enforcement of the Income Tax Act(Limited to the provisions

related to nonresidents and foreign corporations)
6 Corporation Tax Act(Limited to the provisions related to foreign corporations)
7 Order for Enforcement of the Corporation Tax Act(Limited to the provisions

related to foreign corporations)
8 Ordinance for Enforcement of the Corporation Tax Act(Limited to the provi-

sions related to foreign corporations)

Table 4.2: List of laws used in evaluation of navigation

We provide a questionnaire of five questions (Figure 4.8), each question is following by
four choices. The questionnaire is distributed to two groups of people, one look up the
answers for questions in original plain text in PDF format using search function (Control
+ F) using PDF reader; the other look up the answers by navigating on the extracted
keyphrases on the root level (Figure 4.7).
The result of this survey is shown in Table 4.3. From this result, we see that the average

time to search the interest sections in HTI is 9.5 minutes. This result is very competitive
to 13.8 minutes of using original documents and search linearly.

On original document On HTI
Average time 13.8 minutes 9.5 minutes

Table 4.3: Avarage time to find answer when search on original text and HTI

31

Figure 4.7: Some extracted keyphrases in the root node (in English)

Figure 4.8: The questionnaire to evaluate the navigation of HTI (with answers)

32

Chapter 5

Conclusions and Future Work

Conclusions

The thesis studies an automatic process to generate a hierarchical table of indexes for
multiple documents. The main contributions are:

1. Introduced an unsupervised framework to generate hierarchical table of indexes for
multiple documents;

2. Proposed an approach to construct hierarchical tree of segments by unsupervised
clustering algorithm with the depth and wide of the hierarchical structure is drawn
automatically;

3. Proposed an approach to extract keyphrases from multiple text segments by com-
bining sentence dependencies and graph rank based method algorithm, and then
generate hierarchical table of indexes from the tree of segments.

On the aspect of the content, the problem of overlapping in content, which multi-
document summarization is usually encounter, is solved because the segments with similar
topic are grouped together. In addition, the hierarchical structure, where the keyphrases
in lower tier is more details, also solves the problem of supplement in content between
(part of) documents. The remain challenge which is contradiction is need more study on
it.
The experiment is applied for both English and Japanese in contribution to Legal

Engineering. The preliminary result of summary is provided as the illustration for our
approach. And searching information on the hierarchical summary is evaluated better
than searching on original plain documents.
We realize that because of the different in the transformation in word surface of lan-

guages, the English keyphrases can be the combination of adjective + noun, where ad-
jective can be the form of V-ing or V-ed. And the Japanese keyphrases can be the
combination of verb + noun, verb +の + noun etc,.

33

Future Work

Though considering to semantic aspect of words by using WordNet, the text similarity
metric [9] that is used to calculate the distance between the segments is a little bit slow,
cause by linear matching block of text from a pair of segments and by looking up for
semantic distance of words from WordNet.
So far, many existing methods in NLP are mainly focused on processing English. How-

ever, every language or specific data have its owns characteristics, and those methods are
not suitable or they need some modifications when being applied to other languages. It is
obvious that language-dependent software may cause some limitations. Topic model may
be applicable to overcome the limitations. Topic model is a type of statistical model for
discovering the abstract ”topics” that occur in a collection of documents. By applying
statistics, this approach gives us advantages:

(i) Firstly, it does not need much previous knowledge of language (language indepen-
dence);

(ii) Secondly, it may be adaptable to the change of the language or data set (data
driven).

To meet such needs, in future work, we plan:

1. To apply statistical model to constructing the hierarchical structure and combine
the supportive knowledge into extracting keyphrases while generating the table of
indexes;

2. To explore another text similarity will be explored to find a faster computation
metric for text similarity;

3. To consider approach to treat the contrasting of information between (parts of)
documents.

34

Bibliography

[1] Doug Beeferman, Adam Berger, and John Lafferty. Statistical models for text segmentation.
Mach. Learn., 34(1-3):177–210, February 1999.

[2] David M. Blei and Pedro J. Moreno. Topic segmentation with an aspect hidden markov
model. In Proceedings of the 24th annual international ACM SIGIR conference on Research
and development in information retrieval, SIGIR ’01, pages 343–348, New York, NY, USA,
2001. ACM.

[3] David M. Blei, Andrew Y. Ng, and Michael I. Jordan. Latent dirichlet allocation. J. Mach.
Learn. Res., 3:993–1022, March 2003.

[4] S. R. K. Branavan, Pawan Deshpande, and Regina Barzilay. Generating a table-of-contents.
In Proc. of ACL ’07, pages 544–551, Prague, Czech Republic, June 2007.

[5] Zheng Chen and Heng Ji. Graph-based clustering for computational linguistics: a survey. In
Proceedings of the 2010 Workshop on Graph-based Methods for Natural Language Process-
ing, TextGraphs-5, pages 1–9, Stroudsburg, PA, USA, 2010. Association for Computational
Linguistics.

[6] Jen-Tzung Chien and Chuang-Hua Chueh. Topic-based hierarchical segmentation. IEEE
Transactions on Audio, Speech & Language Processing, 20(1):55–66, 2012.

[7] Freddy Y. Y. Choi. Advances in domain independent linear text segmentation. In Proceed-
ings of the 1st North American chapter of the Association for Computational Linguistics
conference, NAACL 2000, pages 26–33, Stroudsburg, PA, USA, 2000. Association for Com-
putational Linguistics.

[8] Prabhakar Raghavan Christopher D. Manning and Hinrich Schutze. Introduction to Infor-
mation Retrieval. Cambridge University Press, 2008.

[9] Courtney Corley and Rada Mihalcea. Measuring the semantic similarity of texts. In Proceed-
ings of the ACL Workshop on Empirical Modeling of Semantic Equivalence and Entailment,
EMSEE ’05, pages 13–18, Stroudsburg, PA, USA, 2005. Association for Computational Lin-
guistics.

[10] Scott C. Deerwester, Susan T. Dumais, Thomas K. Landauer, George W. Furnas, and
Richard A. Harshman. Indexing by latent semantic analysis. JASIS, 41(6):391–407, 1990.

[11] Jacob Eisenstein. Hierarchical text segmentation from multi-scale lexical cohesion. In
Proceedings of Human Language Technologies: The 2009 Annual Conference of the North

35

American Chapter of the Association for Computational Linguistics, NAACL ’09, pages
353–361, Stroudsburg, PA, USA, 2009. Association for Computational Linguistics.

[12] Jacob Eisenstein and Regina Barzilay. Bayesian unsupervised topic segmentation. In Pro-
ceedings of the Conference on Empirical Methods in Natural Language Processing, EMNLP
’08, pages 334–343, Stroudsburg, PA, USA, 2008. Association for Computational Linguis-
tics.

[13] Eibe Frank, Gordon W. Paynter, Ian H. Witten, Carl Gutwin, and Craig G. Nevill-Manning.
Domain-specific keyphrase extraction. In IJCAI, pages 668–673, 1999.

[14] Brendan J. Frey and Delbert Dueck. Clustering by passing messages between data points.
Science, 315:972–976, 2007.

[15] Evgeniy Gabrilovich and Shaul Markovitch. Computing semantic relatedness using
wikipedia-based explicit semantic analysis. In Proceedings of the 20th international joint
conference on Artifical intelligence, IJCAI’07, pages 1606–1611, San Francisco, CA, USA,
2007. Morgan Kaufmann Publishers Inc.

[16] Michel Galley, Kathleen McKeown, Eric Fosler-Lussier, and Hongyan Jing. Discourse seg-
mentation of multi-party conversation. In Proceedings of the 41st Annual Meeting on As-
sociation for Computational Linguistics - Volume 1, ACL ’03, pages 562–569, Stroudsburg,
PA, USA, 2003. Association for Computational Linguistics.

[17] M.A.K Halliday and Ruqayia Hasan. Cohesion in English. Longman, London, 1976.

[18] Marti A. Hearst. Multi-paragraph segmentation of expository text. In Proceedings of the
32nd annual meeting on Association for Computational Linguistics, ACL ’94, pages 9–16,
Stroudsburg, PA, USA, 1994. Association for Computational Linguistics.

[19] Marti A. Hearst. Texttiling: segmenting text into multi-paragraph subtopic passages. Com-
put. Linguist., 23(1):33–64, March 1997.

[20] Thomas Hofmann. Probabilistic latent semantic indexing. In Proceedings of the 22nd
annual international ACM SIGIR conference on Research and development in information
retrieval, SIGIR ’99, pages 50–57, New York, NY, USA, 1999. ACM.

[21] Hideki Kozima. Text segmentation based on similarity between words. In Proceedings
of the 31st annual meeting on Association for Computational Linguistics, ACL ’93, pages
286–288, Stroudsburg, PA, USA, 1993. Association for Computational Linguistics.

[22] T. K. Landauer and S. T. Dutnais. A solution to platos problem: The latent semantic
analysis theory of acquisition, induction, and representation of knowledge. Psychological
review, pages 211–240, 1997.

[23] Dawn Lawrie, W. Bruce Croft, and Arnold Rosenberg. Finding topic words for hierarchical
summarization. In Proceedings of the 24th annual international ACM SIGIR conference on
Research and development in information retrieval, SIGIR ’01, pages 349–357, New York,
NY, USA, 2001. ACM.

36

[24] Dawn J. Lawrie and W. Bruce Croft. Generating hierarchical summaries for web searches.
In Proceedings of the 26th annual international ACM SIGIR conference on Research and
development in informaion retrieval, SIGIR ’03, pages 457–458, New York, NY, USA, 2003.
ACM.

[25] C. Leacock and M. Chodorow. Combining local context and WordNet sense similiarity for
word sense disambiguation. The MIT Press, US, 1998.

[26] Michael E Lesk. Automatic sense disambiguation using machine readable dictionaries: how
to tell a pine cone from an ice cream cone. In Proceedings of the 5th annual international
conference on Systems documentation, SIGDOC ’86, pages 24–26, New York, NY, USA,
1986. ACM.

[27] Dekang Lin. An information-theoretic definition of similarity. In Proceedings of the Fifteenth
International Conference on Machine Learning, ICML ’98, pages 296–304, San Francisco,
CA, USA, 1998. Morgan Kaufmann Publishers Inc.

[28] Feifan Liu, Deana Pennell, Fei Liu, and Yang Liu. Unsupervised approaches for automatic
keyword extraction using meeting transcripts. In Proceedings of Human Language Tech-
nologies: The 2009 Annual Conference of the North American Chapter of the Association
for Computational Linguistics, NAACL ’09, pages 620–628, Stroudsburg, PA, USA, 2009.
Association for Computational Linguistics.

[29] Zhiyuan Liu, Peng Li, Yabin Zheng, and Maosong Sun. Clustering to find exemplar terms
for keyphrase extraction. In Proceedings of the 2009 Conference on Empirical Methods in
Natural Language Processing: Volume 1 - Volume 1, EMNLP ’09, pages 257–266, Strouds-
burg, PA, USA, 2009. Association for Computational Linguistics.

[30] Igor Malioutov and Regina Barzilay. Minimum cut model for spoken lecture segmentation.
In Proceedings of the 21st International Conference on Computational Linguistics and 44th
Annual Meeting of the Association for Computational Linguistics, pages 25–32, Sydney,
Australia, July 2006. Association for Computational Linguistics.

[31] Charles T. Meadow, Bert R. Boyce, and Donald H. Kraft. Text Information Retrieval
Systems. Academic Express, second edition, 2000.

[32] Rada Mihalcea and Paul Tarau. Textrank: Bringing order into text. In EMNLP, pages
404–411, 2004.

[33] Jesús Oliva, José Ignacio Serrano, Maŕıa Dolores del Castillo, and Ángel Iglesias. Symss: A
syntax-based measure for short-text semantic similarity. Data Knowl. Eng., 70(4):390–405,
April 2011.

[34] Rebecca J. Passonneau and Diane J. Litman. Intention-based segmentation: Human relia-
bility and correlation with linguistic cues. In ACL, pages 148–155, 1993.

[35] Siddharth Patwardhan, Satanjeev Banerjee, and Ted Pedersen. Using measures of semantic
relatedness for word sense disambiguation. In Proceedings of the 4th international conference
on Computational linguistics and intelligent text processing, CICLing’03, pages 241–257,
Berlin, Heidelberg, 2003. Springer-Verlag.

37

[36] Matthew Purver, Thomas L. Griffiths, Konrad P. Körding, and Joshua B. Tenenbaum.
Unsupervised topic modelling for multi-party spoken discourse. In Proceedings of the 21st
International Conference on Computational Linguistics and the 44th annual meeting of the
Association for Computational Linguistics, ACL-44, pages 17–24, Stroudsburg, PA, USA,
2006. Association for Computational Linguistics.

[37] Philip Resnik. Using information content to evaluate semantic similarity in a taxonomy.
In Proceedings of the 14th international joint conference on Artificial intelligence - Volume
1, IJCAI’95, pages 448–453, San Francisco, CA, USA, 1995. Morgan Kaufmann Publishers
Inc.

[38] Jeffrey C. Reynar. Statistical models for topic segmentation. In ACL, 1999.

[39] G. Salton and M. E. Lesk. Computer evaluation of indexing and text processing. J. ACM,
15(1):8–36, January 1968.

[40] Gerard Salton and Christopher Buckley. Term-weighting approaches in automatic text
retrieval. Inf. Process. Manage., 24(5):513–523, August 1988.

[41] George Tsatsaronis, Iraklis Varlamis, and Michalis Vazirgiannis. Text relatedness based on
a word thesaurus. J. Artif. Int. Res., 37(1):1–40, January 2010.

[42] Peter D. Turney. Mining the web for synonyms: Pmi-ir versus lsa on toefl. In Proceedings
of the 12th European Conference on Machine Learning, EMCL ’01, pages 491–502, London,
UK, UK, 2001. Springer-Verlag.

[43] Peter D. Turney. Learning to extract keyphrases from text. CoRR, cs.LG/0212013, 2002.

[44] Masao Utiyama and Hitoshi Isahara. A statistical model for domain-independent text seg-
mentation. In Proceedings of the 39th Annual Meeting on Association for Computational
Linguistics, ACL ’01, pages 499–506, Stroudsburg, PA, USA, 2001. Association for Com-
putational Linguistics.

[45] Nguyen Viet Cuong, Nguyen Le Minh, and Shimazu Akira. Learning to generate a table-of-
contents with supportive knowledge. In IEICE Transactions on Information and Systems,
pages 423–431, Japan, March 2011.

[46] Xiaojun Wan and Jianguo Xiao. Single document keyphrase extraction using neighborhood
knowledge. In Proceedings of the 23rd national conference on Artificial intelligence - Volume
2, AAAI’08, pages 855–860. AAAI Press, 2008.

[47] Zhibiao Wu and Martha Palmer. Verbs semantics and lexical selection. In Proceedings of
the 32nd annual meeting on Association for Computational Linguistics, ACL ’94, pages
133–138, Stroudsburg, PA, USA, 1994. Association for Computational Linguistics.

[48] Lu Zhiqiang, Shao Werimin, and Yu Zhenhua. Measuring semantic similarity between
words using wikipedia. In Proceedings of the 2009 International Conference on Web In-
formation Systems and Mining, WISM ’09, pages 251–255, Washington, DC, USA, 2009.
IEEE Computer Society.

38

Appendix A

Semantic Similarity of Text

We describe the metric used to compute the semantic similarity of texts [9] when con-
structing HTS. Given pair of segments, the algorithm to compute the text similarity is as
follows:

1. Create the sets of open-class-words for nouns, verbs, adjectives, adverbs, and cardi-
nals;

2. Determine pair of similar words across the set corresponding to the same open-class
in the two segments.

• For each noun (verb) in the set of nouns (verbs), try to identify the noun (verb)
in the other segment that has the highest semantic similarity maxSim using
word similarity described in Section 2.3.

• The similarity of other word classes: adjectives, adverbs, cardinals is computed
using lexical similarity.

3. Compute directional measure of similarity of each segment with respect to the other
segment using this formula:

sim(Ti, Tj)Ti
=

∑
pos

(
∑

wk∈{WSpos}
(maxSim(wk)× idfwk

))

∑
wk∈{Tipos}

idfwk

4. The similarity between two segments sim ∈ [0, 1] is the bidirectional similarity
calculated by average function:

sim(Ti, Tj) =
sim(Ti, Tj)Ti

+ sim(Ti, Tj)Tj

2

39

Appendix B

Affinity Propagation Clustering
Algorithm

Affinity Propagation clustering algorithm [14] is unsupervised clustering approach which
self-determine the number of clusters. Affinity propagation takes as input a collection
of real-valued similarities between data points, where the similarity s(i, k) indicates how
well the data point with index k is suited to be the exemplar for data point i. There are
many ways to determine the similarity s(i, k), depend on the purpose:

(i) When the goal is to minimize squared error, each similarity is set to a negative
squared error (Euclidean distance): For points xi and xk, s(i, k) = −‖xi − xk‖2.

(ii) If exemplar-dependent model available: s(i, k) can be set to the log-likelihood of
data point i given that its exemplar is data point k.

(iii) Set similarity by hand.

Rather than requiring that the number of clusters be pre-specified, affinity propagation
takes as input a real number s(k, k) for each data point k so that data point with larger
value of s(k, k) are more likely to be chosen as exemplars. These values are referred to as
”preferences.” The number of identified exemplars (number of clusters) is influenced by
the value of the input preferences, but also emerges from the message-passing procedure.
There are two kinds of message exchanged between data points, and each takes into

account a different kind of competition. Messages can be combined at any stage to decide
which points are exemplars and, for every other point, which exemplar it belongs to. Two
messages are:

(i) The ”responsibility” r(i, k), sent from data point i to candidate exemplar point
k, reflects the accumulated evidence for how well-suited point k is to serve as the
exemplar for point i, taking into account other potential exemplars for point i (Figure
B.1a)

a(i, k)← s(i, k)− max
k′s.t.k′�=k

(a(i, k′) + s(i, k′))

40

(a) The responsibility r(i, k) (b) The availability a(i, k)

Figure B.1: Two messages used in Affinity Propagation

(ii) The ”availability” a(i, k), sent from candidate exemplar point k to point i, reflects
the accumulated evidence for how appropriate it would be for point i to choose point
k as its exemplar, taking into account the support from other points that point k
should be an exemplar (Figure B.1b).

⎧⎪⎨
⎪⎩

a(i, k)← min{0, r(k, k) + ∑
i′s.t.i′ /∈{i,k}

max{0, r(i′, k)}} for i �= k

a(k, k)← ∑
i′s.t.i′ �=k

max{0, r(i′, k)} for i = k

At any point during affinity propagation, availabilities and responsibilities can be com-
bined to identify exemplars. For point i, the value k that maximizes a(i, k)+r(i, k) either
identifies point i as an exemplar if k = i, or identifies the data point that is the exemplar
for point i.
The message-passing procedure may be terminated after a fixed number of iterations,

after changes in the messages fall below a threshold, or after the local decisions stay
constant for some number of iterations. When updating the messages, a damping factor
λ is added to each message to avoid numerical oscillations may arise in some cases:

at+1(i, k) = (1− λ) + λ× at(i, k)

rt+1(i, k) = (1− λ) + λ× rt(i, k)

In the experiment, damping factor is set λ = 0.5 by default. The availabilities of all
points are initialized as 0. At each iteration, the affinity propagation process runs the
following steps:

1. Update all responsibilities given the availabilities;

2. Update all the availabilities given the responsibilities;

41

3. Combine the availabilities and responsibility to monitor the exemplar decisions and
terminate the algorithm when the decisions do not change for T = 10 times.

Fingure B.2 illustrates the Affinity Propagation on 25 two-dimensional data points,
using negative Euclidean distance as similarity metric.

Figure B.2: The illustration of Affinity Propagation

42

Appendix C

Output of Hierarchical Table of
Indexes

This Appendix provides an example in English version for output HTI of document Act
on Controls on the Illicit Export and Import and other matters of Cultural Property in
category of Education and Culture.

(a) In XML view (b) In tree view

Figure C.1: The overall look of output HTI

43

Figure C.2: The keyphrases of HTI at the root node (tier 0)

44

Figure C.3: The keyphrases of HTI at first branch (of tier 1)

45

Figure C.4: The keyphrases of HTI at the second and third branch (of tier 1)

46

Publications

[1] Le Thi Ngoc Tho, Nguyen Le Minh, Akira Shimazu. A Study on Hierarchical Table
of Indexes for Multi-documents. JapTAL 2012.

47

	Introduction
	Research Context
	Goal of Thesis

	Background
	Text Segmentation
	Clustering
	Clustering Algorithms in General
	Clustering in Computational Linguistics

	Text Similarity
	Similarity of Words
	Similarity of Sentences and Documents

	Keyphrase Extraction
	Supervised Keyphrase Extraction
	Unsupervised Keyphrase Extraction

	Approach
	Construct Hierarchical Tree of Segments (HTS)
	Build Hierarchical Table of Indexes (HTI)
	Extract Keyphrases from Single Segments
	Extract keyphrases from Clusters

	Experiments
	Experiment Setup
	Evaluation

	Conclusions and Future Work
	Bibliography
	Semantic Similarity of Text
	Affinity Propagation Clustering Algorithm
	Output of Hierarchical Table of Indexes
	Publications

