
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
Bounded Model Checking for Concurrent Behavior

with Scheduler

Author(s) ZHANG, Haitao

Citation

Issue Date 2012-09

Type Thesis or Dissertation

Text version author

URL http://hdl.handle.net/10119/10754

Rights

Description Supervisor:Toshiaki Aoki, 情報科学研究科, 修士

Bounded Model Checking for Concurrent Behavior
with Scheduler

By Haitao ZHANG

A thesis submitted to
School of Information Science,

Japan Advanced Institute of Science and Technology,
in partial fulfillment of the requirements

for the degree of
Master of Information Science

Graduate Program in Information Science

Written under the direction of
Associate Professor Toshiaki Aoki

September, 2012

Bounded Model Checking for Concurrent Behavior
with Scheduler

By Haitao ZHANG (1010232)

A thesis submitted to
School of Information Science,

Japan Advanced Institute of Science and Technology,
in partial fulfillment of the requirements

for the degree of
Master of Information Science

Graduate Program in Information Science

Written under the direction of
Associate Professor Toshiaki Aoki

and approved by
Associate Professor Toshiaki Aoki

Professor Kokichi Futatsugi
Associate Professor Kazuhiro Ogata and Masato Suzuki

August, 2012 (Submitted)

Copyright c© 2012 by Haitao ZHANG

Contents

1 Introduction 6
1.1 Motivation . 6
1.2 Thesis purpose and outline . 7
1.3 Thesis structure . 7

2 Background 9
2.1 Model checking . 9

2.1.1 General notion of finite state machine 10
2.1.2 A specific definition of finite state machine in our thesis 10

2.2 Bounded model checking . 14
2.3 SMT solver Yices . 17

3 OSEK/VDX 19
3.1 History of OSEK/VDX . 19
3.2 Operating system standard of OSEK/VDX 19

3.2.1 Task . 19
3.2.2 Priority . 20
3.2.3 Scheduling . 20

4 FPS model 23
4.1 Analysis FPS based on OSEK/VDX . 23
4.2 Model for FPS . 26
4.3 Definition for describing task behaviors . 27

5 Bounded model checking in the presence of Scheduler 29
5.1 Execution tree . 29

5.1.1 Concept of execution tree . 29
5.1.2 The algorithm for establishing a k -step execution tree 31

5.2 Two strategies for extracting execution paths 36
5.2.1 General strategy of extracting execution paths (GAE2P) 36
5.2.2 Trim-tree strategy of extracting execution paths (TAE2P) 38

5.3 Verification process with SMT tool Yices 40

1

6 Verification tool 42
6.1 Architecture of verification tool . 42
6.2 An example for using verification tool . 43

7 Experiments and evaluation 46
7.1 Experiments . 46
7.2 Evaluation and discussion . 49

8 Related work 50

9 Conclusion and future work 51

Acknowledgements 52

Reference 53

2

List of Figures

1.1 Example for an unreasonable dispatching sequence 6

2.1 A simple cruise control system . 10
2.2 The state machine for a simple cruise control system 10
2.3 A finite state machine . 12
2.4 Extended finite state machine for sensor task, treatment task and controller

task . 13
2.5 The whole system which is modeled by three tasks with synchronization

events . 14
2.6 Yices architecture . 18

3.1 The state machine for a simple cruise control system 21
3.2 The behaviors of Write task and Read task 21
3.3 Tasks’ execution behaviors which are dispatched by FPS 21

4.1 State transition diagram of a basic task . 24
4.2 The store structure of ready queue . 24
4.3 The store structure of suspended list . 25
4.4 Fixed priority scheduler model . 26
4.5 How to process a service command that appears in transition relation t . . 27

5.1 An execution tree . 30
5.2 The structure about how to store the transition relations T of a task . . . 32
5.3 The transition between the common structure tree and child-brother tree . 34
5.4 The algorithm for establishing an execution tree which is conducted by FPS 34
5.5 The algorithm for inserting a new node to execution tree 35
5.6 The algorithm of general approach of extracting execution paths (GAE2P) 37
5.7 The algorithm of Trim-tree approach of extracting execution paths (TAE2P) 39

6.1 The architecture of our verification tool . 43
6.2 The data flow diagram of our tools . 43
6.3 The format of Tasks file . 44
6.4 Example for Tasks file . 44
6.5 Example for Verification property formula file 45
6.6 The output of our verification tool . 45

3

7.1 Read/Write program and verification formula f 47
7.2 The compared results between experiment 1 and experiment 2/experiment 3 49

4

List of Tables

7.1 Fixed total amount of tasks, increase bound k 47
7.2 Insert 1000 irrelevant variables . 48
7.3 Increase total amount of tasks based on experiment 1 48

5

Chapter 1

Introduction

1.1 Motivation

With the advancement of the automobile manufacturing technology, demands for the
auxiliary functions of vehicles have also increased sharply and tended to be diversified,
which have greatly stimulated the application and development of electronic techniques
in automobile industry. However, not all of the electronic parts manufacturers use the
same production standard, there exist extremely complex correspondence and cooperation
between different electronic parts. OSEK/VDX, as a standard for automobile industry,
has been proposed by Germany and France automobile manufacturers and applied in
many automobile systems to normalize the correspondence and cooperation. Especially,
in OSEK/VDX OS, which task to be run is determined by scheduler, in addition, tasks
can send service commands to request scheduler for responding to its particular behaviors,
such as terminating itself, activating a task and chaining a task. Thus, there may exist a
potential risk which is caused by a unreasonable dispatching, as we can see in figure 1.1,
the unreasonable execution sequence t1, t2, t4, t3 which is conducted by scheduler with
service commands leads to task1 and task3 cannot use the semaphore mutex to access a
global buffer. Consequently, how to check the safety property of a multi-task software
based on automobile OSEK/VDX OS has become very difficult and crucial.

(t1, 6) (t2, 6)

(t8, 5) (t7, 5)

(t9, 2)

(t4, 7) (t3, 6)

RUN[]

Ready Queue

Suspended List

Execution sequence

t1

t2

t4

t3

t1: if(mutex==0)
 mutex++;
 access buffer;
 mutex--;
 ChainTask(t3)

t2: … …
 ChainTask(t4);

t4: … …
 mutex:=2;
 TerminateTask();

t3: if(mutex==0)
 mutex++;
 access buffer;
 mutex--;
 ChainTask(t1);

RISK

Figure 1.1: Example for an unreasonable dispatching sequence

6

Model checking [1, 2] as a traditional technique, has been applied to checking multi-task
software, however, this algorithm suffers from combinatorial state space explosion when
verifies complex multi-task software. Recently, a new technique called bounded model
checking (BMC) [3, 4] has been proposed to overcome the state explosion problem and
has been successfully applied to verifying the multi-task software. Based on BMC, there
are many efficient and reliable techniques [5, 6, 7, 8, 9] have been developed and applied
in the verification of general multi-task software, however, these techniques just focus on
the tasks’ current behaviors, the scheduler’s behaviors are not considered in verification
process. Therefore, these techniques are not able to check the safety property of a software
in which tasks are dispatched by a scheduler.

1.2 Thesis purpose and outline

In our article, we propose an approach to check the safety property of multi-task software
in which tasks are dispatched by fixed priority scheduler (FPS) based on OSEK/VDX
OS [10]. In order to accomplish our research purpose, firstly, we analyze the dispatching
behaviors of FPS based on OSEK/VDX OS, and then we use an extended finite state
machine to establish a model for FPS and describe tasks’ behaviors. Especially, our FPS
model can respond to three types of service commands which are sent by tasks in order to
realize tasks particular requests, such as terminating a task, activating a task and chaining
a task. Furthermore, as to obtain the execution paths of tasks that are dispatched by
FPS, we establish a k -step execution tree to represent all of the possible execution paths
and propose two strategies to extract execution paths in which BMC is employed to
generate the verification conditions (VCs) based on our execution tree. In addition, Yices
[12], which is satisfiability modulo theories (SMT) solver and capable of handling large
and propositionally complex formulas in a rich combination of theories is used to check
the generated VCs with verification property formula and return the verification results.
Finally, we implement two types of tools according to our two strategies of extracting
execution paths based on execution tree to evaluate our approach. Using our tools, we
can directly get the k -step transition system M which is composed of each execution
paths VCs based on FPS dispatching, furthermore, the k -step transition system M can
be translated into Yices file with our tools. We also carry out some relevant experiments
with our tools, results show that our approach can efficiently check the safety property of
multi-task software in which tasks are dispatched by FPS.

1.3 Thesis structure

Our article is structured as follows. In chapter 2, we give out some technical background
of model checking, bounded model checking and SMT solver Yices. In chapter 3, we
review the history of OSEK/VDX, besides, operating system standard of OSEK/VDX
is also presented in this chapter. Based on the analysis of chapter 3, in chapter 4, we
establish a model for fixed priority scheduler with extended finite state machine. In order

7

to model and obtain all of the tasks’ execution paths under FPS’s dispatching, in chapter
5, we illustrate a new approach to represent and gain all of the execution paths based
on a execution tree in which BMC is employed to generate the verification conditions
for a transition system M. Then the implementation processes of our approach is shown
in chapter 6. As to evaluate our approach, in the chapter 7, we carry out some relevant
experiments with our tools, the experiments results are also shown in this part. In the last
two chapters of our article, we firstly summary our approach and talk about our future
work based on current work in chapter 8. Finally, we discuss some related work for our
research in chapter 9.

8

Chapter 2

Background

2.1 Model checking

Generally, in software and hardware design of complex systems, most of the time and
effort are spent on verification other than construction. Techniques are sought to reduce
and ease the verification efforts while increasing their coverage. Formal methods [11] offer
a large potential to obtain an early integration of verification in the design process, to
provide more effective verification techniques, and to reduce the verification time. Model
checking as a traditional verification technique, it is a formal verification technique and
based on models to describe a possible system behaviors in a mathematically precise and
unambiguous manner and has three fundamental features.

1. Automatic checking
It does not rely on complicated interaction with the user for incremental property
proving. If a property does not hold, the model checker generates a counterexample
trace automatically.

2. Finite states
The systems being checked are assumed to be finite. Typical examples of finite
systems, for which model checking has successful been applied, are digital sequential
circuits and communication protocols.

3. System properties specified by temporal logic
The system which to be checked whose verification properties are specified by tem-
poral logic. Thus, model checking can be summarized as an algorithmic technique
for checking temporal properties of finite systems.

Usually, independent of the concrete design language, finite state machine or Kripke
structure [13] is employed to describe a system’s behaviors. In our article, we adopt finite
state machine to describe systems behaviors. In the following part, firstly, we will talk
about the general notion of finite state machine, and then a specific definition of finite
state machine will be defined for our research.

9

2.1.1 General notion of finite state machine

Model checking is a technique for the automated verification of finite state-based systems.
The proof of a property is entirely carried out by the machine. In case the property
does not hold, the model checker will construct a counter-example suitable for failure
diagnosis. In mathematical terms, the considered systems are represented as finite state-
based transition graphs (finite state machine, FSM). A finite State machine consists of
a finite set of states, a set of initial states (a subset of the set of states), a transition
relation (states are accessible from the current state), a function mapping each state to
the atomic propositions holding in this state. Especially, we use an example to illustrate
the process about how to use finite State machine to construct a model for a system.
For instance, a simple cruise control system [14] (figure 2.1) has several characteristics,
e.g., it is controlled by three buttons: resume, on, off. When the engine is running and
on is pressed, the cruise control system records the current speed and maintains the car
at this speed. When the accelerator, brake or off is pressed, the cruise control system
disengages but retains the speed setting. If resume is pressed, the system accelerator or
de-accelerator forces the car back to the previously recorded speed.

resume offon

Figure 2.1: A simple cruise control system

speeds0 s1

engine on

engine off

Figure 2.2: The state machine for a simple cruise control system

We can model the various process of the system as state machines according to the
description of a simple cruise control system. A state machine for the process responsible
for obtaining the current speed is given in figure 2.2. Starting from state s0, it indicates
that once the engine is switched on, it transits to state s1 and can then repeatedly obtain
a speed reading until the engine is switched off, when it returns to state s0.

2.1.2 A specific definition of finite state machine in our thesis

In our article, we define a specific finite state machine for describing tasks’ and scheduler
behaviors based on general notion of finite state machine. In our article, a finite state
machine M is a tuple,

10

Definition 1 (Finite state machine) a finite state machine M =(S, s0, T, V), where
S is the finite set of states, s0 is initial state, V is finite set of variables and V =V global

∪⋃
uj, (where Vglobal is the set of global variables, uj is one of local variables of a task

and j is index of local variables), T ⊆ S × C × A× S is transition relation set.
In the transition relation set T, C is the set of guard functions and c ∈ C is a Boolean

expression, the grammar of c is defined as follows:

c ::= true|vi ∼ vj|c ∨ c|c ∧ c (2.1)

Here, the symbol ∼∈ {==, >,≥, <,≤, 6=}, i, j are index of variables and vi, vj ∈ V .
In addition, A is a finite set of actions, let a ∈ A be an action which is a calculation

expression, we use a(v) to represent a calculation over a variable v ∈ V . The grammar of
a(v) is defined as follows:

a(v) ::=< v >< eqs >< cxep >; (2.2)

cxep ::= vi|vi ◦ vj|vi ◦ z|z ◦ vi|cxep ◦ cxep; (2.3)

eqs ::= “ := ”; (2.4)

Here, the symbol ◦ ∈ {+,−, ∗, /} and z ∈ Z (Z is integer set).
Each element t of T is denoted by t(s, c, a, s′), where s is source state, s′ is target state.

If and only if a transition relation t whose guard function c is true, the transition relation t
can be executed, otherwise finite state machine will stay in current states s. Furthermore,
the action a can be performed if and only if the transition relation t is executed, we use
formula 2.5 and 2.6 to illustrate the calculating process of action a(v) over variables set
V .

∃v ∈ V, v′ := a(v) (2.5)

∀vother ∈ V \ {v}, v
′

other := vother (2.6)

Note that in above definition, for a transition t ∈ T , if c ∈ C or a ∈ A is null, we use
symbol “ ” instead of it, similarly, if both c ∈ C and a ∈ A are null, we use symbol “ ”
instead both of them. For the case of the guard function c, if c is equal to “ ”, it means
that c is true, if “ ” appears in the position of a, it means there is no action.

Example 1 Figure 2.3 shows a finite state machine that consists of three states: s0, s1
and s2, where s0 is initial state. According to the definition 1, we can infer that variable
set V = {buffer,mutex, sensorData} and transition relation set T = {t1, t2, t3, t4}.
Intuitively, this example models a system which starts from s0 and moves to s1 with the
guard function “mutex == 0”, simultaneously, the transition from s0 to s1 can also cause
the action a(mutex) : mutex := mutex + 1 to be performed. Since the guard function
in transition relation t2 is “ ”, which indicates the guard function is true, the transition
relation t2(s1, , buffer := sensorData, s2) can be executed and the action a(buffer) :
buffer := sensorData is performed. The action a(mutex) : mutex := mutex − 1 also
can be performed after the transition relation t3 is executed. Particularly, the transition
relation t4 is used to indicate the negative case of the guard function “mutex == 0”.

11

t4

t3

t2

t1

(mutex≠0, _)

(_, mutex=:mutex-1)

(_
, b

u
ffer:=

sen
so

rD
ata)

(mutex==0, mutex:=mutex+1)
s0 s1

s2

Global variable:
 buffer:int=0;
 mutex:int=0;
WsenDataTo_buffer()
 begain:
 while(1){
 if (mutex==0) {
 mutex++;
 buffer=sensorData;
 mutex--;
 }
 }
 end

Global variable:
 buffer:int=0;
 mutex:int=0;
WsenDataTo_buffer()
 begain:
 while(1){
 if (mutex==0) {
 mutex++;
 buffer=sensorData;
 mutex--;
 }
 }
 end

Figure 2.3: A finite state machine

Usually, since a multi-task software includes a lots tasks and these tasks can communi-
cate with each other using synchronization event, in our research, each task which includes
synchronization events will be described as an extended finite state machine and the whole
software is modeled as an combinatorial extended finite state machine via synchroniza-
tion events. We named the finite state machine which includes synchronization events as
E-FSM, the definition of E-FSM is as follows:

Definition 2 (E-FSM) An E-FSM Mi = (Si, S
0
i , Ti, Ei, Vi), where i means the index

of task, Si, s
0
i and Vi are same as definition 1, Ei denotes the finite set of events, an event

e ∈ E is a synchronization event with suffix “?” or “!” (where, symbol “!” represents
request and symbol “?” represents respondence), T ⊆ S × C × E × A × S is transition
relations set.

In the transition relations set T, the definitions of C and A are the same as definition
1, we also use t(s, c, e, a, s′) to represent each element t of T. The difference between
t(s, c, a, s′) and t(s, c, e, a, s′) is transition relation t(s, c, e, a, s′) includes a synchronization
event e ∈ E. If a transition relation t from source state s goto target state s’ (this
transition relation can be executed iff the c is true), both e and a will be performed.

In order to describe the whole execution behaviors of a software in which tasks use
synchronization events to synchronization execution, we use combinatorial E-FSM to
represent the combination of all tasks E-FSM, the definition of combinatorial E-FSM is
as follows:

Definition 3 (Combinatorial E-FSM) A combinatorial E-FSM of m E-FSMs is a ex-
tended finite state machine CM = (S, S0, T, E, V), where S =

⋃m
i=1 Si, s0 = (s01, s

0
2, ..., s

0
m),

V =
⋃m

i=1 Vi, each global transition relation t ∈ T , such as,

t((s01, s
0
2, ..., s

0
m), c, e, a, (s

′

1, s
′

2, ..., s
′

m)) (2.7)

Here, c =
∧m

i=1 ci, c =
⋃m

i=1 ai and e = ei?||ej! (where, i, j are index of translation
relation of task and symbol “||” means an enabled synchronization event). Especially,

12

(_, senStop?, _)

(m
utex==0, _

, m
utex:=mutex+1)

(_, senRun?, _)
s0 s1

s2 s3
(_, _, buffer:=sensorData)

s4

(_, _, mutex:=mutex-1)

(mutex≠0, _,_)

Sensor Task

(_, treatStop?, _)

(m
utex==0, _

, m
utex:=mutex+1)

(_, treatRun?, _)
s0 s1

s2 s3
(_, _, buffer:=0)

s4

(_, _, mutex:=mutex-1)

(mutex≠0, _,_)

Treatment Task

s0

Controller Task

s1

(buffer==0, senRun!, _)
s2

(mutex==0∧buffer≠0, senStop!, _)

s3

(buffer≠0, treatRun!, _)(mutex==0∧buffer==0, treatStop!, _)

Figure 2.4: Extended finite state machine for sensor task, treatment task and controller
task

∀si ∈ S, s
′
i = sj iff when the translation relation t(si, c, e, a, sj) can be executed, for the

case of ∀sr ∈ S \ {si}, s
′
r = sr.

Note that for a transition relation t, if it cannot be synchronously executed, it will
remain in the same location when a synchronization transition relation is performed.

Example 2 The system consists of three E-FSMs : sensor task, treatment task and
controller task. These three tasks’ E-FSMs are shown in figure 2.4. As an example of
combinatorial E-FSM, controller task is used to control sensor task and treatment task
with synchronization events: senRun, senStop, treatRun and treatStop. In our example,
sensor task and treatment task use a mutual semaphores mutex to mutually access the
global buffer. The whole system which is modeled by these three tasks with synchroniza-
tion events is illustrated in figure 2.5. As we can see, in figure 2.5, the transition relation
t1((0, 0, 0), buffer == 0, senRun, , (1, 0, 1)) is a synchronization transition between sen-
sor task and controller task with synchronization event senRun, where the (si, sj, sr) is
a states tuple. Obviously, in the states tuple, the first bit represents sensor task’s cur-
rent state, the second bit represents treatment task’s current state and last bit represents
controller task’s current state.

Usually, the purpose of constructing a model for a system is to verify whether the
system satisfies verification properties formulae or not. For this purpose, in our article,
we use verification properties to search or detect all of the possible execution paths which
exist in a system model. Each path π in a system model M is a sequence of transition
relation π = {t1, t2, ..., tn}, e.g., in the figure 2.5, the system consists of four paths:
π1 = {t1, t2, t4, t5, t6, t7, t9, t10}, π2 = {t1, t2, t4, t5, t6, t8, t10}, π3 = {t1, t3, t5, t6, t7, t9, t10},
π4 = {t1, t3, t5, t6, t8, t10}, for each transition relation ti ∈ T , 0 ≤ i ≤ |π| (|π| is length of
path π which can be either finite or infinite). Furthermore, in model checking, in order to
capture nesting and mutual dependency of properties, temporal logic [15, 16, 17] is used

13

t2
t4

t9t8

t7

(mutex==0∧buffer==0, treatStop, _)

(buffer≠0, treatRun, _)

(buffer==0, senRun, _)
0,0,0 1,0,1 4,0,1

Sensor Task executing

S1⟶S2, …,S3⟶S4

0,0,2
(mutex==0∧buffer≠0, senStop, _)

0,1,3

0,4,3

(mutex≠0, _, _)

(mutex≠0, _, _)

Treatment Task executing

S1⟶S2, …,S3⟶S4

t1

t3

t5

t6

t10

Figure 2.5: The whole system which is modeled by three tasks with synchronization events

as a specification language for verification property.
Temporal logic is an extension of classical logic, we concentrate on propositional linear

temporal logic (PLTL, or LTL for short) as an extension of propositional logic in our
article. Propositional logic LTL inherits Boolean variables and Boolean operators such
as negation 6=, conjunction ∧, implication →, and so on. In addition, for the connection
operators, LTL has temporal operators, such as next time operator X, globally operator
G, simplest liveness operator F, binary temporal operators until (U) and release (R).

Model checking, as a traditional technique, although has been successfully applied to
checking multi-task software, will suffer from combinatorial state space explosion when
verifys a multi-task software. Recently, a new technique called bounded model checking
(BMC) has been proposed to overcome the state explosion problem and successfully ap-
plied to verify the multi-task software. In next part we will talk about this new technique
BMC.

2.2 Bounded model checking

Bounded model checking (BMC) is a SAT-based [18, 19] technique for symbolic model
checking. Compared to BDD-based [20, 21] model checking, it offers the advantage of
handling the verification of large state spaces, albeit for a smaller fragment of the language.
The main idea of BMC is to avoid the full state space generation and look for witnesses
of an existential specification on suitable subsets of the full model. Once a sub-model is
selected, the formula to be checked as well as the considered sub-model to be translated
into propositional formulae and a propositional satisfiability problem are solved via a
specialized SAT solvers. If the test is positive, the specification will hold on the sub-
model as well as the whole model and give the checked particular existential syntax,
Otherwise, a larger sub-model will be selected and the whole procedure will be run again.

In bounded model checking, we usually construct a Boolean formula that is satisfiable
if and only if the underlying state transition system can realize a finite sequence of state
transitions that reaches certain states of interest. If such a path segment cannot be found
at a given length k, the search is continued for larger k. The procedure is symbolic, i.e.,

14

symbolic Boolean variables are utilized. Thus, when a check is done for a specific path
segment of length k, all path segments of length k are being examined. The Boolean
formula that is formed is given to a satisfiability solving program and if a satisfying
assignment is found, the assignment is a witness for the path segment of interest.

There are several advantages of bounded model checking. SAT tools [22], e.g., PROVER
[23], SATO [24] and GRASP [25], do not require exponential space and large designs can
be checked very fast, since the state space is searched in an arbitrary order. BDD based
model checking usually operates in breadth first search consuming much more memory.
Further, the procedure is able to find paths of minimal length, which helps the user un-
derstand the examples that are generated. Lastly, the SAT tools generally need far less
by hand manipulation than BDDs. Usually the default case splitting heuristics are suf-
ficient. However, although there have been attempts to extend SAT-based BMC to the
verification of multi-task software, the main challenge remains the classical state space
explosion in which the number of tasks grows exponentially. An important observation is
that checking the transition system which is generated by BMC according to a verification
system with SMT [27] instead of SAT. The advantages of SMT compares with SAT is SMT
not only can check more VCs of a transition system and faster than SAT but also SMT
solvers produce unsatisfiable cores that allow us to remove logic that is not relevant to a
given property. Especially, the propositional formula created by BMC is formed as follows:

• a transition system M
• a temporal logic formula f
• a user-supplied bound k

We construct a propositional formula [[M, f]]k which will be satisfiable if and only if
the formula f is valid along one of execution path of M . We form the formula [[M, f]]k
on state transition system M , bound k and formula f without rolled transition relation
is as follows:

[[M, f]]k := I(s0) ∧
k−1∧
i=0

T (si, si+1) ∧ [[¬f]]k (2.8)

Where I(s0) is the characteristic function of the set of initial states, and T (si, si+1) is
the characteristic function of the transition relation. [[¬f]]k is a formula that will be true
if and only if the formula ¬f is valid along a path of length k. For the formula f which
is expressed by LTL, we can use following translation processes to translate verification
formula f into BMC’s verification semantic formula.

• [[p]]ik := p(si)
• [[¬p]]ik := ¬p(si)
• [[f ∨ g]]ik := [[f]]ik ∨ [[g]]ik
• [[f ∧ g]]ik := [[f]]ik ∧ [[g]]ik
• [[Gf]]ik := [[f]]ik ∧ [[Gf]]i+1

k

• [[Ff]]ik := [[f]]ik ∨ [[Ff]]i+1
k

15

• [[fU g]]ik := [[g]]ik ∨ ([[f]]ik ∧ [[fU g]]i+1
k)

• [[fRg]]ik := [[g]]ik ∨ ([[f]]ik ∧ [[fRg]]i+1
k)

• [[X f]]ik := [[f]]i+1
k

Note that the base case of above translation processes is:

[[f]]k+1
k := 0 (2.9)

Example 3 In order to show the process about how to use BMC to check a system,
we illustrate an example based on example 2. In our example, we set bound k to be 2,
and the verification formula we used f is as follows:

G(buffer == 0 ∨ buffer == 1) (2.10)

In order to get all of the VCs of transition system M under bound k according to
example 2, we only use c ∧ a which exist in a transition relation t ∈ T to represent each
transition relation t of a path π, where c ∈ C and a ∈ A . The VCs φi of each transition
relation t is as follows:

φ0 : T (s0, s1) 7−→ (buffer0 == 0) ∧ (buffer1 := buffer0 ∧ mutex1 := mutex0 ∧
sensorData1 := sensorData0)
φ1 : T (s0, s1) 7−→ [(mutex1 == 0) ∧ (buffer2 := buffer1 ∧mutex2 := mutex1 + 1 ∧

sensorData2 := sensorData1)] ∨ [(mutex1 6= 0) ∧ (buffer2 := buffer1 ∧ mutex2 :=
mutex1 ∧ sensorData2 := sensorData1)]

Hence, we can obtain the transition system M under bound k with φ0 and φ1, the
transition system M is as follows:

[[M]]2 := I(s0) ∧
1∧

i=0

φi (2.11)

In addition, we can translate the verification formula f into BMC’s verification seman-
tic formula according to the translation processes of verification formula f , the BMC’s
semantic formula f is as follows:

[[¬f]]2 := ¬(p(s0) ∧ (p(s1) ∧ (p(s2)) (2.12)

Here, the symbol p(si) means checking verification formula f in k-step VCs of a tran-
sition system. Each p(si) is as follows:

φ0 : p(s0) 7−→ (buffer0 == 0 ∨ buffer0 == 1)
φ1 : p(s1) 7−→ (buffer1 == 0 ∨ buffer1 == 1)
φ2 : p(s2) 7−→ (buffer2 == 0 ∨ buffer2 == 1)

16

Thus we can get the combinatorial VCs of [[M, f]]k according to the formula (2.8), the
combinatorial VCs is as follows:

[[M, f]]2 := I(s0) ∧
1∧

i=0

φi ∧ (¬(
2∧

j=0

φj)) (2.13)

In order to get the verification results, we translate the combinatorial VCs of [[M, f]]k
into Yices file and use Yices to return the verification results in our article. In next part,
we will talk about SMT solver Yices.

2.3 SMT solver Yices

Yices is an SMT [28] solver developed at SRI International and a capable solver for
handling large and propositionally complex formulas in a rich combination of theories
as well as it can be downloaded free of charge at http://yices.csl.sri.com/. Especially,
Yices integrates an efficient SAT solver based on the Davis-Putnam-Logemann-Loveland
(DPLL) algorithm with specialized theory solvers that handle the first-order theories, a
core theory solver handles equalities and uninterpreted functions. It is complemented by
satellite solvers for other theories such as arithmetic, bit vectors, array and particular
data-type. The main components of Yices are depicted in figure 2.6.

In Yices basic use, Yices reads a verification problem file which is described by Yices
language and checks whether the verification problem is satisfiable or not. Then, Yices
can output the verification result. Although Yices has its own input language, it also
accepts specifications written in the SMT-LIB notation and supports all the theories
currently defined in SMT-LIB [29]. In our article, Yices is adopted as our solver to check
the combinatorial VCs and return the verification result. Especially, we use an example
to show the process about how to use Yices to check a combinatorial VCs of [[M, f]]k in
this part.

Example 4 In the example 3, we have obtained the combinatorial VCs of [[M, f]]k
based on the example 2 with BMC. In the formula (2.13), function I(s0) is used to indi-
cate variables initial values. In our example, we set the initial values of global variable
buffer and mutex as 0 respectively, and the initial value of local variable sensorData of
Sensor Task as 1. Hence, we can use the following codes which are described by Yices
language to represent the function I(s0).

Part 1: function I(s0)
(define buffer0::int) (define mutex0::int) (define sensorData0::int)
(assert (and (= buffer0 0) (=mutex0 0) (= sensorData0 1)))

For the ϕ0 : T (s0, s1) and ϕ1 : T (s1, s2):

Part 2: ϕ0 : T (s0, s1) and ϕ1 : T (s1, s2)
(define buffer1::int) (define mutex1::int) (define sensorData1::int) ;;k=1

17

Arithmetic Bit-vector Array Data-Type

CORE

DPPL-based SAT solver

Figure 2.6: Yices architecture

(assert (and (= buffer0 0) (= buffer1 buffer0) (= mutex1 mutex0) (= sensorData1
sensorData0)))

(define buffer2::int) (define mutex2::int) (define sensorData2::int) ;;k=2
(assert (or (and (= mutex1 0) (= buffer2 buffer1) (= mutex2 (+ mutex1 1))...) (and
(/= mutex1 0) (= buffer2 buffer1) (= mutex2 mutex1)...))

For the verification formulae φ0, φ1 and φ2:

Part 3: verification formula
(assert (not (and (or (= buffer0 0) (= buffer0 1)) (or (= buffer1 0) (= buffer1 1))
(or (= buffer2 0) (= buffer2 1)))))

We can get the Yices file which is combined by part 1, part 2 and part 3 for combi-
natorial VCs of [[M, f]]k, then we can use Yices to check this file and return verification
result. (For more details about how to use Yices to check a system, visit the Yices website:
http://yices.csl.sri.com/.)

18

Chapter 3

OSEK/VDX

3.1 History of OSEK/VDX

OSEK, a German acronym for Offene Systeme und deren Schnittstellen für die Elektronik
im Kraftfahrzeug, which translates roughly to open system and their corresponding inter-
faces for automotive controllers, was initiated in Germany in May 1993 by the automobile
companies BMW, Daimler Benz, Opel and Volkswagen; the major automotive suppliers
Bosch and Siemens; and the Institute of Industrial Information Technology at the uni-
versity of Karlsruhe, German. VDX, an acronym for Vehicle Distributed eXecutive, was
initiated in France about the same time by the French automotive companies PSA and
Renault. In 1994, the two consortia merged to form the OSEK/VDX consortium and cre-
ated the OSEK/VDX steering committee. Since that time, other companies have joined
as members of the Technical Committee to assist in developing the technical standard.

The original motivation for the standers was to resolve the problems of increasing soft-
ware content in automobiles, duplication of effort in the areas of operating systems and
communication networks, lack of qualified software engineers, and a desire for high-quality
products. The goal was to develop a standard API that could reduce the amount of du-
plicated effort and increase the amount of code reuse within the vehicle. The results were
the four standards in existence today: Operation System (OS), communication (COM),
Network Management (NM) and OSEK/VDX Implementation language (OIL). Although
originally intended for the automobile environment, the specifications have been carefully
developed to meet the requirements of a small embedded system with inter-processor
communication.

3.2 Operating system standard of OSEK/VDX

3.2.1 Task

Tasks within the OSEK/VDX have a number of attributes that affect both the operation
of the system and the size of the code. A task, either basic or extended, has a statically
defined priority, might or might not be preemptive, and might be able to suspend execution

19

while waiting for an event. The combination of these and other attributes creates a
conformance class, as defined in OSEK/VDX specification.

In our research, we focus on the basic task which has three types of state: running
state, suspended state and ready state. A basic task runs to completion unless preempted
by a higher priority task or an interruption. The task, through other API service, can
disable preemption and interruption. Lower priority tasks are inhibited while a basic of
higher priority runs; however, other tasks of the same priority are also inhibited. The
OSEK/VDX does not allow round-robin scheduling of tasks at the same priority level,
as is found in some larger system. For time-sliced scheduling, it would make the sys-
tems performance impossible to predict, which is undesirable in a real-time safety critical
environment. Furthermore, a basic task can send three types of service commands to
scheduler for terminating itself, activating a task or chaining a task. These three types
service commands are as follow:

• TerminateTask: Terminate a task which is in running state, the task will be dis-
patched from running state into suspended state by scheduler;

• ActivateTask: Activate a task which is in suspended state by scheduler. If the task
is activated, its state will be changed to ready state;

• ChainTask: If scheduler receives this service command which is sent by a running
task, scheduler will activate a task and then terminate the running task;

Since OSEK/VDX is a statically defined OS, all tasks must be defined at compile time.
When the OS starts, a basic task whether will be in the suspended or ready state depends
on the configure file. If a task is defined as an autostart task, then it starts in the ready
state; otherwise, it starts in the suspended state.

3.2.2 Priority

As with any ROTS, tasks in an OSEK/VDX OS have a priority, which is statically defined
and cannot be changed dynamically by the application and 0 is the lowest priority, and
no maximum is defined in the specification. Especially, OSEK/VDX allows several tasks
share a same level priority.

3.2.3 Scheduling

In OSEK/VDX, task switch within an OSEK/VDX is performed by fixed priority sched-
uler (FPS). Furthermore, fixed priority scheduler uses one of three possible policies to
dispatch task, such as non-preemptive, fully preemptive or mixed preemptive. In order to
manage configure files and states of tasks, a ready queue, a suspended list and a running
unit are used as store structures to save tasks’ configure files according to tasks’ states
in scheduler. In the dispatching process, which task to be run is determined by scheduler
according to the priority and state of task. If and only if a task whose state is ready and
priority is higher than other ready state’ tasks’, the task will be dispatched by scheduler

20

to occupy the running unit for running. Particularly, in order to incarnate several tasks
that share the same level priority, in the ready queue, each priority has a queue structure
which is used as store structure for saving tasks’ configure files, the structure of ready
queue is shown in figure 3.1. We can see in the figure 3.1, task1, task3 and task7 share the
same level priority 6. In addition, tasks can send service commands to call scheduler for
terminating itself, activating a task and chaining a task. Especially, we use an example
to illustrate the scheduling behaviors of FPS.

(task1,6) (task3,6) (task7,6)

(task8,5) (task2,5)

(task4,4)

queue

Figure 3.1: The state machine for a simple cruise control system

Global variable: mutex:int=0;
Global variable: mutex:int=0;

Write()
 begain:
 while(1){
 if(mutex==0)
 ChainTask(Read);
 else
 TerminateTask();
 }
 end

Write()
 begain:
 while(1){
 if(mutex==0)
 ChainTask(Read);
 else
 TerminateTask();
 }
 end

Read()
 begain:
 while(1){
 if(mutex==0)
 ChainTask(Write);
 else
 TerminateTask();
 }
 end

Read()
 begain:
 while(1){
 if(mutex==0)
 ChainTask(Write);
 else
 TerminateTask();
 }
 end

Figure 3.2: The behaviors of Write task and Read task

initial

Read task

Write task

Ready state

Running state

Suspended state

1 step 2 step 3 step

Ready queue: Write
Suspended list: Read

Ready queue: null
Suspended list: Read

Ready queue: Read
Suspended list:Write

Ready queue: null
Suspended list:Write

task

step

Figure 3.3: Tasks’ execution behaviors which are dispatched by FPS

Example 5 The system consists of two tasks: Write task and Read task. The behaviors
of Write task and Read task are illustrated in figure 3.2. In initial state, we assume Write
task is in the ready queue but Read task is in the suspended list. Furthermore, we set the
priorities of Write task and Read task to be 3 and 2 respectively. According to the above
setting, we can know Write task is dispatched to run by FPS in the first step. Since the
initial value of variable mutex is equal to 0, the service command “ChainTask(Read)”

21

will be sent to FPS. Once FPS has received this service command and responded it, then
in the second step, we can see Write task is dispatched into suspended list, Read task is
dispatched into ready queue. At this moment the running unit is idle, hence, we can find
that the Read task is dispatched to run in third step. All of the tasks’ execution behaviors
which are dispatched by FPS are illustrated in figure 3.3.

22

Chapter 4

FPS model

In the chapter 3, we have already introduced the history and operating system standard
of OSEK/VDX OS. In this chapter, we will firstly talk about the analysis process of FPS
based on OSEK/VDX OS. According to the analysis process of FPS, in the second part,
we will establish a model for FPS with extended finite state machine. Since tasks and
scheduler can communicate with each other using service commands in our research, in
the last part, we will show the method about how to process a service command appearing
in the task’s transition relation.

4.1 Analysis FPS based on OSEK/VDX

In OSEK/VDX OS, a task whose type is either basic or extended has a statically defined
priority. In our research, we establish FPS model based on the basic task and use some
key attributes to indicate a basic task’s configure file. These key attributes are abstracted
by a conformance class which is named as TaskConfigure. The structure of configure file
for basic task is as follows:

TaskConfigure {
TaskName::string ;
TaskPriority::int ;
Autostart::bool ;
};

The particular meanings of the above parameters in TaskConfigure are as follow:

TaskName: the name of task, and each task has a unique name;
TaskPriority : the priority of the task;
Autostart : set to be either true or false. Autostart defines whether the task can be

moved into ready state automatically.

23

Terminate Activate

Suspended

Running Ready

Start

Preempt

Figure 4.1: State transition diagram of a basic task

…

4

3

2

1

0

Task1

priority

MAX

MIN

Task3

Task4

Task6

Task5

FIFO

Task2

Figure 4.2: The store structure of ready queue

In OSEK/VDX OS, a basic task usually exists in one of three states [30] Ready, Running,
and Suspended. Transitions between states occur within four possible events: Activate,
Start, Preempt and Terminate. The state transition diagram of a basic task is shown in
figure 4.1.

Task switching within OSEK/VDX OS [31] is performed by a scheduler using one of
three possible policies: non-preemptive, full preemptive or mixed preempt. In our research
we focus on the full-preemptive policy. In order to present the policy more clearly, we
firstly create three types of store structures for ready state, running state and suspended
state.

OSEK/VDX OS permits several basic tasks to share the same priority by storing them
in a special queue structure which is named as readyQueue in our article. The structure
of ready queue is illustrated in the figure 4.2.

We use a class (C++ language) to realize the readyQueue and its functions. The defi-
nition of the class is as follows:

ReadyQueue{
public:

void Initial();
bool Empty();

24

Head NULL

Figure 4.3: The store structure of suspended list

bool Full(int priority);
TaskConfigure Dequeue();
bool Enqueue(TaskConfigure enTask);
int RetuFirPrio();

private:
TaskConfigure element [PriorityRegion][TaskAmount];
};

In order to store the task in running state, we define a variable runTask as its store
structure, that is:

TaskConfigure runTask ;

Similarly, in order to store the tasks in suspended state we define a list structure, the
list structure is shown in figure 4.3. We also use a class to realize this structure and its
functions. The class of suspended list is described as follows:

SuspendList{
public:

void Initial();
TaskConfigure DeleteList(string TaskName);
bool InsertList(TaskConfigure InTask);
bool SearchList(string TaskName);

private:
TaskConfigure element ;
SuspendList *next ;
};

In full-preemptive scheduler policy of the OSEK/VDX OS, the scheduler is only exe-
cuted when one of following five events occurs.

• The runTask is empty;

• The priority of runTask is lower than the first element of the readyQueue;

• A task in runTask sends service command “TerminateTask()“ to scheduler for ter-
minating itself;

• The task in runTask sends service command “ActivateTask(callTask)” to scheduler
for calling another task (if the callTask in the suspendList, it will be moved into
readyQueue from suspendList by scheduler);

25

(suspendList.SearchList(task_name)==true,

 ActivateTask(task)?,

 Task_suspendTOready(callTask))

SCH5ActivateTask

(_, TerminateTask()?,

Task_runTOsuspend())

SCH8ChainTask

SCH9ChainTask

s0

(readyQueue.Empty()==true, _, _)
SCH1

(runTask==NULL ∧ readyQueue.Empty()==false

 _, Task_readyTOrun())

SCH2

(runTask.priority<readyQueue.RetuFirPrio(),

_, Task_runTOready())

SCH6

s1

(suspendList.SearchList(callTask)==true,

 ChainTask(task)?,

 Task_suspendTOready(callTask))

(suspendList.SearchList(callTask)==false,

 ChainTask(task)?, _)

SCH7ChainTask

SCH3TerninateTask

SCH4ActivateTask

(suspendList.SearchList(task_name)==false,

 ActivateTask(task)?, _)

(_, _, Task_runTOsuspend())

Figure 4.4: Fixed priority scheduler model

• A task in runTask sends service command “ChainTask(callTask)” to scheduler for
terminating itself and calling another task;

4.2 Model for FPS

Based on the above analysis, we define an extended FSM to establish a model for FPS.
The definition of extended FSM can be expressed as follows:

Definition 4 (Extended FSM for FPS) An extended FSM for FPS is: MFPS =
(S, s0, E, T, V), where the definitions of S, s0, E and transition relation set T are same
as definition 2. In our FPS model, the V consists of readyQueue, suspendList and run-
Task store structure and we use four functions: Task readyTOrun(), Task runTOready(),
Task suspendTOready(TaskConfigure callTask) and Task runTOsuspend() to represent
the scheduler’s actions which can eventually realize the state transition of task. The be-
haviors of each function is shown below:

Task readyTOrun() {
runTask=readyQueue.Dequeue();
}
Task runTOready(){

readyQueue.Enqueue(runTask);
runTask=NULL;
}
Task suspendTOready(callTask){

string TaskName=callTask.TaskName;
TaskConfigure enTask=suspendList.DeleteList(TaskName);

26

readyQueue.Enqueue(enTask);
}
Task runTOsuspend(){

suspendList.InsertList(runTask);
runTask=NULL;
}

In addition, there are three types of events in our FPS model, including TerminateTask!,
ChainTask! and ActivateTask!. These events belong to interactive service commands
between tasks and FPS. The FPS model is shown in figure 4.4.

4.3 Definition for describing task behaviors

In our research, each task’s behaviors are described by E-FSM which has been defined
in definition 2. Since our research basing on OSEK/VDX OS, the synchronization events
set E of a task consist of three types of service commands, such as TerminateTask?,
ChainTask? and ActivateTask!?. Especially, since tasks use service commands to request
FPS for achieving terminating itself, activating a task or chaining a task, we combine the
scheduler and task’s E-FSM basing on service commands. In order to ensure tasks and
FPS can be synchronously executed, we use definition 5 to define the process of a service
command that appears in the task’s transition t ∈ T .

Definition 5 (how to process a service command appearing in transition t) Let t
=(si, c, e, a, sj), where sj denotes the target state of si. If e is not null and e ∈ { Terminate-
Task?, ActivateTask?, ChainTask?}, the transition relation t must follow this structure:

t = (si, , e, , sj) (4.1)

(_,ChainTask(Write)!,_)(_,ChainTask(Read)!,_)

(mutex≠0,_,_)

t4 t4

t3

t1

(mutex≠0,_,_)

t2

(_, TerminateTask()!,_)

t3

t1

t2

Write Task Read Task

(mutex==0,_,_)
s0 s1

s2

Global variable: mutex:int=0;

Global variable: mutex:int=0;

Write()
 begain:
 while(1){
 if(mutex==0)
 ChainTask(Read);
 else
 TerminateTask();
 }
 end

Write()
 begain:
 while(1){
 if(mutex==0)
 ChainTask(Read);
 else
 TerminateTask();
 }
 end

Read()
 begain:
 while(1){
 if(mutex==0)
 ChainTask(Write);
 else
 TerminateTask();
 }
 end

Read()
 begain:
 while(1){
 if(mutex==0)
 ChainTask(Write);
 else
 TerminateTask();
 }
 end

(_, TerminateTask()!,_)

(mutex==0,_,_)
s0 s1

s2

Figure 4.5: How to process a service command that appears in transition relation t

Example 6 In this example, we will show the process about how to describe a service
command that appears in transition t. We can see in the figure 4.5, the service commands

27

ChainTask and TerminateTask are represented as t(s, , ChainTask(Read/Write)!, , s’)
and t(s, , TerminateTask()!, , s’) respectively.

28

Chapter 5

Bounded model checking in the
presence of Scheduler

In previous chapter, we have established a model for fixed priority scheduler with E-FSM.
In this chapter, we will firstly talk about how to use a execution tree to model all of the
tasks’ execution paths under FPS’s dispatching. In the second part, we will illustrate
two strategies of extracting execution paths based on execution tree in which BMC is
employed to generate the VCs for the transition system M.

5.1 Execution tree

5.1.1 Concept of execution tree

In our approach, tasks can send three types of service commands to FPS in any branch
and each service command can be used by FPS to change the data of FPS’s readyQueue,
supendList or runTask. If we use definition 3 to simply combine tasks and FPS behaviors,
we will not obtain the correct combinatorial model for the verification system. In order to
obtain all possible execution paths of a verification system, we establish an execution tree
to represent tasks’ executing process which are conducted by FPS. In the execution tree,
each possible execution path is from root node to one of leaf-nodes and the total amount
of execution paths is equal to the total amount of leaf-nodes. Especially, each node of
execution tree consists of node index NodeIndex, a transition relation t ∈ T i where i
means index of task, a FPS model copyFPSModel and a pointer array childPoint [·] which
is used to point to its children nodes. The structure of node is as follows:

Node : {NodeIndex, t, copyFPSModel, childPoint[·]}

Since each node of execution tree includes a FPS model in our approach, the node of
execution tree can call its FPS model to response to the service commands which exists
in its transition relation t. Here we use an example to show the process about how to
establish a execution tree.

29

0

1 2

3 4

5 6

k=3

Figure 5.1: An execution tree

Example 7 In this example, we use Write task and Read task that appear in example
6 as our verification system. In addition, we set the configure files of Write task and Read
task as follows:

Configure files of Write task and Read task
Wrtie : {Write, 4, true};
Read : {Read, 2, false};

In order to establish execution tree, firstly, we create an initial FPS. In the initial
FPS, each task’s configure file is inserted into readyQueue or suspendList according to
the parameter autostart of task’s configure file (if a task whose autostart is true, the task
is inserted into readyQueue, otherwise, task is inserted into suspendList). Especially, in
the initial FPS, runTask is equal to NULL. Hence, we can get the following initial FPS
according to the configure files of Write task and Read task.

Initial FPS:
readyQueue:< Write >
suspendList:{Read}
runTask: NULL

Secondly, we create a root-node for execution tree. We set the NodeIndex of root-node
as 0, transition t as null, and copyFPSModel is set to be equal to initial FPS and each
of childPoint [·] to point to NULL. Since runTask is NULL, FPS of root-node dispatches
Write task from readyQueue to runTask for running. If the Write task occupies the
runTask, the transition relations t1 and t2 will be unfolded and saved in child-node 1 and
child-node 2 of execution tree respectively, as we can see in the figure 5.1. Furthermore,
the childPoint [·] of root-node point, child-node 1 and child-node 2, and the copyFPSModel
of child-node 1 and child-node 2 are the same as his father’s copyFPSModel.

30

In child-node 1 and child-node 2, since the service command of transition t1 and t2 are
null, FPS of child-node 1 and child-node 2 do not need to be synchronously executed. In
the next step, the transition t4 and t3 are unfolded from child-node 1 and child-node 2,
and saved in child-node 3 and child-node 4 respectively. The copyFPSModel of the new
child-node 3 and child-node 4 are equal to their father respectively.

Particularly, in child-node 3, since the service command of transition t4 is Chain-
Task(Read)!, FPS of child-node 3 will be synchronously executed, the execution behaviors
of FPS are as follow:

1. FPS of child-node 3 dispatches Read task from suspendList to readyQueue;

2. FPS of child-node 3 dispatches Write task from runTask to suspendList.

We can see, in child-node 3, since the runTask of copyFPSModel is NULL when the
FPS of child-node 3 finishes its operations, FPS of child-node 3 will dispatch Read task
from readyQueue to runTask for running. The Read task’s transitions t1 and t2 will be
unfolded and saved in child-node 5 and child-node 6 respectively. However, in child-node
4, since the transition t3 whose service command is TerminateTask!, FPS of child-node
4 will dispatch Write task from runTask to suspendList. In this time, we can find the
readyQueue of child-node 4 is NULL. Hence, the FPS of child-node 4 cannot dispatch a
task form readyQueue to runTask for running, we do not need to create new child-nodes
for child-node 4. In this example, we have obtained an execution tree which represents
the Write and Read task executed three steps under the FPS’s dispatching, the execution
tree is illustrated in figure 5.1.

5.1.2 The algorithm for establishing a k-step execution tree

Transitions store structure for tasks

As we know, a well-designed storage structure can reduce the searching complexity. In
our research, we use Hash method [32] to store transition relations set T of a task to
reduce the time of establishing execution tree, the Hash store structure is illustrated in
figure 5.2, where the state index means index of source state of ti ∈ T . Since t1 and t2
have the same source state (where, t1 and t2 represent the two branches that start from
state s0), t1 and t2 are stored in the same array (the structure of element of store array is:
(s, condition, event, action, s)). In order to store and access the transition relations set T
for a task, we define two types of operations on it. The operations are as follow:

Operation 1 (Create a Hash store structure and save transition relations T of a task):

Create(T) 7−→ [Hash store][task index]

Operation 2 (Select and return t iff the source state s of t is equal to input state s):

Select(s) from [Hash store][task index]

31

store arraystate index

Hash process

0
1
2
3
4
5
6
7
8

...

t1 t2

t5 t6

t …(T)

Figure 5.2: The structure about how to store the transition relations T of a task

Establishment of k-step execution tree

In order to show the process about how to establish a k -step execution tree, we use
definition 6 and definition 7 to describe the processes of creating root-node and child-
node respectively, the definition 6 and definition 7 are as follow:

Definition 6 (Creating process of root-node): The execution tree has only one root-
node. The initial attributes and operation function of root-node are as follows:

• Initial attributes of root-node:
NodeIndex : The root-node’s NodeIndex is 0;
t: The root-node’s transition relation t is null ;
copyFPSModel : In the root-node’s copyFPSModel, readyQueue, suspendList and
runTask are equal to the readyQueue, suspendList and runTask of initial FPS model
respectively.
childPoint [·]: Each pointer of the childPoint [·] points to NULL in the initial state;

• Operation function of root-node:

1. Root-node calls its FPS model copyFPSModel to dispatch a task from readyQueue
to runTask. Iff the runTask is not equal to NULL, goto 2, otherwise, return;
2. Extract the index i of task which is in the runTask ;
3. Use the Operation 2 of Hash store of taski to select and return all of the transi-
tion relations with sic and save each transition relation t into a set ET, where sic is
current state of extended FSM of taski. The initial value of sic is equal to the initial
state of extend FSM of taski in initial state;
4. Create n new child-nodes, where n is equal to the total amount of elements of
ET ;
5. Let n pointers of the childPoint [·] of root-node point to these new child-nodes
respectively;

Definition 7 (Creating of child-node): When a task which is in the runTask executes
one step, one transition relation t of the task is saved into a child-node. In child-node, the
source state s of transition relation t is equal to target state s’ of his father’s transition
relation t. The initial attributes and operation function of child-node are as follow:

32

• Initial attributes of child-node:
NodeIndex : In execution tree, the child-node’s NodeIndex is indicated according to
the order which is from top to bottom and from left to right, the order is shown in
figure 5.3;
t : Transition relation t of child-node is equal to one of element of ET which is
founded by his father;
copyFPSModel : In the child-node’s copyFPSMode, readyQueue, suspendList and
runTask are equal to readyQueue, suspendList and runTask of its father’s copyF-
PSModel respectively in the initial state.
childPoint [·]: Each pointer of the childPoint [·] of the child-node points to NULL in
the initial state;

• Operation function of child-node:

1. If t.e is not equal to the symbol “ ” , goto 2, otherwise goto 4;
2. Child-node calls its FPS model copyFPSModel to response to the service com-
mand e:

case service command=“TerminateTask!”:

↘ child-node.copyFPSModel.SCH3; goto 3;

case service command=“ChainTask!”:

↘ child-node.copyFPSModel.(SCH8 | SCH7);↘ child-node.copyFPSModel.SCH9;
goto 3;

case service command=“ActivateTask!”:

↘ child-node. copyFPSMode.(SCH4 | SCH5);

if (child-node.copyFPSModel.runTask.priority<callTask.priority)

extracting the index i of task which in the runTask ; sic=t.s’ ;

↘ child-node.copyFPSModel.SCH6; ↘child-node.copyFPSModel.(SCH2 |
SCH1); goto 3;

3. If the runTask in the child-node’s copyFPSModel is equal to NULL, ↘ child-
node.copyFPSModel.(SCH2 | SCH1); Otherwise, nothing will be done;
4. If the runTask in the child-node’s copyFPSModel is not equal to NULL, extract
the index i of task which is in the runTask and goto 5. Otherwise, it means there is
no task can be dispatched from readyQueue to runTask by FPS, so we do not need
to create new child-nodes for this node;
5. Use the Operation 2 of Hash store of taski to select and return all of the transition
relations with sic and save each transition relation t into set ET ;
6. Create n new child-nodes, where n is equal to the total amount of elements of
ET ;
7. Let n pointers of the childPoint [·] point to these new child-nodes respectively;

33

54

1

6

0

2

3
54

1

6

0

2

3

Child-brother structure TreeCommon structure Tree

Figure 5.3: The transition between the common structure tree and child-brother tree

Algorithm : the process of establishing an execution tree which conducted by FPS

Input each TaskConfigure , each taskeFSM, FPS, bound k;

Output execution tree;

1. Insert each TaskConfigure into initial FPS model’s readyQueue/suspendList according to
 the ’s parameter “Autostart”;
2. Foreach taskeFSM

do

 Create(Ti)[Hash store]i; Let = ;
3. int j=1, pindex=0, nodeIndex=0;
4. Create Rootnode::Node; Initial Rootnode;
5. ↘Rootnode.copyFPSModel.(SCH2 | SCH1);
6. if (Rootnode.copyFPSModel.runTask≠NULL)

7. i=ExtractIndex(Rootnode.copyFPSModel.runTask);
8. else return Tree;
9. Let ST::Queue , nST::Queue, ET={};
10. ST.Enqueue();
11. while(!ST.Empty()){

12. Let si =ST.Dequeue(); i= ExtractIndex(si);
13. ET=ET∪select(si) from [Hash store]i;
14. while(ET!=){

15. Let t∈ET; ET=ET\{t}; NodeIndex++;
16. Let s'= InsertNodeTOtree(t, NodeIndex, pindex); nST.Enqueue(s');
17. } pindex++;
18. while(pindex<nodeIndex){

19. if (nodepindex.copyFPSModel.runTask==NULL) pindex++;
20. else break;
21. }
22. }
23. j=j+1; ST=nST; nST.Initial();

24. if (j<k) goto 11;
25. else return Tree;

i

cs 0

is

 i

cs

Configuretaski

Figure 5.4: The algorithm for establishing an execution tree which is conducted by FPS

Note that the symbol “↘” in above operation means executing a transition on FPS
model, the initial value sic is equal to initial state s0i of extended FSM of taski.

In the above operations of root-node and child-node, the total amount of elements of set
ET means the amount of branches that start from a state s which exists in extended FSM
of a task. Usually, since the branch amount is uncertain, we use child-brother structure

34

Function: InsertNodeTOtree(t, NodeIndex, pindex)
1. Create node::Node; let s;
2. node.NodeIndex=NodeIndex; node.copyFPSModel=nodepindex.copyFPSModel;
 node.t= t; node.child=NULL; node.brother=NULL;
3. if (nodepindex. child==NULL) nodepindex.child→ node;
4. else{

5. let *p::Node; p=&nodepindex;
6. while(p→brother!=NULL){ p=p→brother;}
7. p→brother=node;
8. }
9. if (t.event !="_"){

10. switch(t.event){
11. case service command=“TerminateTask!”:{
12. ↘node.copyFPSModel.SCH3;} break;
13. case service command=“ChainTask!”:{
14. ↘node.copyFPSModel. (SCH8 | SCH7);
15. ↘node.copyFPSModel.SCH9;} break;
16. case service command=“ActivateTask!”:{
17. ↘node. copyFPSMode.(SCH4 | SCH5);
18. if (child-node.copyFPSModel.runTask.priority<callTask.priority)
19. i=ExtractIndex(node.copyFPSModel.runTask); =t.s’;
20. ↘node.copyFPSModel.SCH6;
21. ↘node.copyFPSModel.(SCH2 | SCH1);} break;
22. }
23. if (node.copyFPSModel.runTask==NULL)↘node.copyFPSModel.(SCH2 | SCH1);
24. if (node.copyFPSModel.runTask==NULL) s=NULL;
25. else ExtractIndex(node.copyFPSModel.runTask); s= ;

26. return s;
27. }
28. else s=t.s’; return s;

i

cs

Figure 5.5: The algorithm for inserting a new node to execution tree

to construct the nodes relationships of the execution tree. The transition between the
common structure tree and child-brother structure tree is shown in figure 5.3.

We use an algorithm to show the process of establishing an execution tree in which
the child-brother structure is used to construct the relationships of nodes. The algorithm
is illustrated in figure 5.4, where ST and nST are “QueueFIFO” structure [33], function
“InsertNodeTOtree(t, NodeIndex, pindex)” means insert a new child-node into tree. The
process of function “InsertNodeTOtree(t, NodeIndex, pindex)” is shown in figure 5.5. We
can get the execution tree according to above approach, the time complexity of establish-
ing a execution tree under k -step is (k ∗w), where w=MAX (λl) , λl is equal to the total
amount of nodes of lth-level tree. For an execution tree, if the leaf-node’s amount is m,
then there exist m execution paths and each path is from the root-node to a leaf-node.

35

5.2 Two strategies for extracting execution paths

Based on execution tree, we propose two strategies of extracting execution paths. These
two strategies not only can achieve the execution paths which reflect the execution transi-
tion relations of tasks conducted by FPS but also gain the VCs from execution paths. The
difference between our two strategies is that one strategy translates all of the execution
paths which exist in execution tree into VCs with BMC method while the other computes
the variables’ values by itself to trim the execution tree. We name the first approach as
“general approach of extracting execution paths (GAE2P)” and the other as “trim-tree
approach of extracting execution paths (TAE2P)”. In the following part, we will show
these two strategies in detail.

5.2.1 General strategy of extracting execution paths (GAE2P)

In the GAE2P, all of the possible execution paths will be obtained in which BMC method
is employed to generate the VCs of k -step transition system. In the execution tree, each
execution path is a direct track which is from root-node to a leaf-node and the total
amount of execution paths is equal to the leaf-nodes of execution tree. For instance, in
the figure 5.1, we can obtain three execution paths under bound k=3. The three execution
paths are as follow:

π1=τ0, τ1, τ3, τ5;
π2=τ0, τ1, τ3, τ6;
π3=τ0, τ2, τ4;

Note that in the above execution paths π1, π2 and π3, each τi represents a node of
execution tree and i is index of node. Since each node τi possesses a transition relation t,
we can use transition relations which exist in a execution path πj to represent a execution
path. Actually, only the guard function c ∈ C and action calculation express a ∈ A which
belong to a transition relation of execution path πj are used to represent a VCs of τi
according to BMC in our article. Each of execution paths which are represents by VCs is
as follows:
π1= τ1:(mutex0==0)∧(mutex1=mutex0)∧

τ3:(mutex2=mutex1)∧
τ5:(mutex2=0)∧(mutex3=mutex2)

π2= τ1:(mutex0==0)∧(mutex1=mutex0)∧
τ3:(mutex2=mutex1)∧
τ6:(mutex2 6= 0)∧(mutex3=mutex2)

π3= τ2:(mutex0 6= 0)∧(mutex1=mutex0)∧
τ4:(mutex2=mutex1)

Therefore, we can gain the transition system M with execution paths π1, π2 and π3
according to formula (2.8), the transition system M is as follow:

36

Algorithm : General approach of extracting execution paths (GAE2P)
Input Execution Tree;

Output Each execution path πi;

1. int i=1; int j=1; let Stack;

2. Let *p::Node; p=&Tree.Rootnode;

3. if(p→child==NULL) return NULL;

4. p= p→child;
5. let τ1, τ2, …τi,,…τl, l=depth of Tree;

6. while(p→child!=NULL ∧ p→child is not labeled){

7. τi=ExtractConAct(p→t); i++;

8. Label(p); Stack.Push(p);

9. p=p→child;
10. }

11. if(p is not labeled){

12. τi=extractConAct (p→t); let πj=< >;

13. πj= τn; j++; Label(p);
14. }

15. if(p→brother!=NULL) p= p→brother;

16. else p=Stack.Pop(); i=i-1;

17. if(p==NULL) return each execution path πi;

18. goto 6;

1

i

n

Figure 5.6: The algorithm of general approach of extracting execution paths (GAE2P)

[[M]]3 := I(s0) ∧
3∧

i=1

πi (5.1)

If we gain the transition system M, then we can translate the transition system M
and verification property formula f into Yices file, and use Yices to check whether this
transition system M satisfies the verification property formula f.

Since the child-brother structure is used to construct the nodes’ relationship of execution
tree in establishing execution tree, we adopt a revised depth-first search strategy to gain
all of the execution paths in GAE2P, the algorithm of GAE2P is shown in figure 5.6. In
this algorithm, we use a particular operational character “−→∪ ” to save data of each node
of a path into an ordered set πj according to the order of depth-first search strategy [34].
Actually, in order to gain the VCs of i-step from a path, in the algorithm GAE2P only
the condition and action which are included in the transition t of each node of a path are
saved into the element τi of πj. In order to extract the condition and action form a node,
we use a function ExtractConAct(t) which appears in algorithm GAE2P to represent the
extraction behavior. In addition, a stack [35] is used to accomplish the traversal process
in algorithm GAE2P.

According to the GAE2P’s algorithm which appears in figure 5.6, we can see the time
complexity of gaining all of the execution paths is O(d ∗ c), where d means the depth of
execution tree (actually, the depth of execution tree depend on the bound k) and c means
the maximum degree of all the nodes in execution tree. When all the path πj are gained
from execution tree, we can use these πj to establish a transition system M under bound

37

k. The transition system M is as follows:

M = I(s0) ∨nj=1 πj (5.2)

M = I(s0) ∨nj=1 ∧ki τ
j
i (5.3)

Here, n means the total amount of the execution paths, I(s0) is a function which is used
to indicate the initial value of variables. Especially, if the total amount r of elements of
an execution path πj is smaller than bound k, we use an additional element τ to fill these
non-existent elements from τr+1 to τk in order to ensure that the total amount of elements
of every execution paths is equal to bound k . The additional element τ whose condition
and action are null, we use symbol “ ” instead of condition and action respectively.

5.2.2 Trim-tree strategy of extracting execution paths (TAE2P)

In the GAE2P, we can see all of the execution paths are included in transition system M .
However, if the initial value of each variable of verification problem has been given out
explicitly and there are only several variables not related to the verification properties,
we do not need to check all of the execution paths. In order to reduce the total amount of
execution paths, all of the variables’ values are computed in each node of execution tree
in TAE2P. Therefore, we can use variables’ values to examine the guard functions and
trim the unreachable node to get one reachable execution path l from all of the execution
paths. The path l reflects the execution track of tasks which are conducted by FPS.

For instance, in the figure 5.1, we assume initial value of mutex is equal to 0. Intu-
itively, we can find the node 2 is a unreachable node when the initial value of global
variable mutex is equal to 0, hence, we can trim the relation between node 0 and node
2. Furthermore, since the action a ∈ A which exist in the translation relation of node
1 is equal to symbol “ ”, the value of variable mutex is equal to 0, the same value of
variable mutex also can be found in the node 3. Fortunately, since the value of vari-
able mutex is equal to 0 in the node 3, we can trim the relation between node 3 and
node 6 once again. Therefore, according to the above trimming process, we can only ob-
tain one execution path l, furthermore, each variable’s value has been acquired and saved
in each node of path l when we trim the execution tree. The reachable path l is as follows:

l= τ0, τ1, τ3, τ5;

Since each variable’s value has been computed and saved in each node τi, we can use
variables which exist in each τi of path l to represent the tasks’ execution processes, the
path l which is represented by each node τi’ variables is as follows:

l= (mutex0 = 0)∧(mutex1 = 0)∧(mutex2 = 0)∧(mutex3 = 0)

Therefore, we can gain the transition system M with τi according to formula (2.8), the
transition system M is as follow:

M = I(s0) ∨k
i=1 τi (5.4)

38

If we gain the transition system M, then we can translate the transition system M
and verification property formula f into Yices file, and use Yices to check whether this
transition system M satisfies the verification property formula f.

Algorithm : Trim-tree approach of extracting execution paths (TAE2P)

Input Execution Tree, the initial value of each variable, Vcom;

Output The name and value of each variable in j-step: 𝓊j;

1. Let *p::Node; p=&Tree.Rootnode; int j=1;

2. if(p→child==NULL) return NULL;

3. while(p→child!=NULL){

4. let checkpath::bool=false;

5. p=p→child;

6. if(p→t.condition==true){

7. Compute(p→t.action);

8. 𝓊j ≪Vcom
; j++; checkpath=true;

9. }

10. else{

11. while(p→brother!=NULL){

12. p= p→brother;

13. if(p→t.condition==true){

14. Compute(p→t.action);

15. 𝓊j ≪Vcom
; j++; checkpath=true;

16. break;

17. }

18. }

19. if(checkpath==false)

20. goto end;

21. }
22. }

23. return sequence: 1-step:{𝓊1,𝓊2,...,𝓊m}, ...,

 j-step:{𝓊1,𝓊2,...,𝓊m}, ..., k-step:{𝓊1,𝓊2,...,𝓊m}

Figure 5.7: The algorithm of Trim-tree approach of extracting execution paths (TAE2P)

The algorithm of TAE2P is shown in figure 5.7. Especially, in the TAE2P’s algorithm,
we insert a function Compute(action) into TAE2P to compute the variables’ values in
order to trim the unreachable paths based on the revised depth-first search strategy,
hence, we can only get one execution path l from all of the execution paths. The path
l reflects the execution track of tasks which are conducted by FPS. In addition, each
variable’s name and value of every node which exists in the path l are saved into an
ordered set V according to execution order of path l. Let ∀µ ∈ V com

j , V com
j =

⋃
V i, where

i means the index of task and j represents the j-step. The structure of element of µ is as
follows:

µ:{variable name, variable value}

Therefore, we can use the sequence V com
1 , V com

2 , ..., V com
k to establish the transition

system M under bound k. The transition system M is as follows:

M = I(s0) ∨kj=1 V
com
j (5.5)

39

M = I(s0) ∨kj=1 ∧ml=1µ
j
l (5.6)

Here, m means the total amount of variables of the V com, I(s0) is a function which is
used to indicate the initial values of variables.

Especially, in the function Compute(action) which appears in algorithm of TAE2P, if
the parameter action equals symbol “ ”, it means that we do not need to compute the
variables’ values, in this case, ∀v ∈ V com, v′ = v. If the action is not equal to “ ”, it
means there exists a calculation expression, in this case, ∃vf ∈ V com, the variable vf
not only appear in the calculation expression but also appear on the left side of symbol
“=”, we can use following formulae to represent the computing process of the function
Compute(action).

∃vf ∈ V com, v
′

f = a(vf) (5.7)

∀v ∈ V com \ {vf}, v
′
= v (5.8)

The symbol “�” which appears in algorithm TAE2P means outputting the name and
value of each variable v ∈ V com to µl.

5.3 Verification process with SMT tool Yices

In BMC, a verification system or problem consists of a transition system M , a tempo-
ral logic verification formula f and a user-supplied bound k. According to GAE2P and
TAE2P, the transition system M under bound k can be obtained, the processes of verifi-
cation formula f have been proposed in [4], therefore, we will not discuss it in our article.
In this part we will only talk about how to translate the transition system M which is
constituted by VCs into Yices file.

In the GAE2P, since a path πj = ∧ki τ
j
i and each τ ji consists of a guard function expression

c ∈ C and an action calculation expression a ∈ A, we can use formula (5.2) to represent
the VCs of a verification system or problem. In order to achieve the Yices file according to
the formula (5.2), we use following translation process to interpret c and a which appears
in τ ji .

Translation process 1 (process guard function c): if c is equal to symbol “ ”, we do
not need to translate it into Yices file, otherwise the translation process is: c −→ cY ,
where cY is a Yices expression which is defined by BNF [26] and symbol “−→” means
translating the c into cY , the cY is as follows:

cY ::=< curs >< θ >< varim >< varin >< cure >;
curs ::= “(”;
cure = “)”
θ ::= “ > | >= | < | <= | = |/ =”;
varim::= the variable varim ∈ V com which appears on the left side of operator θ;
varin::= the variable varin ∈ V com which appears on the right side of operator θ;

40

Note that θ is a comparison operator which appears in the c, i is index of τ ji .
Translation process 2 (process action a): if a is not equal to symbol “ ”, the trans-

lation process is: a −→ aY , where aY is a Yices expression defined by BNF as follows:

aY ::=< curs >< eP >< vi >< exp >< cure >;
exp ::=< curs >< θ >< expr >< expr >< cure >;
expr ::= cvi−1 | exp;
curs ::= “(”; cure = “)”
eP ::= “ =”;
θ ::= “+ | −|∗ | / |=”;
vi ::=the variable vi ∈ V com which appears on the left side of symbol “=” of a;
cvi−1 ::=the variable cvi−1 ∈ V com which appears on the right side of symbol “=” of a;

In addition, ∀vother ∈ V com \ {vi}, we use another formula to translate each vother into
Yices expression in the same i-step to ensure that other variables vother hold its value as
same as last step. The translation process is: vother −→ zY , where zY is a Yices expression
defined by BNF as follows:

zY ::=< curs >< eP >< viother >< vi−1other >< cure >;
curs ::= “(”; cure = “)”;
eP ::= “ =”;

Note that i is index of τ ji .
Eespecially, if a is equal to symbol “ ”, we can also use formula v −→ zY to translate

each variable ∀v ∈ V com into Yices file in i -step.
In the TAE2P, since ∀vl ∈ V com whose name and value are saved into µj

l , we only need
to translate the variable’s name and value into Yices expression according to formula
(5.4). The translation process is: σj

l −→ LY , where LY is a Yices expression defined by
BNF as follows:

LY ::=< curs >< eP >< vlname >< vlvalue >< cure >;
curs ::= “(”; cure = “)”;
eP ::= “ =”;
vlname ::=the name of µj

l ;
vlvalue ::=the value of µj

l ;

Note that l is index of µj
l .

41

Chapter 6

Verification tool

In the chapter 5, we have already discussed the algorithm about how to establish a
execution tree, the two types of strategies for extracting execution paths from execution
tree and how to translate the VCs of transition system M into Yices file. In this chapter,
we will talk about the architecture of our verification tool and how to use our verification
tool.

6.1 Architecture of verification tool

In order to accomplish the evaluation of our approach, we have implemented two types
of tools according to GAE2P and TAE2P based on the execution tree with C++ respec-
tively. Our verification tool consists of five modules: input files examination module,
establishment execution tree module, extraction execution paths module, translation pro-
cess module and Yices verification module. The architecture of our verification tool is
illustrated in figure 6.1.

Our verification tool reads two types of input files for checking a system. One is
called “Tasks file” which consists of tasks’ behaviors that are described by extended FSM,
combination variables set and configure file of each task. The other is called “Verification
property formula file” which includes a verification formula that is described by LTL.
Especially, in the input files examination module of our verification tool, these two types
of input files can be examined. If the input files include some unexpected inputs, our
tool can return the reason of unexpected inputs to user. The function of establishment
execution tree module is to establish a k -step execution tree according to the input files and
bound k. When the k -step execution tree has been established, the extraction execution
paths module is used to extract the execution paths from execution tree. Especially, in the
extraction execution paths module, user can choose GAE2P or TAE2P strategy to extract
the execution paths from execution tree according to the degree of correlation between
target system’s variables and verification property formula. In order to check whether
verification property formula satisfies the execution paths using Yices, the translation
process module is used to translate execution paths and verification property formula
into Yices file. The verification results are outputted by Yices which is processed in

42

architecture of our verification tool

input file examination

module

establishment execution

tree module

extraction execution

paths module

translation process

module

Yices verification

module

Figure 6.1: The architecture of our verification tool

Bound k

GAE2P/TAE2P

4

2

Establishing

execution tree

1

Transition process

3

Verification property formula 2

Bound k

Execution tree

Verification file3

UserTasks file1

Yices checking process
User

Verification result

Execution parhs

Figure 6.2: The data flow diagram of our tools

Yices verification module. The format of verification results is either “sat” or “unsat”,
the symbol “sat” means the verification property formula satisfies the execution paths,
the symbol “unsat” means the verification property formula cannot satisfy the execution
paths. The data flow diagram of our verification tool is shown in figure 6.2.

6.2 An example for using verification tool

In order to use our verification tool conveniently and easily, the input data types of our
verification tool are limited to be three types: Tasks file, Verification property formula
file and bound k. The Tasks file is used to store tasks’ configure files, the combination
variables of each task’s global variables and local variables, and each task’s behaviors
which are described by E-FSM. The Verification property formula file is used to store the
verification property formula which is described by LTL. Especially, for theTasks file, we
use a format to organize the data of Tasks file. The format of Tasks file is illustrated in

43

TaskConfigure
 //each task's configure file
 {Task_name Priority Autostart};
 …
TaskConfigure_End
Variable
 //each variable' name and value
 varName=varValue;
 …
Variable_End
EFMS
 EFSM_TaskName
 {s0, s1, …};//states
 {s0};//initial state
 T={}//transition relations
 EFSM_TaskName_End

 …
EFMS_End

Tasks file

Figure 6.3: The format of Tasks file

figure 6.3.
We can see in the figure 6.3, the first part is tasks’ configure file, and each task’s

configure file is indicated in this part. In the second part, all of variables and its value are
listed. Besides, each task’s behaviors which are described by E-FSM are stored in third
part. Especially, In the third part of Tasks file, the first line is used to save all states of
task, the initial state is denoted in the second line, the transition relation T is presented
in last line. For instance, we can achieve the Tasks file according to figure 7.1, the Tasks
file is shown in figure 6.4.

TaskConfigure

{write 1 true}; {read 2 false};

TaskConfigure_End

Variable

mutex=0; buffer=0; mark_0=0; mark_1=1;

Variable_End

EFMS

EFSM_write

{s0, s1, s2, s3, s4};

{s0};

T={

(s0, mutex==mark_0, _, mutex=mutex+mark_1, s1); (s0, mutex<>mark_0, _, _, s2);

(s2, _, TerminateTask:null, _, s0); (s1, buffer==mark_0, _, buffer=buffer+mark_1, s3);

(s1, buffer<>mark_0, _, _, s3); (s3, _, _, mutex=mutex-mark_1, s4);

(s4, _, ChainTask:read, _, s0);

}

EFSM_write_End

EFSM_read

{s0, s1, s2, s3, s4};

{s0};

T={

(s0, mutex==mark_0, _, mutex=mutex+mark_1, s1); (s0, mutex<>mark_0, _, _, s2);

(s2, _, TerminateTask:null, _, s0); (s1, buffer==mark_1, _, buffer=buffer-mark_1, s3);

(s1, buffer<>mark_1, _, _, s3); (s3, _, _, mutex=mutex-mark_1, s4);

(s4, _, ChainTask:write, _, s0);

}

EFSM_read_End

EFMS_End

Figure 6.4: Example for Tasks file

Furthermore, we also can achieve the Verification property formula file according to the
figure 7.1, the Verification property formula file is shown in figure 6.5.

44

G (or (= buffer 1) (= buffer 0))

Figure 6.5: Example for Verification property formula file

Especially, in the Verification property formula file, we use prefix paradigm to input
the verification formal f, it is similar to the Yices input format.

Once we have already achieved these two files, we can use our verification tool to check
the target system M with verification formula f under k -step. The launching command
of our verification tool is “FPSBMC system.txt formula.txt bound k”. The output of our
verification tool is shown in figure 6.6.

GAE2P
TAE2P

Figure 6.6: The output of our verification tool

45

Chapter 7

Experiments and evaluation

In this chapter, we firstly carry out some relevant experiments with our tools, then the
evaluation and discussion for our verification approach based on experiments’ results are
demonstrated in the second part.

7.1 Experiments

In order to understand our experiments clearly, we chose a common Read/Write problem
as our experiments example. In our Read/Write program, two tasks communicate with
each other using a share global buffer as well as the variable mutex which is used to
represent the mutual semaphores. Especially, in our example, tasks use service commands
to request FPS for responding to its particular behavior, such as terminating itself and
chaining a task. For the verification formula f , we considered whether the global buffer
could satisfy the design requirement or not, the verification formula f and the Read/Write
program were illustrated in figure 7.1.

Since our approach for the first time drew scheduler behaviors into the safety property
checking of multi-task software, we only conducted the comparison between our two types
of tools in our experiments. We have carried out three experiments to evaluate our tools
with respect to different aspects. In the first experiment, we increased the bound k
gradually with a fixed amount of tasks, the results of verification time under different
bound k were shown in Table 7.1. However, in the most cases of practical checking
process of multi-task software, only several important variables (which are relative to
the checking process rather than all variables) were considered to be checked. As we
can see in Table 7.1, there are only two variables in Read/Write program, hence, based
on the first experiment, in the second experiment we inserted 1000 irrelative variables
x1, x2, · · · , x1000 into V com to express the execution behaviors which was unrelated to the
checking property. The results of verification time were shown in Table 7.2. Furthermore,
in the real execution process of multi-task software, a task cannot be run until it is
dispatched by scheduler to get CPU. Then, simplily increasing the amount of tasks will
not affect the verification process according to the characteristics of executing tasks of
multi-task software. In the third experiment, we only increased the total amount of tasks

46

(buffer!=0, _, _) (buffer==0, _, buffer++)

(_, ChainTask(Read)!, _) (_, TerminateTask()!, _)

(mutext!=0, _, _)(mutext==0, _, mutex++)

s0

s1 s2

(_, _, mutex--)

s3

s4

(buffer!=1, _, _) (buffer==1, _, buffer--)

(_, ChainTask(Write)!, _) (_, TerminateTask()!, _)

(mutext!=0, _, _)(mutext==0, _, mutex++)

s0

s1 s2

(_, _, mutex--)

s3

s4

Read taskWrite task

Verification formula: G(buffer==0 ⋁ buffer==1)

Task configure file:

Task Name Priority Autostart

Read

Write

3

2

True

False

Figure 7.1: Read/Write program and verification formula f

based on first experiment. The experiment results were shown in Table 7.3.
In our data tables, RW (x, y) represents the Read/Write problem, where the parameters

x and y denote the total number of Read and Write program separately. The symbol
“p” denotes the amount of verification variables, “c” represents the total size of the test
program’s code, “v” is the total amount of variables of V com and we use “pc” to indicate
the total amount of code associated with verification properties. Furthermore, we use
symbol “r” to show the total amount of checking paths of GAE2P under bound k and
symbol “tr ” to illustrate the total times of trim-tree of TAE2P. The environment of
experiments is: windows vista OS, AMD 64 ∗ 2 Dual Core CPU, 2.00 GB RAM.

Table 7.1: Fixed total amount of tasks, increase bound k

Test Bound #p #pc / #c #v
GAE2P TAE2P

program k #r Time(s) #tr Time(s)

1 RW(1,1) 5 1 4 / 18 2 5 0.101 3 0.082

2 RW(1,1) 10 1 4 / 18 2 15 0.139 6 0.136

3 RW(1,1) 15 1 4 / 18 2 31 0.249 8 0.203

4 RW(1,1) 20 1 4 / 18 2 63 0.511 10 0.421

5 RW(1,1) 25 1 4 / 18 2 191 1.791 13 1.058

6 RW(1,1) 30 1 4 / 18 2 511 6.857 16 4.742

7 RW(1,1) 35 1 4 / 18 2 1023 16.41 18 8.063

8 RW(1,1) 40 1 4 / 18 2 2047 46.09 20 16.63

47

Table 7.2: Insert 1000 irrelevant variables

Test Bound #p #pc / #c #v
GAE2P TAE2P

program k #r Time(s) #tr Time(s)

1 RW(1,1) 5 1 4 / 1018 1002 5 1.604 3 1.592

2 RW(1,1) 10 1 4 / 1018 1002 15 1.649 6 1.639

3 RW(1,1) 15 1 4 / 1018 1002 31 1.754 8 2.203

4 RW(1,1) 20 1 4 / 1018 1002 63 2.031 10 3.121

5 RW(1,1) 25 1 4 / 1018 1002 191 4.242 13 3.558

6 RW(1,1) 30 1 4 / 1018 1002 511 11.351 16 11.242

7 RW(1,1) 35 1 4 / 1018 1002 1023 21.22 18 22.43

8 RW(1,1) 40 1 4 / 1018 1002 2047 50.57 20 48.13

Table 7.3: Increase total amount of tasks based on experiment 1

Test Bound #p #pc / #c #v
GAE2P TAE2P

program k #r Time(s) #tr Time(s)

1 RW(1,1) 5 1 4 / 18 2 5 0.118 3 0.092

2 RW(2,1) 10 1 4 / 18 2 15 0.141 6 0.138

3 RW(3,2) 15 1 4 / 18 2 31 0.257 8 0.214

4 RW(4,3) 20 1 4 / 18 2 63 0.509 10 0.441

5 RW(5,4) 25 1 4 / 18 2 191 1.792 13 1.097

6 RW(6,5) 30 1 4 / 18 2 511 6.851 16 4.771

7 RW(7,6) 35 1 4 / 18 2 1023 16.49 18 8.611

8 RW(8,7) 40 1 4 / 18 2 2047 46.10 20 16.73

48

7.2 Evaluation and discussion

According to Table 7.1 in the experiment 1, we can find that the checking time of TAE2P
is shorter than GAE2P under the same bound k and the total amount of tasks. Especially,
we can notice that when the bound k is increased to 40, GAE2P generated 2047 possible
execution paths and TAE2P trimmed 20 unreachable sub-paths over execution tree for
getting one execution path. However, in the experiment 2, according to Table 7.1 and
Table 7.2, we can notice that TAE2P cannot hold its advantage any longer in verification
time compared with GAE2P when the bound k is increased to 30. The reason for this
phenomenon is: (i) although GAE2P translates all of execution paths into Yices, the
SMT tool Yices not only is an efficient solver to compute the relation between verification
property and transition system but also contains a specific processing method tailored for
unsatisfiable cores that commonly removes the VCs which were not relevant to a given
property from transition system [36]; (ii) TAE2P spends much time to compute all the
variables’ values in each step trim-tree process. The compared results between experiment
1 and experiment 2 are shown in left side of figure 7.2.

In the experiment 3, we increased the amount of tasks compared with experiment
1, but the verification time only changed slightly according to table 7.1 and 7.3. The
reason for this phenomenon is: although a system has many tasks, which task to be run
is determined by FPS, furthermore, task’s behaviors cannot be unfolded and inserted
into execution tree until it occupies the running unit. The compared results between
experiment 1 and experiment 3 are shown in right side of figure 7.2.

0.1

2.0

4.0

16.0

5 10 15 20 25 30 35 40

GAE2P
TAE2P

Experiment 1:

Experiment 2:

GAE2P
TAE2P

Checking time

Bound k
0.1

2.0

4.0

16.0

5 10 15 20 25 30 35 40

GAE2P
TAE2P

Experiment 1:

Experiment 3:

GAE2P
TAE2P

Checking time

Bound k

Figure 7.2: The compared results between experiment 1 and experiment 2/experiment 3

According to experiments results, we can know our verification approach has several
advantages for checking the safety property of multi-task software based on OSEK/VDX
OS, (i) in our approach, BMC is employed to overcome state space explosion; (ii) our
verification approach can deal with the service commands that appear in any branches
of tasks’ behaviors; (iii) all of the k -step execution paths which are conducted by FPS
can be obtained based on execution tree. However, there are several disadvantages in
our approach, e.g., our approach only focuses on the basic task of OSEK/VDX OS,
interruption behavior is not considered in our approach. Furthermore, our approach only
can be used to check the safety property. However, the real-time property is a key property
for the real-time operating system OSEK/VDX and needs to be checked too.

49

Chapter 8

Related work

SMT-based BMC is gaining popularity in the formal verification community due to the
advent of sophisticated SMT solvers built over efficient SAT solvers [37]. Ganai and Gupta
describe a verification framework for BMC which extracts high-level design information
from an extended finite state machine (EFSM) and apply several techniques to simplify
the BMC problem [5]. Based on the proposed verification framework, Ganai and Gupta
develop a lazy method for modelling multi-threaded concurrent systems using shared
variables [5]. Although, Ganai and Gupta’s method can be used to check the safety
property of multi-thread software in which threads concurrently execute in system, this
method is restricted to two threads and the scheduler behaviors are not considered in
verification process. Therefore, this method cannot be used to check the safety property
of multi-task software in which tasks are dispatched by scheduler for executing.

Qadeer and Rehof also present a pragmatic method to discover bugs in concurrent soft-
ware in which the program analysis is restricted to executions with a bounded number of
context switches [38]. However, this method is incomplete since it considers the verifica-
tion up to a given fixed context bound. This method also dose not draw the scheduler
behaviors into the checking process.

Lucas Cordeiro and Bernd Fischer describe and evaluate three approaches to model
check multi-threaded software with shared variables and locks using BMC based on SMT
[7]. Especially, in this paper, authors use scheduler to reduce the reachability tree, the
method of Lucas Cordeiro and Bernd Fischer is as follows:

ψk = I(s0) ∧R(s0, s1) ∧ ... ∧R(sk−1, sk)︸ ︷︷ ︸
transition system M

∧ ¬φk︸︷︷︸
property

∧ sch(s0) ∧ ... ∧ sch(sk)︸ ︷︷ ︸
scheduler

(8.1)

However, in Lucas Cordeiro and Bernd Fischer’s method, tasks and scheduler cannot
communicate with each other using service commands.

To the best of our knowledge, there is no work that considers a SMT-based bounded
model checking to check the multi-task software in which tasks are dispatched by fixed
priority scheduler and tasks and scheduler can communicate with each other using service
commands based on OSEK/VDX OS.

50

Chapter 9

Conclusion and future work

In our article, we proposed an approach about how to check the safety property of multi-
task software in which tasks are dispatched by FPS based on OSEK/VDX OS. Especially,
we established an k -step execution tree to represent the execution behaviors of tasks
under FPS’s dispatching. We also implemented two tools according to our two strategies
of extracting execution paths in which BMC is employed to overcome state space explosion
and generate the VCs based on execution tree. Furthermore, we evaluated our tools by
carrying out some relevant experiments, the experiments results indicated that our tools
can check the safety property of multi-task software in which tasks are dispatched by FPS
efficiently. However, our research leaves something to be desired, e.g., our research only
focus on the basic task of OSEK/VDX OS and our approach only can be used to verify
the safety property of multi-task software. In future, we plan to conduct our research
on extended task of OSEK/VDX OS based on the current work. Besides, the real-time
property of multi-task software is also an aspect to be improved and investigated.

51

Acknowledgements

My master course at School of Information Science in JAIST will soon come to an end,
at the completion of my graduation thesis; I wish to express my sincere appreciation to
all those who have offered me invaluable help during the whole period of my study and
research.

First and foremost, I would like to express my deepest gratitude to my supervisor,
Professor Aoki, who led me into the world of Bounded Model Checking and gave me a
chance to explore my potential in this research topic at the full capacity. He generously
spent much time reading through each draft and walked with me through all the stages
of this thesis. He provided me a lot of instructive advices, useful suggestions, insightful
criticism and professional guidance, without his consistent and illuminating instruction,
this thesis could not be presented in its current form.

Secondly, I should give my hearty thanks to Professor Kokichi Futatsugi and Assistant
Professo Yuki Chiba, for their valuable comments and suggestions. They have put con-
siderable time and effort into their comments on my research. They gave me their help
and helped me work out my problems during the difficult course of my research, from
whom I benefited a lot. Also, I would like to thank my friends, Lin Wang, Min Zhang,
Shengbei Wang. They kindly gave me a hand when I was in frustration or depression.
Their encouragement and unwavering support has sustained me through the hard times.
Last but not the least, my thanks would go to my family for their infinite love and great
confidence for me all through these years. They have supported me continuously, which
is the biggest motivity for my study.

Once again, I would like to thank my supervisor Professor Aoki, his rigorous, consci-
entious and earnest attitude to scholarly studies impressed me most, this would be an
invaluable wealth for my future.

52

Reference

[1] C.Biere and J.-P. Katoen. Principles of Model Checking, MIT Press, 2008

[2] Ranjij Jhala. Software Model Checking, ACM, 2008

[3] A.Biere. Bounded Model Checking, In Handbook of Satisfiability, pp.457-481, 2009

[4] Armin Biere, Alessandro Cimatti, and Edmund M. Clarke. Bounded Model Checking,
Advances in Computers, vol.58, 2003

[5] M. K. Ganai and A. Gupta. Efficient Modeling of Concurrent System in BMC, SPIN,
LNCS 5156, pp.114-133, 2008

[6] V. Kahlon. Semantic Reduction of Thread Interleaving in Concurrent Program,
TACAS, LNCS 5505, pp.124-138, 2009

[7] Lucas Cordeiro and Bernd Fischer. Verfiying Multi-threaded Software using SMT-
based Context-Bounded Model Checking, ICSE, 2011

[8] L. Cordeiro, and B. Fischer. SMT-based Bounded Model Checking for Embedded
ANSI-C software, ASE, pp.137-340, 2008

[9] N. Ghafari, A Hu, and Z. Rakamaric. Context-bounded Transitions for Concurrent
Software: An empirical evaluation, SPIN, LNCS 5156, pp.398-413, 2008

[10] Johnson Lemieux. Programming in the OSEK/VDX Environment, CMP Books, 2011

[11] E. Alkassar, N. Schirmer, and A. Starostin. Formal pervasive verification of a paging
mechanism, In TACAS, pp.109-123, 2008

[12] In Yices, http://yices.csl.sri.com

[13] S. Buss. Intuitionistic validity in T-normal Kripke structure, Annals of Pure and
Applied Logic, pp.159-173, 1993

[14] Jeff magee and Jeff kramer. Concurrency, 2006

[15] H. Barringer, M. Fisher, D. Gabbay, and G. Gough. Proceedings of the Second Inter-
national Conference on Temporal Logic, ICTL, 1997

53

[16] D.M. Gabbay, I. Hodkinson, and M. Reynolds. Temporal Logic: Mathematical Foun-
dations and Computational Aspects, Oxford Logic Guides, Oxford University Press,
1994

[17] R. Goldblatt. Logics of Time and Computation, CSLI Lecture Notes, Center for the
Study of Language and Information, Stanford University, second edition, 1987

[18] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: Engi-
neering an Efficient SAT Solver, In DAC, 2001

[19] M. Prasad, A. Biere, and A. Gupta. A survey of recent advances in sat-based formal
verification, In STTT, 2005

[20] Raimondi, F. and Lomuscio, A. Automatic verification of multi-agent systems by
model checking via OBDDs, Journal of Applied Logic, 2005

[21] Sentovich, E. M. A brief study of BDD package performance. In Proceedings of the
Formal Methods on Computer-Aided Design, pp.389-403, 1996

[22] SATLib, http://www.satlib.org/

[23] PROVER, http://www.prover.com/

[24] SATO, http://homepage.cs.uiowa.edu/ hzhang/sato/

[25] GRASP http://vlsicad.eecs.umich.edu/BK/Slots/cache/sat.inesc.pt/ jpms/grasp/

[26] BNF, http://en.wikipedia.org/wiki/BNF

[27] A. Armando, J. Mantovani and L. Platania. Bounded Model Checking of Software
using SMT Solvers instead of SAT Solvers, LNCS, pp.146162, 2006

[28] M. Bozzano, R. Bruttomesso, A. Cimatti, T. Junttila, P. van Rossum, S. Ranise and
R. Sebastiani. Efficient satisfiability modulo theories via delayed theory combination,
Computer-Aided Verification (CAV), 2005

[29] SMTlib, http://www.smtlib.org/

[30] Yatake, k. and Aoki, T. Automatic generation of model checking scripts based on
environment modeling, in model checking software, pp.58-75, 2010

[31] Jiang Chen and Toshiaki Aoki, Conformance testing for OSEK/VDX OS using model
checking, Asia-Pacific Software Engineering Conference, 2011

[32] Hash, http://en.wikipedia.org/wiki/Hash

[33] Queue, http://www.cplusplus.com/reference/stl/queue

[34] Tarjan, R.E. Depth-first search and linear graph algorithm, SIAM journal of comput-
ing, pp.146-160, 1972

54

[35] Stack, http://en.wikipedia.org/wiki/Stack

[36] Lucas Cordeiro. SMT-Based bounded model checking for multi-threaded software in
embedded system, ICSE, 2010

[37] L. M. de Moura and N. Bjrner. Z3: An efficient SMT solver. TACAS, LNCS 4963,
pp.337340, 2008

[38] S. Qadeer and J. Rehof. Context-bounded model checking of concurrent software.
TACAS, LNCS 3440, pp.93107, 2005

55

