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Abstract

Sensors in wireless sensor networks (WSNs) usually form a tree topology and the sensed
data are transmitted to a sink using multihop communication. However, multihop com-
munication causes the phenomenon of unbalanced energy consumption, in which sensors
close to the sink are overused due to transmitting not only their own sensed data but
also data from other sensors, and they will die out early, resulting in network collapse
although there may be still significant amount of energy in other sensors. Therefore, net-
work lifetime could be prolonged if the energy consumption of all sensors in the network
is balanced. In our research, the network lifetime of a WSN is defined as the time elapsed
since the network started operating until one sensor run out of battery.
For any data gathering applications, especially in large-scale networks, a small delay

in data collection is desired. In this research, data collection delay is defined as the time
for all packets from all sensors in network to be received by the sink. However, also with
multihop communication, a packet is relayed by many nodes before arriving at the sink,
which causes a high delay in data collection.
There are two main objectives of our research, first, to increase the network lifetime

of WSN by balancing energy consumption of each sensor throughout the network, and
second, to reduce the delay in data collection. To obtain this, we propose a scheme
called “2-hop scheme”. Our proposed scheme exploits energy tradeoff between hop-by-hop
transmission and 2-hop transmission. Hop-by-hop transmission is a basic communication
pattern in WSN, where a packet is forwarded to the next hop until it reaches the sink.
This basic communication consumes less energy at each hop; however, it causes high
load of packets relay at nodes near the sink, resulting unbalanced energy consumption,
as mentioned above. 2-hop transmission is another pattern of communication in WSN
(in our research, we assume that each sensor can increase the transmitting power so
that the transmission range is increased), where a packet is forwarded not to the next
hop, but instead to the 2-hop-away node. For illustration, let us consider three sensors
S3, S2, and S1. The next hop of S3 is S2 and the next hop of S2 is S1. In hop-by-hop
transmission, packets from S3 are forwarded to S2. In 2-hop transmission, packets from S3

are forwarded not to S2, but to S1. 2-hop transmission consumes more energy than hop-
by-hop transmission; however, it can help reduce the load (the total number of packets to
be transmitted) at each node. By elegantly combining these two patterns of transmission,
energy consumption of sensors in the network could be balanced and the network lifetime
could then be prolonged.
More specifically, a packet is transmitted in hop-by-hop transmission with a probability

p, and is transmitted in 2-hop transmission with probability 1− p. By choosing optimal
transmission probability p for each node, the expected energy consumption of all nodes
could be balanced and then, the network lifetime is proved to be maximized.
We analyze our proposed scheme for chain topology networks, binary tree topology

networks and then for general tree topology networks. For chain and binary tree topology
networks, we give a method to find optimal transmission probability for each node, so



that energy consumption is balanced and network lifetime is maximized. For general tree
topology network, it is difficult to find optimal transmission probability for each node;
we then assign the same transmission probability for all nodes in the network, and use
a simulator to estimate how much our proposed scheme could help increase the network
lifetime compared to hop-by-hop scheme (hop-by-hop scheme is the conventional scheme
where data is sent only in hop-by-hop transmission). Simulation results show that our
proposed scheme outperforms the hop-by-hop scheme not only in term of network lifetime
but also in term of data collection delay. With chain and binary tree networks, we also
analyze the cases when initial battery levels in sensors are different to each other and give
a method to find optimal transmission probabilities for the sensors.
Keywords : Wireless sensor networks (WSNs); 2-hop scheme; balanced energy consump-

tion; network lifetime; data collection delay.



Acknowledgements

First and foremost, I would like to express most sincere gratitude to my supervisor,
Associate Professor Azman Osman Lim, who has always supported me with his knowledge,
enthusiasm, not only for my research but also for many other skills like how to prepare
a good slides as well as how to make a good presentation. Although he is very busy, he
is always willing to discuss with me if there are problems with my research and give me
advices. Without his consistent help, this thesis would have not been completed or even
written.
I would like to thank Professor Yasuo Tan, my sub supervisor for his guidance and

support throughout my study. Thanks to his comments, not only my presentation slides
but also my thesis become better and better.
I also would like to express my thank to Professor Yoichi Shinoda for taking time to

be at my mid-term defense as well as the final dissertation and give helpful comments for
my thesis.
My special thank to the Japanese Government Scholarship Program (Monbukagakusho)

for their financial support during my study here in Japan. Also thanks to all the Japanese
teachers, who are always willing to help me with Japanese language.
Many thanks to my friends in Lim and Tan Laboratories for their helps, suggestions

and encouragements during my study. Also to my Vietnamese friends here, who have
been helping me a lot since the date I first came to JAIST.
Last but not least, thank you my family, for your love, supports and encouragements.



Contents

1 Introduction 1
1.1 Research Background and Motivation . . . . . . . . . . . . . . . . . . . . . 1
1.2 Research Problem: Unbalanced Energy Consumption . . . . . . . . . . . . 2
1.3 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Research Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5 Structure of this Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 System Models, Definitions and Problem Statement 5
2.1 Data Gathering Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Energy Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.1 First-order Radio Model . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.2 Energy Consumption Calculation . . . . . . . . . . . . . . . . . . . 7

2.3 Communication Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Theoretical Analysis on Network Lifetime and Data Collection Delay
with 2-hop Scheme 9
3.1 Network Lifetime Increase with 2-hop Scheme in Chain Topology Networks 9

3.1.1 Chain Topology Networks . . . . . . . . . . . . . . . . . . . . . . . 9
3.1.2 Optimal Transmission Probabilities . . . . . . . . . . . . . . . . . . 10
3.1.3 Numerical Results and Analysis . . . . . . . . . . . . . . . . . . . . 12
3.1.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 Network Lifetime Increase with 2-hop Scheme in Binary Tree Topology
Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2.1 Binary Tree Topology Networks . . . . . . . . . . . . . . . . . . . . 19
3.2.2 Optimal Transmission Probabilities . . . . . . . . . . . . . . . . . . 20
3.2.3 Numerical Results and Analysis . . . . . . . . . . . . . . . . . . . . 22
3.2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3 Network Lifetime Increase with Direct Scheme and 2-hop Scheme . . . . . 25
3.3.1 Direct Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3.2 Network Lifetime with Direct Scheme and 2-hop Scheme . . . . . . 26
3.3.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.4 Data Collection Delay with Hop-by-hop Scheme and 2-hop Scheme . . . . 28
3.4.1 Data Collection Delay with Hop-by-hop Scheme . . . . . . . . . . . 29

i



3.4.2 Data Collection Delay with 2-hop Scheme . . . . . . . . . . . . . . 30
3.4.3 Data Collection Delay Comparison between Hop-by-hop Scheme

and 2-hop Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.4.4 Numerical Results for Chain Topology Networks . . . . . . . . . . 32
3.4.5 Numerical Results for Binary Tree Topology Networks . . . . . . . 34
3.4.6 Data Collection Delay with Hop-by-hop, 2-hop and Direct Scheme

as a Function of Transmission Probabilities . . . . . . . . . . . . . . 35
3.4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.5 2-hop Scheme when Initial Battery Levels are Different . . . . . . . . . . . 36
3.5.1 Computation of Optimal Transmission Probabilities . . . . . . . . . 39
3.5.2 Theoretical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.5.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4 Simulation Studies on Network Lifetime and Data Collection Delay with
2-hop Scheme 42
4.1 Simulation Studies for Chain and Binary Tree Topology Networks . . . . . 42

4.1.1 Simulation Results for Chain Networks . . . . . . . . . . . . . . . . 42
4.1.2 Simulation Results for Binary Tree Networks . . . . . . . . . . . . . 42
4.1.3 Theoretical Verification and Conclusion . . . . . . . . . . . . . . . . 43

4.2 Simulation Studies for General Tree Topology Networks . . . . . . . . . . . 43
4.2.1 Simulation Setup and Environment . . . . . . . . . . . . . . . . . . 44
4.2.2 Simulation Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2.3 Simulation Results for Network Lifetime without Packet Loss . . . . 46
4.2.4 Simulation Results for Data Collection Delay without Packet Loss . 47
4.2.5 Simulation Results for Network Lifetime with Packet Loss . . . . . 48
4.2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.3 Simulation Studies on Network Lifetime with 2-hop Scheme for General
Tree Topology Networks when Initial Battery Levels are Different . . . . . 49

5 Concluding Remarks 51
5.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.3 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

A Proof of Theorems 53
A.1 Proof of Theorem 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
A.2 Proof of Theorem 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
A.3 Proof of Theorem 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
A.4 Proof of Theorem 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
A.5 Proof of Theorem 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

B Proof of Lemmas 57
B.1 Proof of Lemma 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
B.2 Proof of Lemma 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

ii



B.3 Proof of Lemma 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

iii



List of Figures

1.1 Wireless sensor network . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Unbalanced energy consumption caused by multi-hop transmission . . . . . 2

2.1 Data gathering model in WSN . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 First-order radio model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Proposed 2-hop scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.1 A chain topology network of N sensors . . . . . . . . . . . . . . . . . . . . 9
3.2 Chain network - network lifetime with 2-hop scheme and hop-by-hop scheme

(α = 3.5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3 Chain network – network lifetime with hop-by-hop scheme and expected

network lifetime increase with 2-hop scheme for different path loss exponents 19
3.4 A binary tree topology network of L levels of sensors . . . . . . . . . . . . 20
3.5 The relationship between sensors in levels i, i+ 1 and i+ 2 . . . . . . . . . 21
3.6 Binary tree network – expected network lifetime increase with 2-hop scheme

(α = 3.5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.7 Binary tree network – network lifetime with hop-by-hop scheme and ex-

pected network lifetime with 2-hop scheme for different path loss exponents 26
3.8 Direct scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.9 Chain network – network lifetime with hop-by-hop scheme, direct scheme

and 2-hop scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.10 A chain topology network consisting of 4 sensors . . . . . . . . . . . . . . . 29
3.11 A chain topology network consisting of 4 sensors . . . . . . . . . . . . . . . 31
3.12 Chain network – data collection delay with 2-hop scheme and hop-by-hop

scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.13 Binary tree network – expected decrease in data collection delay with 2-hop

scheme over hop-by-hop scheme . . . . . . . . . . . . . . . . . . . . . . . . 36
3.14 Chain network of 10 sensors – data collection delay with hop-by-hop scheme,

2-hop scheme and direct scheme as a function of transmission probabilities 37
3.15 Binary tree network of 10 levels – data collection delay with hop-by-hop

scheme, 2-hop scheme and direct scheme as a function of transmission prob-
abilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.16 Chain network – network lifetime with 2-hop scheme and hop-by-hop scheme
as a function of number of levels when initial battery levels are different . . 40

iv



3.17 Binary tree network – network lifetime with 2-hop scheme and hop-by-hop
scheme as a function of number of levels when initial battery levels are
different . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.1 General tree network – simulation process . . . . . . . . . . . . . . . . . . 46
4.2 General tree network – network lifetime with hop-by-hop and 2-hop scheme 47
4.3 General tree network – average data collection delay with 2-hop scheme

over hop-by-hop scheme as a function of transmission probabilities . . . . . 48
4.4 General tree network – network lifetime with hop-by-hop and 2-hop scheme

with the presence of packet loss . . . . . . . . . . . . . . . . . . . . . . . . 49
4.5 General tree network – network lifetime with 2-hop scheme and hop-by-

hop scheme as a function of number of levels when initial battery levels are
different . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

v



List of Tables

3.1 Chain network – expected network lifetime increase with 2-hop scheme
(α = 3.5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2 Chain network – expected network lifetime increase with 2-hop scheme
(α = 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3 Chain network – expected network lifetime increase with 2-hop scheme
(α = 2.5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.4 Chain network – expected network lifetime increase with 2-hop scheme
(α = 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.5 Binary tree network – expected network lifetime increase with 2-hop scheme
(α = 3.5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.6 Binary tree network – expected network lifetime increase with 2-hop scheme
(α = 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.7 Binary tree network – expected network lifetime increase with 2-hop scheme
(α = 2.5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.8 Binary tree network – expected network lifetime increase with 2-hop scheme
(α = 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.9 Chain network – network lifetime with 2-hop scheme and direct scheme . . 27
3.10 Binary tree network – network lifetime with 2-hop scheme and direct scheme 29
3.11 Chain network – expected data collection delay with 2-hop scheme . . . . . 34
3.12 Binary tree network – expected data collection delay with 2-hop scheme . . 34

4.1 Chain network – Theoretical calculation results for expected network life-
time with 2-hop scheme (α = 3.5) . . . . . . . . . . . . . . . . . . . . . . . 43

4.2 Chain network – Simulation results for expected network lifetime with 2-
hop scheme (α = 3.5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.3 Binary tree network – Theoretical calculation results for expected network
lifetime with 2-hop scheme (α = 3.5) . . . . . . . . . . . . . . . . . . . . . 44

4.4 Binary tree network – Simulation results for expected network lifetime with
2-hop scheme (α = 3.5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.5 Simulation parameters and settings . . . . . . . . . . . . . . . . . . . . . . 45

vi



List of Abbreviations and Symbols

DGC Data Gathering Cycle

N Number of sensors in the network

L Number of levels in a binary tree network

Si The ith sensor in the network

pi Transmission probability of sensor Si

Bi Initial battery level of sensor Si

α Path loss exponent. In this research, α = 2, 2.5, 3, 3.5

ϵelec
Energy spent by the electronic circuit when transmitting or receiving one
bit data. In this research, ϵelec = 50 nJ/bit

ϵamp Transmission amplifier. In this research, ϵamp = 100 pJ/bit/mα

d1 Maximum hop-by-hop transmission range. In this research, d1 = 20 m

d2 Maximum 2-hop transmission range. In this research, d2 = 2d1 = 40 m

m Packet size. In this research, m = 1024 bits

ϵt(d1)
Energy for transmitting onem−bit packet over distance d1 in hop-by-hop
transmission

ϵt(d2)
Energy for transmitting one m − bit packet over distance d2 in 2-hop
transmission

ϵr Energy for receiving one m− bit packet

vii



εi Energy consumption of sensor Si in one DGC

ξi Energy consumption of sensor Si in the whole network lifetime

Th2h Network lifetime with hop-by-hop scheme

T2hop Network lifetime with 2-hop scheme

Dh2h Data collection delay with hop-by-hop scheme

D2hop Data collection delay with 2-hop scheme

E[λ] Expected value of a random variable λ

viii



Chapter 1

Introduction

1.1 Research Background and Motivation

Wireless sensor networking is an emerging technology that has a wide range of potential
applications including environment monitoring, smart spaces, medical systems and robotic
exploration. Such wireless sensor network (WSN) consists of many sensors distributed
spatially to monitor physical or environmental conditions (see Fig. 1.1). Sensors are
equipped with a radio transceiver enabling them to transmit their sensed data, such
as temperature, humidity, sound, pollutants, pressure or motion wirelessly through the
network to a main location, called the sink node.

Figure 1.1: Wireless sensor network

Sensors in the network are expected to operate for a long time, maybe months or
even years. However, they usually operate on small, inexpensive batteries, which have
a constraint in energy supply. Moreover, in many scenarios, it is impractical or even
impossible to replace or recharge those batteries after the sensors have been deployed.
Therefore, prolonging the operational time of the network is an important consideration
while designing WSNs.
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Motivated by this, our research aims to prolong the post-deployment network lifetime.
The network lifetime is regarded as the time elapsed from when the network started
operating until at least one sensor in the network runs out of battery.

1.2 Research Problem: Unbalanced Energy Consump-

tion

There are two basic communication patterns in wireless network that a node can utilize
to transmit data to the sink: direct transmission and multi-hop transmission. Direct
transmission, where data is directly transmitted to the sink without any relay, is very
energy-expensive and may quickly drain out the sensors’ batteries, especially for those
located far away from the sink. In practical, to avoid sending large data over long distance,
multi-hop communication is required. This type of transmission drains less energy at each
node; however, the load at nodes near the sink becomes big, for they have to handle more
data from the others. As a result, they quickly run out of battery, causing a decreased
network lifetime. This phenomenon is called the unbalanced energy consumption problem
due to multi-hop communication. Fig. 1.2 illustrates an unbalanced energy system,
where the load at node 1 (the number of packets it has to transmit) is five times bigger
than the load at node 5.

Figure 1.2: Unbalanced energy consumption caused by multi-hop transmission

1.3 Related Works

The problem of prolonging the lifetime of a sensor network has received significant atten-
tion in the last few years. Li et al. [1] proposed power-aware routing protocols to reduce
energy consumption by selecting minimum-energy routing paths for transmitting packets,
while Ma et al. [2] contributed a novel interference-free TDMA sleep scheduling problem
called contiguous link scheduling, which assigns sensors with consecutive time slots to
reduce the frequency of state transitions. However, strategies like energy aware routing
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or periodical sleeping focus on minimizing the total energy consumption of end-by-end
packet delivery and do not explicitly solve the unbalanced energy consumption problem
which can result in short network lifetime.
Cluster-head rotation schemes such as LEACH [3] and HEED [4] can achieve fairly

even energy consumption among nodes within the clusters by periodically performing
cluster-head rotation among all nodes in the cluster However, to achieve desirable bal-
ance of energy consumption, cluster-head the cluster-head selection algorithm must be
performed frequently, which may add excessive processing and communication overheads
to the network, resulting in much energy wastage.
Data aggregation, which the key idea is to combine data from different sensors to elimi-

nate redundant transmissions (for example, in a sensor network for getting the maximum
temperature of a region, after node A has received data from nodes B and C, it is not
necessary for A to forwards all the data from B and C to the next hop, but instead A
just needs to perform a MAX aggregation function on the temperatures and sends the
maximum one to the next hop), can be used as a strategy to balance energy consumption
and hence increase the network lifetime, as discussed in [5]. Li and Mohapatra [6] studied
the problem of mitigating energy holes by traffic compression and aggregation. However,
because data aggregation cannot be used in some cases, such as in a network deployed
to get the exact temperature of all points in an area; those studies do not explore the
possibility of avoiding energy holes in those kinds of data-gathering sensor networks.
Communication control protocol is another approach for the energy consumption bal-

ancing problem. Howitt and Wang [7] proposed Energy Balanced Chain (EBC) to balance
energy consumption by optimizing hop distances. The communication topology is pre-
determined based on the anticipated traffic in the network. Power-adjusted transmission
is another attractive scheme for balancing energy consumption in wireless sensor networks.
First proposed in [8] by Guo et al. is mixed-routing scheme, where each node alternatively
sends data in direct and multi-hop transmission. Efthymiou et al. [9] proposed a slice
model and designed a probabilistic data propagation algorithm for balancing energy con-
sumption in sensor networks where the nodes are uniformly deployed in a fan-shaped or
circular region, and all nodes are assumed to have the same packet generation rate. Zhang
et al. [10] also exploited the energy tradeoff between direct transmission and hop-by-hop
transmission to balance energy consumption for all nodes in chain networks; then they
derive the energy balanced solution for general topology networks by dividing the net-
work into sections and approximately mapping it on chain models. Those studies imply
that direct transmission can be performed by the sensors; however, if the sensors are too
far from the sink, or the energy level at a node is not high enough, direct transmission
may not work. In this research, we assume that the sensors can adjust the transmitting
power so that data can be received by the 2-hop-away node. This pattern of commu-
nication is called “2-hop transmission”. 2-hop transmission consumes less energy than
direct transmission and therefore, it can also work in large-scale network, where direct
transmission is impossible due to the long distance between some nodes and the sink. We
address the problem of balancing energy consumption by combining multi-hop and 2-hop
communication.

3



1.4 Research Objective

There are two main objectives of our research, first, to increase the network lifetime
of WSN by balancing energy consumption of each sensor throughout the network, and
second, to reduce the delay in data collection. To obtain this, we propose a scheme called
“2-hop scheme”. In this scheme, a sensor can perform two types of transmission: hop-by-
hop and 2-hop transmission. 2-hop transmission requires more energy than hop-by-hop
transmission, so if sensors far from the sink (where the load is not high) transmits more
data in 2-hop transmissions than those near the sink (where the load is high), the overall
energy consumption can be balanced throughout the network.

1.5 Structure of this Thesis

• Chapter 1 is about the research background and motivation, research problem, re-
search objective and some related works.

• Chapter 2 is about the system models like data gathering models, energy model,
communication model and problem statement.

• Chapter 3 is a theoretical analysis on

– Network lifetime increase with 2-hop scheme in chain and binary tree topology
networks.

– Network lifetime increase comparison with direct scheme and 2-hop scheme.

– Data collection delay comparison between hop-by-hop scheme, 2-hop scheme
and direct scheme.

• Chapter 4 is about simulation studies on 2-hop scheme for

– Network lifetime in general tree topology networks.

– Data collection delay in general tree topology networks.

• Chapter 5 is the concluding remarks, contributions and future works.
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Chapter 2

System Models, Definitions and
Problem Statement

2.1 Data Gathering Model

Our analysis is for data gathering sensor networks where each sensor periodically transmits
its sensed data to the sink. In most data gathering applications, usually the time between
two adjacent data transmission cycles (duty cycles) is long, may be several minutes,
hours or even days. Therefore, to avoid idle listening, sensors usually turn off their radio
circuits when there is no data to transmit. In our model, we assume that a synchronized
sleep/wake up scheme like T-MAC [11], S-MAC [12] or contiguous link scheduling [2]
is exploited. The process in which all sensors wake up, generate the sensed data and
transmit the data to the sink is defined as one Data Gathering Cycle (DGC) In one DGC,
we assume that each sensor generates only one packet and sends that packet, together
with all packets received from other sensors, to the sink. Between two adjacent DGCs, all
sensors turn off their radios to save energy. Fig. 2.1 illustrates the definition of DGC. In
this study, all sensors in the network have the same data generation rate, and the amount
of data generated by every sensor in each DGC is m bits.

Figure 2.1: Data gathering model in WSN
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2.2 Energy Model

2.2.1 First-order Radio Model

A typical sensor consists of three components: sensing component, data processing com-
ponent and communication component. Although the first two components also dissipate
sensor’s energy, the energy spent by them is much smaller compared to energy for trans-
mitting and receiving data. Thus, energy consumption of a sensor can be considered as the
energy dissipated by the communication component, which is a subsystem consisting of
transmitter/receiver electronics, a transmitting amplifier and an antenna. Heinzelman et
al. [13] proposed a model, called the first-order radio model (see Fig. 2.2) for calculating
transmitting and receiving energy of a sensor node.

Figure 2.2: First-order radio model

According to this model, the energy ETx(m, d) to transmit an m-bit packet over a
distance d is:

ETx(m, d) = (ϵelec + ϵamp ∗ dα) ∗m (2.1)

where ϵelec is the energy dissipated per bit in the transmitting electronics, ϵamp ∗ dα is
the energy dissipated in the amplifier to transmit one bit over distance d, and α is the
path loss exponent, usually 2 ≤ α ≤ 4 (where 2 is for propagation in free space, 4 is for
relatively lossy environments and for the case of full specular reflection from the earth
surface, the so-called flat-earth model). In some environments, such as buildings, stadiums
and other indoor environments, the path loss exponent can reach values in the range of
4 to 6. Path loss exponent represents the reduction in power density (attenuation) of an
electromagnetic wave as it propagates through space [14]. The energy ERx(m) to receive
an m-bit packet is:

ERx(m) = ϵelec ∗m (2.2)

here ϵelec is the energy dissipated in the receiving electronics for successful reception of a
single bit. The energy dissipated in the transmitting electronics on data sending is the
same as energy dissipated in receiving electronics on data receiving. The first-order radio
model has been widely used in many studies for measuring the energy consumption in
wireless communications, such as [1], [10], [15], [16].
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2.2.2 Energy Consumption Calculation

Because of the fact that, compared with data communication, other kinds of energy such
as energy for data processing, energy for sensing, etc. are much smaller, in this research,
we do not take those types of energy into account. Thereby, the total energy consumption
by a sensor is considered as the energy spent for communication. In one DGC, if a sensor
transmits a total of fTx m-bit packets over distance d and receives a total of fRx m-bit
packets, then the total energy consumption ε of that sensor in one DGC is:

ε = fTx ∗ ETx(m, d) + fRx ∗ ERx(m) (2.3)

2.3 Communication Model

In our work, we assume that all the transmissions in the network are reliable. Taking into
account the effects of data loss is considered as future work. The communication adopted
here is similar to the one proposed in [9], [10]; but instead of using direct transmission,
we use 2-hop transmission. More specifically, (see Fig. 2.3), a sensor (e.g., S5) forwards
a packet to the next hop (S3) using hop-by-hop transmission with probability p and
transmits the packet to the 2-hop neighbor (S1) using 2-hop transmission with probability
1−p. Our scheme does not consume plenty of energy as the aforementioned direct scheme;
thereby, it still works well in large-scale networks. pi is called the transmission probability
and this communication model is called the “2-hop scheme”.

S1
S2

S3
S4

S5

Sink

S6

S7

S8

S9

2-hop transmission with 

probability

tree link
Sensor

p

p−1

hop-by-hop transmission 

with probability

Figure 2.3: Proposed 2-hop scheme

2.4 Problem Statement

Let us consider a WSN consisting of N sensors S1, S2, S3, ..., SN . At initial time (deploy-
ment time), the battery levels in all sensors are assumed to be the same. The energy
consumption of Si in one DGC is denoted by εi. The energy consumed by Si in the
whole network lifetime is denoted by ξi. For a random variable λ, we denote by E[λ]
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its expectation value. That means, E[εi] is the expected energy consumption of Si in one
DGC and E[ξi] is the expected energy consumption of Si in the whole network lifetime.
A network is said to be energy balanced if each sensor has the same expected energy

consumption in the whole network lifetime, i.e.,

E[ξi] = E[ξj] i, j = 1, 2, ..., N (2.4)

In our scheme, the transmission probability pi is preassigned for sensor Si and remains
unchanged once the network starts to work. If pi is large, Si tends to send a packet in
hop-by-hop transmission, so E[ξi] is small. On the other hand, if pi is small, a packet
is more likely to be transmitted in 2-hop transmission, and E[ξi] is large. Therefore, by
assigning small probabilities for sensors far from the sink, and large probabilities for those
close to the sink, energy unbalance can be reduced and if we assign optimal probabilities
for sensors in the network, balanced energy consumption can be achieved. Thus, the
problem of balancing energy consumption can be transformed to the optimal transmission
probability allocation problem and our objective is now transformed to computing the
optimal transmission probability for each sensor so that balanced energy consumption
can be achieved.
Theorem 1 E[ξi] = E[ξj] if and only if E[εi] = E[εj] ∀i, j = 1, 2, ..., N
Proof See Appendix A.
From Theorem 1, the problem of the research can be stated as calculating optimal

transmission probabilities so that E[εi] = E[εj] ∀i, i = 1, 2, ..., N
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Chapter 3

Theoretical Analysis on Network
Lifetime and Data Collection Delay
with 2-hop Scheme

3.1 Network Lifetime Increase with 2-hop Scheme in

Chain Topology Networks

3.1.1 Chain Topology Networks

The chain topology network we consider in this chapter is a general chain network, where
the sensors are deployed irregularly in an area. Each sensor select one of its near-sink
neighbors for next hop packet relay. The sink is assumed to be at one end of the chain
without loss of generality. The sensors are marked with 1 to N from the sink to the
farthermost sensor (see Fig. 3.1). Each sensor Si is assigned a transmission probability
pi. Because S1 does not transmit any packet in 2-hop transmission, p1 = 1.

Figure 3.1: A chain topology network of N sensors

In one DGC, we denote by f1,i and f2,i the number of packets Si forwards to sensor
Si−1 using hop-by-hop transmission and to Si−2 using 2-hop transmission, respectively.
The expectation value of a random variable λ is denoted by E[λ].

Lemma 1 pi =
E[f1,i]

E[f1,i]+E[f2,i]
, ∀i = 1, 2, ..., N
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Proof See Appendix B.
It can be inferred from Lemma 1, and equation (B.3) that

E[f1,i] = piE[ni] (3.1)

and

E[f2,i] = (1− pi)E[ni] (3.2)

In practical, most current sensor motes cannot transmit a packet with power as small
as possible and usually there is a minimum transmission power. In this research, we
assume that all sensors in the network are identical, they use the same power P1 for hop-
by-hop transmission and the same power P2 for 2-hop transmission. Let d1 and d2 be the
maximum distance that a packet can be transmitted with power P1 and P2, respectively.
The expectation value of energy consumption of Si in one DGC is

E[εi] = E[f1,i]ϵt(d1) + E[f2,i]ϵt(d2) + (E[f1,i] + E[f2,i]− 1)ϵr (3.3)

Substituting (3.1) and (3.2) into (3.3), we have

E[εi] = piE[ni]ϵt(d1) + (1− pi)E[ni]ϵt(d2) + (E[ni]− 1)ϵr (3.4)

where ϵt(d1) and ϵt(d2) are the energy to transmit one packet over distance d1 and d2,
respectively. ϵr is the energy to receive one packet. They are calculated based on the
First-order radio model mentioned above.

3.1.2 Optimal Transmission Probabilities

From Problem Statement section above, we have known that the objective of this research
can be transformed to calculating optimal transmission probabilities to balance energy
consumption throughout the network. However, we now may come up with a question “is
it true that balancing energy consumption also maximizes the network lifetime?”. After
all, it is the network lifetime that needs to be maximized. Theorem 2 below answers “yes”
to that question.
Lemma 2 Assuming all sensors in the network have the same amount of initial battery;

then the network lifetime is maximized if and only if max
1≤i≤N

{E[εi]} is minimized.

Proof See Appendix B.
Theorem 2 For a set of transmission probabilities (pN , pN−1, ..., p3, p2), if E[εN ] =

E[εN−1] = ... = E[ε2] = E[ε1]; then with (pN , pN−1, ..., p3, p2), the network lifetime is also
maximized.
Proof See Appendix A.

Now, we will find (pN , pN−1, ..., p2) to balance energy consumption of all sensors in the
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network. From Theorem 1, we conclude that, the energy consumption is balanced if and
only if E[εi] = E[εi−1], ∀i = 1, 2, ..., N . From (3.3), E[εi] = E[εi−1] ⇔

E[f1,i]ϵt(d1) + E[f2,i]ϵt(d2) + (E[f1,i] + E[f2,i]− 1)ϵr =

E[f1,i−1]ϵt(d1) + E[f2,i−1]ϵt(d2) + (E[f1,i−1] + E[f2,i−1]− 1)ϵr

⇔

− E[f1,i−1]− E[f2,i−1]
ϵt(d2) + ϵr
ϵt(d1) + ϵr

+ E[f1,i]

+ E[f2,i]
ϵt(d2) + ϵr
ϵt(d1) + ϵr

= 0

(3.5)

For the sake of writing, we denote

• E[f1,1] by x1

• E[f1,i] by x2i−2, ∀i = 2, 3, .., N

• E[f2,i] by x2i−1, ∀i = 2, 3, .., N

• ϵt(d2)+ϵr
ϵt(d1)+ϵr

by C

With the new notations, (3.5) now becomes:

E[εi] = E[εi−1] ⇔

−x2i−4 − Cx2i−3 + x2i−2 + Cx2i−1 = 0 (3.6)

And then, E[εi] = E[εi−1], ∀i = 2, 3, ..., N ⇔
−x2N−4 − Cx2N−3 + x2N−2 + Cx2N−1 = 0
−x2N−6 − Cx2N−5 + x2N−4 + Cx2N−3 = 0
...
−x2 − Cx3 + x4 + Cx5 = 0
−x1 + x2 + Cx3 = 0

(3.7)

We regard x2N−1, x2N−2, ..., x1 as the variables of the system of simultaneous linear equa-
tions (3.7). There are a total of 2N − 1 variables but (3.7) has only N − 1 equations.
Therefore; to solve (3.7), we need N more equations.
As we can see from Fig. 3.1: f1,i + f2,i = f1,i+1 + f2,i+2 + 1 ⇒ E[f1,i] + E[f2,i] =

E[f1,i+1] + E[f2,i+2] + 1, or x2i−2 + x2i−1 = x2i + x2i+3 + 1 ⇔

x2i−2 + x2i−1 − x2i − x2i+3 = 1 ∀i = 1, 2, ..., N (x0 = x2N = x2N+3 = 0) (3.8)
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We can add N more equations (3.8) to (3.7) to get a system of simultaneous linear
equations of 2N − 1 variables and 2N − 1 equations:

−x2N−4 − Cx2N−3 + x2N−2 + Cx2N−1 = 0
−x2N−6 − Cx2N−5 + x2N−4 + Cx2N−3 = 0
...
−x2 − Cx3 + x4 + Cx5 = 0
−x1 + x2 + Cx3 = 0
x2N−2 + x2N−1 = 1
x2N−4 + x2N−3 − x2N−2 = 1
x2N−6 + x2N−5 − x2N−4 − x2N−1 = 1
...
x2 + x3 − x4 − x7 = 1
x1 − x2 − x5 = 1

(3.9)

If (3.9) has a solution and all the values of xi are non-negative numbers, then we can
calculate pi based on Lemma 1 : pi =

x2i−2

x2i−2+x2i−1
∀i = 2, 3, ..., N .

3.1.3 Numerical Results and Analysis

In this section, we will find an optimal solution for a chain topology N sensors. Initial
battery energy of each sensor is assumed to be B = 30 J . First-order radio model with
the following parameters is used to calculate energy consumption of each sensor.

∗ Maximum hop-by-hop transmission range, d1 = 20 m

∗ Maximum 2-hop transmission range, d2 = 2d1 = 40 m

∗ Path loss exponent, α = 3.5

∗ ϵelec = 50 nJ/bit

∗ ϵamp = 100 pJ/bit/mα = 100 pJ/bit/m3.5

∗ Packet size, m = 1024 bits

Based on (2.1), with the above parameters, we can calculate:

∗ Energy to send one packet in hop-by-hop transmission, ϵt(d1) = (ϵelec + ϵamp ∗ dα1 ) ∗
m = 3.7147737743356557 mJ

∗ Energy to send one packet in 2-hop transmission, ϵt(d2) = (ϵelec + ϵamp ∗ dα2 ) ∗m =
41.49980574735899 mJ

∗ Energy to receive one packet, ϵr = ϵelec ∗m = 0.0512 mJ

Then C = ϵt(d2)+ϵr
ϵt(d1)+ϵr

= 11.033270074932712.
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• N = 3 (The chain topology network consists of three sensors)

– hop-by-hop scheme

In one DGC, S3 forwards one packet to S2 (the packet generated by itself),
S2 forwards two packets to S1 (one packet generated by itself and one packet
received from S3), S1 transmits three packets to the sink (one packet generated
by itself and two packets received from S3, S2). Thus, the energy consumption
of each sensor in one DGC is

∗ e1 = 3ϵt(d1) + 2ϵr = 11.246721323006968 mJ

∗ e2 = 2ϵt(d1) + ϵr = 7.480747548671312 mJ

∗ e3 = ϵt(d1) = 3.7147737743356557 mJ

Then the total number of DGCs that can be performed until S1 runs out of
battery is

Th2h =
B

e1
=

30 J

11.246721323006968 mJ
= 2667 (3.10)

– 2-hop scheme

(3.9) now becomes
−x2 − 11.033270074932712x3 + x4 + 11.033270074932712x5 = 0
−x1 + x2 + 11.033270074932712x3 = 0
x4 + x5 = 1
x2 + x3 − x4 = 1
x1 − x2 − x5 = 1

(3.11)

Solving (3.11), we get

∗ x1 = E[f1,1] = 2.892271316563032

∗ x2 = E[f1,2] = 1.703671657386039

∗ x3 = E[f2,2] = 0.107728683436968

∗ x4 = E[f1,3] = 0.811400340823007

∗ x5 = E[f2,3] = 0.188599659176993

The optimal transmission probabilities are:

∗ p2 =
x2

x2+x3
= 0.940527402469174

∗ p3 =
x4

x4+x5
= 0.811400340823007

Using (3.3), with the optimal transmission probabilities above, we can calculate
the expected energy consumption of each sensor in one DGC

∗ E[ε1] = 10.841017926439638 mJ

∗ E[ε2] = 10.841017926439638 mJ

∗ E[ε3] = 10.841017926439638 mJ

13



We can see that, with the optimal transmission probabilities, the expected
energy consumption has been balanced among all sensors in the network. The
expected total number of DGCs that can be performed until one sensor runs
out of battery is

E[T2hop] =
B

E[ε1]
=

30 J

10.841017926439638 mJ
= 2767 (3.12)

From (3.10) and (3.12), with optimal transmission probabilities, the network lifetime

can be increased
E[T2hop]−Th2h

Th2h
= 2767−2667

2667
≈ 3.75%

• N = 4, 5, ..., 10, 11

With similar calculation, we get

Table 3.1: Chain network – expected network lifetime increase with 2-hop scheme
(α = 3.5)

Network lifetime
with hop-by-hop

scheme

Expected network lifetime
with 2-hop scheme (optimal
transmission probabilities)

Expected
network lifetime

increase
N = 4 Th2h = 1998 E[T2hop] = 2055 2.85%

N = 5 Th2h = 1597 E[T2hop] = 1633 2.25%

N = 6 Th2h = 1330 E[T2hop] = 1355 1.88%

N = 7 Th2h = 1140 E[T2hop] = 1158 1.58%

N = 8 Th2h = 997 E[T2hop] = 1011 1.4%

N = 9 Th2h = 886 E[T2hop] = 897 1.24%

N = 10 Th2h = 797 E[T2hop] = 806 1.13%

N = 11 Th2h = 725 E[T2hop] = 732 0.97%

For N = 3, 4, ..., 11, see Table 3.1, we can solve (3.9) to find optimal transmission
probabilities to achieve balanced energy consumption of all sensors throughout the
network. Network lifetimes with hop-by-hop and 2-hop scheme for different levels
are shown in Fig. 3.2.

• N = 12 (The chain topology network consists of 12 sensors)

Because E[f1,i] ≥ 0 and E[f2,i] ≥ 0 ∀i = 1, 2, ..., N . Thus a valid solution of (3.9)
should contain only non-negative numbers. However; solving (3.9) when N = 12
gives negative values for some of the variables. Therefore, it can be concluded
that, when N = 12, balanced energy consumption throughout all sensors in the
network cannot be achieved. This is an important characteristic of 2-hop scheme:
if the network consists of so many sensors, balanced energy consumption may not
be achieved.

If it is impossible to balance energy consumption of all sensors in the network, a
natural thought is to try to reduce the range of balancing. That is, if it is impossible
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Figure 3.2: Chain network - network lifetime with 2-hop scheme and hop-by-hop scheme
(α = 3.5)

to find transmission probabilities to achieve balanced energy consumption for all 12
sensors, we will try to find transmission probabilities to balance energy consumption
of 11 sensors. To do that, we first assign a random values for p12 and try to find
(p11, p10, ..., p2) making E[ε11] = E[ε10] = ... = E[ε2].

The reason why we try to balance energy consumption of sensors 1, 2, ..., k− 1 after
assigning initial values to pN , pN−1, ..., pk is based on Theorem 3 below.

Theorem 3 After assigning initial values to pN , pN−1, ..., pk(2 ≤ k ≤ N), for a
set of transmission probabilities (pk−1, pk−2, ..., p2), if E[εk−1] = E[εk−2] = ... =
E[ε1] then (pk−1, pk−2, ..., p2) is the best probabilities we can choose. That is, for
other (p′k−1, p

′
k−2, ..., p

′
2) that does not make E[ε′k−1] = E[ε′k−2] = ... = E[ε′1], then

max
1≤i≤N

{E[ε′i]} > max
1≤i≤N

{E[εi]}.

Proof. See Appendix A

Theorem 3 gives us a way to calculate a “good” set of transmission probabilities in
cases when an optimal solution cannot be found. For N = 12, we assign p12 = 0.9,
then E[f1,12] = x22 = 0.9 and E[f2,12] = x23 = 0.1. The system of equations to
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balance E[ε11] = E[ε10] = ... = E[ε1] is similar to (3.9):

−x18 − 11.033270074932712x19 + x20 + 11.033270074932712x21 = 0
...
−x2 − 11.033270074932712x3 + x4 + 11.033270074932712x5 = 0
−x1 + x2 + 11.033270074932712x3 = 0
x20 + x21 = 1.9
x18 + x19 − x20 = 1.1
...
x2 + x3 − x4 − x7 = 1
x1 − x2 − x5 = 1

(3.13)

Solving (3.13) and using Lemma 1 to calculate the pi, we have

∗ p2 = 0.989729471286986

∗ p3 = 0.977099070899121

∗ p4 = 0.961189884099742

∗ p5 = 0.940534759388095

∗ p6 = 0.912637971253011

∗ p7 = 0.872885120911284

∗ p8 = 0.811735034916467

∗ p9 = 0.706609907927385

∗ p10 = 0.508470224398521

∗ p11 = 0.475990849849834

With this set of transmission probabilities (they are not optimal ones, but according
to Theorem 3, they are the best values if we assign p12 = 0.9), we have

∗ E[ε12] = 7.493276971637988 mJ

∗ E[ε11] = E[ε10] = ... = E[ε1] = 44.723584907141255 mJ

The expected network lifetime is now E[T2hop] =
30 J

44.723584907141255 mJ
= 670. We can

calculate the network lifetime with hop-by-hop scheme for a chain network ofN = 12
sensors: Th2h = 664. Then the expected network lifetime increase is approximately
0.9%.

From the First-order radio model section above (equation (2.1)), we can see that the
energy for transmitting a packet depends on the path loss exponent α. (ETx(m, d) =
(ϵelec+ϵamp∗dα)∗m). We have also known that the value of α depends on the environment
where the sensors are deployed.
Until now, we have analyzed the 2-hop scheme for chain topology networks consisting

of 3, 4, ..., 12 sensors deployed in an environment where α = 3.5. Now, we will analyze
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the 2-hop scheme if the sensors are placed in different environments with different α.
More specifically, with the same maximum hop-by-hop transmission range d1 = 20 m,
the same maximum 2-hop transmission range d2 = 40 m, the same ϵelec = 50 nJ/bit and
ϵamp = 100 pJ/bit/mα, the same packet size m = 1024 bits; we will analyze how much
network lifetime could be increased with 2-hop scheme with different values of α.

• α = 2 (See Table 3.2)

After solving (3.9) for N = 3 (the chain network consists of only three sensors),
the variables are invalid (some of them have negative values), this means that the
energy consumption cannot be achieved. However, after assigning p3 = 0.9, we
can find p2 to make E[ε2] = E[ε1] = 0.29396676923076925 mJ . Then E[T2hop] =

30 J
0.29396676923076925 mJ

= 102052. We can also calculate Th2h = 79180. Then the
network lifetime increase is approximately 28.89%.

For N = 4, 5, .., 10, although we cannot find optimal transmission probabilities
because solving (3.9) gives invalid solution (negative values). However, based on
Theorem 3, we can find “good” transmission probabilities for 2-hop scheme. See
Table 3.2 for more details. In Table 3.2, we denote by K the number of sensors
that their energy consumption can be balanced after assigning pN = pN−1 = ... =
pK+1 = 0.9. For example, N = 4 and K = 3 means that, although we cannot find
optimal transmission probabilities to balance energy consumption of all four sensors
in the network, by assigning p4 = 0.9 we can find p3 and p2 to balance energy
consumption of the first three sensors S3, S2, S1.

Table 3.2: Chain network – expected network lifetime increase with 2-hop scheme
(α = 2)

Network lifetime
with hop-by-hop

scheme

Expected network lifetime
with 2-hop scheme

Expected
network lifetime

increase
N = 4 Th2h = 57444 E[T2hop] = 83641 (K = 3) 45.60%

N = 5 Th2h = 45072 E[T2hop] = 60355 (K = 3) 33.91%

N = 6 Th2h = 37084 E[T2hop] = 53760 (K = 4) 44.97%

N = 7 Th2h = 31502 E[T2hop] = 43020 (K = 4) 36.56%

N = 8 Th2h = 27380 E[T2hop] = 35857 (K = 4) 30.96%

N = 9 Th2h = 24212 E[T2hop] = 33542 (K = 5) 38.53%

N = 10 Th2h = 21701 E[T2hop] = 29005 (K = 5) 33.66%

• α = 2.5 (See Table 3.3)

• α = 3 (See Table 3.4)

We can see that (Fig. 3.3), if α is small, which means that 2-hop transmission does
not consume too much energy, 2-hop scheme can increase network lifetime quite large;
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Table 3.3: Chain network – expected network lifetime increase with 2-hop scheme
(α = 2.5)

Network lifetime
with hop-by-hop

scheme

Expected network lifetime
with 2-hop scheme

Expected
network lifetime

increase
N = 3 Th2h = 37242 E[T2hop] = 43152 (K = 3) 15.87%

N = 4 Th2h = 27494 E[T2hop] = 31187 (K = 4) 13.43%

N = 5 Th2h = 21791 E[T2hop] = 24061 (K = 4) 10.42%

N = 6 Th2h = 18047 E[T2hop] = 19680 (K = 5) 9.05%

N = 7 Th2h = 15401 E[T2hop] = 16577 (K = 5) 7.64%

N = 8 Th2h = 13432 E[T2hop] = 14340 (K = 6) 6.76%

N = 9 Th2h = 11909 E[T2hop] = 12618 (K = 6) 5.95%

N = 10 Th2h = 10696 E[T2hop] = 11270 (K = 7) 5.37%

Table 3.4: Chain network – expected network lifetime increase with 2-hop scheme
(α = 3)

Network lifetime
with hop-by-hop

scheme

Expected network lifetime
with 2-hop scheme

Expected
network lifetime

increase
N = 3 Th2h = 11055 E[T2hop] = 11770 (K = 3) 6.47%

N = 4 Th2h = 8252 E[T2hop] = 8667 (K = 4) 5.03%

N = 5 Th2h = 6583 E[T2hop] = 6848 (K = 5) 4.03%

N = 6 Th2h = 5476 E[T2hop] = 5658 (K = 6) 3.32%

N = 7 Th2h = 4687 E[T2hop] = 4820 (K = 7) 2.84%

N = 8 Th2h = 4097 E[T2hop] = 4198 (K = 7) 2.47%

N = 9 Th2h = 3639 E[T2hop] = 3718 (K = 8) 2.17%

N = 10 Th2h = 3273 E[T2hop] = 3337 (K = 9) 1.96%

however, balanced energy consumption cannot be achieved when N is large. For exam-
ple, when α = 2, even though energy consumption cannot be balanced for the network
consisting of three sensors, the increase in network lifetime can be quite large, 28.89%.

3.1.4 Conclusion

There are some main results in this section:

• In some cases, we cannot find the optimal transmission probabilities to achieve
balanced energy consumption throughout all sensors in the network. For example,
when (α = 3.5, d1 = 20 m, d2 = 40 m, ϵelec = 50 nJ/bit, ϵamp = 100 pJ/bit/m3.5),
we can find optimal transmission probabilities for chain network consisting of up
to eleven sensors. In that cases, we can find “good” transmission probabilities by
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Figure 3.3: Chain network – network lifetime with hop-by-hop scheme and expected
network lifetime increase with 2-hop scheme for different path loss exponents

assigning some values for pN , pN−1, ..., pK+1 and find (pK , pK−1, ..., p2) to balance
energy consumption of SK , SK−1, ..., S1.

• Network lifetime depends on the number of sensors (N) in the network. When N is
small, the lifetime and increase are both large. When N is large, it becomes small.

• Network lifetime and network lifetime increase depends on the environment where
the network operates, this environment is expressed by the path loss exponent (α).
When α is small, the lifetime and increase are both large. When α is large, they
become small.

3.2 Network Lifetime Increase with 2-hop Scheme in

Binary Tree Topology Networks

3.2.1 Binary Tree Topology Networks

Let us consider a binary tree network as shown in Fig. 3.4, where all sensors form a
tree topology of L levels. A sensor in level i has exactly two children in level i + 1, i =
1, 2, ..., L− 1. We denote by Si,j the jth sensor in level i (if j = 1, then the sensor is the
leftmost one in level i). We also denote by ni,j the number of packets transmitted in one
DGC by sensor Si,j; denote by f1,i,j and f2,i,j the number of packets sent in hop-by-hop
and 2-hop transmission, respectively, by sensor Si,j.
Let pi,j be the transmission probability of Si,j. Because all sensors in a same level

are completely identical to each other in terms of the number of children and the initial
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Figure 3.4: A binary tree topology network of L levels of sensors

energy level; therefore, it is reasonable to assume that all the sensors in level i have the
same transmission probability pi. That is, pi,1 = pi,2 = ... = pi,2i = pi.

Lemma 3 In a binary tree network, pi =
E[f1,i,j ]

E[f1,i,j ]+E[f2,i,j ]
, i = 1, 2, ..., L, j = 1, 2, ..., 2i.

Proof. See Appendix B
Theorem 4 In a binary tree network, E[f1,i,j] = E[f1,i,k] and E[f2,i,j] = E[f2,i,k], i =

1, 2, ..., L; j, k = 1, 2, ..., 2i. This means that, the expected number of packets sent in hop-
by-hop and 2-hop transmission of all sensors in the same level are the same.
Proof. See Appendix A
From Theorem 4, for simplicity, for now on let us denote by E[f1,i] and E[f2,i] the

expected number of packets sent in hop-by-hop and 2-hop transmission of any sensor in
level i. We have

E[f1,i] = E[f1,i,1] = E[f1,i,2] = ... = E[f1,i,2i ] (3.14)

and
E[f2,i] = E[f2,i,1] = E[f2,i,2] = ... = E[f2,i,2i ] (3.15)

From Theorem 4 and (3.3), it is obvious that the expected energy consumption of
all sensors in the same level is also the same. We denote by E[εi] the expected energy
consumption of sensors in level i.

3.2.2 Optimal Transmission Probabilities

For binary tree topology networks, like for chain networks, it can be proved that, if we can
find a set of transmission probabilities (pL, pL−1, ..., p3, p2) such that E[εi] = E[εj]∀i, j =
1, 2, ..., L, then the network lifetime is maximized.
Similar to the previous section, we also have E[εi] = E[εj] ∀i, j = 1, 2, ..., L ⇔ E[εi] =

E[εi−1] ∀i = 2, 3, ..., L ⇔
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
−x2L−4 − Cx2L−3 + x2L−2 + Cx2L−1 = 0
−x2L−6 − Cx2L−5 + x2L−4 + Cx2L−3 = 0
...
−x2 − Cx3 + x4 + Cx5 = 0
−x1 + x2 + Cx3 = 0

(3.16)

In (3.16), like the previous section, for the sake of writing:

• E[f1,1] is denoted by x1

• E[f1,i] is denoted by x2i−2, ∀i = 2, 3, .., L

• E[f2,i] by x2i−1, ∀i = 2, 3, .., L

• ϵt(d2)+ϵr
ϵt(d1)+ϵr

by C

There are a total of 2L − 1 variables x1, x2, ..., x2L−1; however, (3.16) consists of only
L− 1 equations. Therefore, to solve (3.16), we need L more equations.

Figure 3.5: The relationship between sensors in levels i, i+ 1 and i+ 2

From Fig. 3.5, we can see that

E[f1,i] + E[f2,i] = 2E[f1,i+1] + 4E[f2,i+2] + 1

⇔
x2i−2 + x2i−1 − 2x2i − 4x2i+3 = 1

(3.17)
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From (3.17), for i = 2, 3, ..., L, we have L more equations:

x2L−2 + x2L−1 = 1
x2L−4 + x2L−3 − 2x2L−2 = 1
x2L−6 + x2N−5 − 2x2N−4 − 4x2L−1 = 1
...
x2 + x3 − 2x4 − 4x7 = 1
x1 − 2x2 − 4x5 = 1

(3.18)

Combining (3.16) and (3.18), we get the final system of equations:

−x2L−4 − Cx2L−3 + x2L−2 + Cx2L−1 = 0
−x2L−6 − Cx2L−5 + x2L−4 + Cx2L−3 = 0
...
−x2 − Cx3 + x4 + Cx5 = 0
−x1 + x2 + Cx3 = 0
x2L−2 + x2L−1 = 1
x2L−4 + x2L−3 − 2x2L−2 = 1
x2L−6 + x2L−5 − 2x2L−4 − 4x2L−1 = 1
...
x2 + x3 − 2x4 − 4x7 = 1
x1 − 2x2 − 4x5 = 1

(3.19)

If (3.19) has a solution and all the values of xi are non-negative numbers, then we can
calculate pi based on Lemma 3 : pi =

x2i−2

x2i−2+x2i−1
∀i = 2, 3, ..., L.

3.2.3 Numerical Results and Analysis

In this section, we calculate theoretically the expected increase in network lifetime with
2-hop scheme in a binary tree topology network consisting of L levels. Similar to the
previous section, the maximum hop-by-hop transmission range is 20 m, maximum 2-hop
transmission range is 40 m, ϵelec = 50 nJ/bit, ϵamp = 100 pJ/bit/m3.5, the path loss
exponent is α = 3.5, the packet size is m = 1024 bits.
Table 3.5 below displays the network lifetime with hop-by-hop scheme and 2-hop

scheme in many binary tree networks. Here we denote by K the number of levels that
can be balanced energy consumption. For example, L = 4 and K = 3 means that, even
though we can find optimal transmission probabilities to balance all sensors in all four
levels, if we assign p4 = 0.9 (all sensors in level four are assigned a transmission probability
of 0.9) then we can find p2 and p3 to get a balanced energy consumption of all sensors in
the first three levels.
From Fig. 3.6 and Fig. 3.2 we can see that, the network lifetime depends on the

topology. In binary tree topology networks, the lifetime is smaller than that in chain
networks. However, the increase in network lifetime is better with 2-hop scheme (As
shown in Table 3.5 (binary tree networks), we can see that the increase is about 12%;
In Table 3.1 (chain networks), the increase is not greater than 4%).
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Table 3.5: Binary tree network – expected network lifetime increase with 2-hop scheme
(α = 3.5)

Network lifetime
with hop-by-hop

scheme

Expected network lifetime
with 2-hop scheme

Expected
network lifetime

increase
L = 3 Th2h = 1140 E[T2hop] = 1295 (K = 3) 13.59%

L = 4 Th2h = 531 E[T2hop] = 598 (K = 3) 12.62%

L = 5 Th2h = 257 E[T2hop] = 288 (K = 3) 12.06%

L = 6 Th2h = 126 E[T2hop] = 142 (K = 4) 12.70%

L = 7 Th2h = 62 E[T2hop] = 70 (K = 4) 12.90%

L = 8 Th2h = 31 E[T2hop] = 35 (K = 4) 12.90%

L = 9 Th2h = 15 E[T2hop] = 17 (K = 4) 13.33%

L = 10 Th2h = 7 E[T2hop] = 8 (K = 4) 14.29%

Now, we come to the analysis of how the path loss exponent α affects the network
lifetime and network lifetime increase.

• α = 2 (See Table 3.6)

Table 3.6: Binary tree network – expected network lifetime increase with 2-hop
scheme (α = 2)

Network lifetime
with hop-by-hop

scheme

Expected network lifetime
with 2-hop scheme

Expected
network lifetime

increase
L = 3 Th2h = 31502 E[T2hop] = 56514 (K = 2) 79.40%

L = 4 Th2h = 14291 E[T2hop] = 24189 (K = 2) 69.26%

L = 5 Th2h = 6829 E[T2hop] = 11286 (K = 2) 65.27%

L = 6 Th2h = 3340 E[T2hop] = 5460 (K = 2) 63.47%

L = 7 Th2h = 1652 E[T2hop] = 2686 (K = 2) 62.59%

L = 8 Th2h = 821 E[T2hop] = 1332 (K = 2) 62.24%

L = 9 Th2h = 409 E[T2hop] = 663 (K = 2) 62.10%

L = 10 Th2h = 204 E[T2hop] = 331 (K = 2) 62.25%

• α = 2.5 (See Table 3.7)

• α = 3 (See Table 3.8)

We can see that (Fig. 3.7), if α is small, which means that 2-hop transmission does
not consume too much energy, 2-hop scheme can increase network lifetime quite large.
For example, when α = 2, even though energy consumption cannot be balanced for all
sensors in the binary tree network consisting of three levels sensors, the increase in network
lifetime can be quite large, 79.4%.
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Figure 3.6: Binary tree network – expected network lifetime increase with 2-hop scheme
(α = 3.5)

3.2.4 Conclusion

There are some main results in this section, some of them are similar to what stated in
the previous section.

• In some cases, we cannot find the optimal transmission probabilities to achieve
balanced energy consumption throughout all sensors in the network. For example,
when (α = 3.5, d1 = 20 m, d2 = 40 m, ϵelec = 50 nJ/bit, ϵamp = 100 pJ/bit/m3.5), we
can find optimal transmission probabilities for chain network consisting of up to only
three levels of sensors. In that cases, we can find “good” transmission probabilities
by assigning some values for pL, pL−1, ..., pK+1 for sensors in levels L,L−1, ..., K+1
and find (pK , pK−1, ..., p2) to balance energy consumption of sensors in levels K,K−
1, ..., 1.

• Network lifetime depends on the number of levels of sensors (L) in the network.
When L is small, the lifetime is large. When L is large, it becomes small.

• Network lifetime and network lifetime increase depends on the environment where
the network operates, this environment is expressed by the path loss exponent (α).
When α is small, the lifetime and increase are both large. When α is large, they
become small.

• Network lifetime increase depends on the topology of the network. For example,
with α = 3.5, in chain network, the increase is not greater than 4.0%; however, in
binary tree network, the increase could be more than 12%.
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Table 3.7: Binary tree network – expected network lifetime increase with 2-hop
scheme (α = 2.5)

Network lifetime
with hop-by-hop

scheme

Expected network lifetime
with 2-hop scheme

Expected
network lifetime

increase
L = 3 Th2h = 15401 E[T2hop] = 20452 (K = 2) 32.80%

L = 4 Th2h = 7088 E[T2hop] = 9224 (K = 2) 30.14%

L = 5 Th2h = 3408 E[T2hop] = 5108 (K = 3) 49.88%

L = 6 Th2h = 1672 E[T2hop] = 2485 (K = 3) 48.62%

L = 7 Th2h = 828 E[T2hop] = 1200 (K = 3) 44.93%

L = 8 Th2h = 412 E[T2hop] = 608 (K = 3) 47.57%

L = 9 Th2h = 205 E[T2hop] = 303 (K = 3) 47.80%

L = 10 Th2h = 102 E[T2hop] = 151 (K = 3) 48.04%

Table 3.8: Binary tree network – expected network lifetime increase with 2-hop
scheme (α = 3)

Network lifetime
with hop-by-hop

scheme

Expected network lifetime
with 2-hop scheme

Expected
network lifetime

increase
L = 3 Th2h = 4687 E[T2hop] = 5805 (K = 3) 23.85%

L = 4 Th2h = 2178 E[T2hop] = 2656 (K = 3) 21.95%

L = 5 Th2h = 1051 E[T2hop] = 1273 (K = 3) 21.12%

L = 6 Th2h = 517 E[T2hop] = 624 (K = 3) 20.70%

L = 7 Th2h = 256 E[T2hop] = 309 (K = 3) 20.70%

L = 8 Th2h = 127 E[T2hop] = 153 (K = 3) 20.47%

L = 9 Th2h = 63 E[T2hop] = 76 (K = 3) 20.63%

L = 10 Th2h = 31 E[T2hop] = 38 (K = 3) 22.58%

3.3 Network Lifetime Increase with Direct Scheme

and 2-hop Scheme

We now compare the performance of direct and 2-hop schemes in terms of network lifetime
and data collection delay. First of all, let us explain briefly about the direct scheme
proposed by Zhang et al. [10].

3.3.1 Direct Scheme

The direct scheme is the combination of direct transmission (data is sent directly to the
sink) and hop-by-hop transmission to balance energy consumption among sensors in the
network. More specifically, see Fig. 3.8, a packet is forwarded to the next hop with
transmission probability p or directly transmitted to the sink with probability 1− p.
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Figure 3.7: Binary tree network – network lifetime with hop-by-hop scheme and expected
network lifetime with 2-hop scheme for different path loss exponents

Figure 3.8: Direct scheme

By assigning each sensor an optimal transmission probability, balanced network con-
sumption among all sensors throughout the network can be achieved.

3.3.2 Network Lifetime with Direct Scheme and 2-hop Scheme

We analyze the two schemes in an environment where path loss exponent α = 3.5, max-
imum hop-by-hop transmission range is d1 = 20 m, maximum 2-hop transmission range
is d2 = 2d1 = 40 m, the direct transmission range for sensor Si is di = id1 = 20i m.
ϵelec = 50 nJ/bit and ϵamp = 100 pJ/bit/m3.5.

• In Chain Topology Networks We have known that the optimal transmission prob-
abilities to balance energy consumption exists for chain network consisting of up
to eleven sensors. On the other hand, in [10], Zhang et al. has proved that the
optimal transmission probabilities to achieve balanced energy consumption always
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exist regardless how many sensors in the network. This means that direct scheme
has a better capability to balance energy consumption than 2-hop scheme.

The network lifetime with direct scheme and hop-by-hop scheme is shown in Table
3.9

Table 3.9: Chain network – network lifetime with 2-hop scheme and direct scheme

Network lifetime
with hop-by-hop

scheme

Expected network lifetime
with direct scheme (optimal
transmission probabilities)

Expected
increase in

network lifetime
L = 3 Th2h = 2667 E[Tdirect] = 2791 4.65%

L = 4 Th2h = 1998 E[Tdirect] = 2079 4.05%

L = 5 Th2h = 1597 E[Tdirect] = 1653 3.51%

L = 6 Th2h = 1330 E[Tdirect] = 1371 3.08%

L = 7 Th2h = 1140 E[Tdirect] = 1171 2.72%

L = 8 Th2h = 997 E[Tdirect] = 1021 2.41%

L = 9 Th2h = 886 E[Tdirect] = 906 2.26%

L = 10 Th2h = 797 E[Tdirect] = 813 2.01%

For networks of N = 3, 4, ..., 10 sensors, we can find optimal transmission probabili-
ties for 2-hop scheme. Then, we compare the network lifetime between 2-hop scheme
(using 2-hop optimal transmission probabilities) and direct scheme (using direct op-
timal transmission probabilities, those optimal probabilities are found based on an
algorithm in [10]). The result is shown in following Fig. 3.9.

As we can see from Fig. 3.9, the expected network lifetime with 2-hop scheme is a
little bit smaller than that with direct scheme.

• In Binary Tree Topology Networks From Table 3.5, we can see that, when the
path loss exponent α = 3.5, 2-hop scheme optimal transmission probabilities only
exist for a binary tree network consisting of L = 3 levels. On the other hand, direct
scheme optimal transmission probabilities exist for any binary tree with arbitrary
levels. Therefore, we can say that, direct scheme has a better capability to balance
energy consumption than 2-hop scheme.

The network lifetime with direct scheme and hop-by-hop scheme is shown in Table
3.10

For a binary tree of L = 3 levels of sensors, we now compare network lifetime be-
tween 2-hop scheme (using 2-hop optimal transmission probabilities ) and direct
scheme (using direct optimal transmission probabilities): with 2-hop scheme, net-
work lifetime is increased about 13.59% compared to hop-by-hop scheme; with direct
scheme, network lifetime is increased about 18.07%. This means that the lifetime
is better with direct scheme than 2-hop scheme.

For L ≥ 4, because 2-hop scheme optimal transmission probabilities do not exist,
the network lifetime comparison between 2-hop scheme and direct scheme is not fair.
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Figure 3.9: Chain network – network lifetime with hop-by-hop scheme, direct scheme and
2-hop scheme

However, until now we can see that, when 2-hop optimal transmission probabilities
exist, the lifetime with 2-hop scheme is smaller than that with direct scheme.

3.3.3 Conclusion

There are some main points in this section:

• Direct scheme has better capability to balance energy consumption throughout the
whole network (direct optimal transmission probabilities always exist). On the other
hand, with 2-hop scheme, optimal transmission probabilities do not always exist.

• With optimal transmission probabilities, for the same topology, network lifetime
with direct scheme is better than that with 2-hop scheme.

3.4 Data Collection Delay with Hop-by-hop Scheme

and 2-hop Scheme

The data collection delay in one DGC is defined as the time for all packets from all sensors
to be received by the sink. In this research, to avoid signal interference, at one time, only
one sensor transmits data.

28



Table 3.10: Binary tree network – network lifetime with 2-hop scheme and direct
scheme

Network lifetime
with hop-by-hop

scheme

Expected network lifetime
with direct scheme (optimal
transmission probabilities)

Expected
increase in

network lifetime
L = 3 Th2h = 1140 E[Tdirect] = 1346 18.07%

L = 4 Th2h = 531 E[Tdirect] = 652 22.79%

L = 5 Th2h = 257 E[Tdirect] = 327 27.24%

L = 6 Th2h = 126 E[Tdirect] = 168 33.33%

L = 7 Th2h = 62 E[Tdirect] = 87 40.32%

L = 8 Th2h = 31 E[Tdirect] = 46 48.39%

L = 9 Th2h = 15 E[Tdirect] = 25 66.67%

L = 10 Th2h = 7 E[Tdirect] = 13 85.71%

3.4.1 Data Collection Delay with Hop-by-hop Scheme

Let us consider a chain network consisting of four sensors S4, S3, S2 and S1 (see Fig.
3.10). In one DGC, Si generates one packet pkti, i = 1, 2, 3, 4. With hop-by-hop scheme,
let us assume that the order of transmission is like this:

1. S4 forwards pkt4 to S3

2. S3 forwards pkt3 and pkt4 to S2

3. S2 forwards pkt2, pkt3 and pkt4 to S1

4. S2 forwards pkt1, pkt2, pkt3 and pkt4 to the sink

Figure 3.10: A chain topology network consisting of 4 sensors

We denote by τ the transmission time for one packet. The data collection delay, denoted
by D, in this case is
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D = τ (pkt4, S4 → S3)+

τ (pkt3, S3 → S2) + τ (pkt4, S3 → S2)+

τ (pkt2, S2 → S1) + τ (pkt3, S2 → S1) + τ (pkt4, S2 → S1)

τ (pkt1, S1 → sink) + τ (pkt2, S1 → sink) + τ (pkt3, S1 → sink)+

τ (pkt4, S1 → sink)

= τ
∑

(number of transmissions of each sensor)

= τ

4∑
i=1

ni,h2h

(3.20)

In (3.20), ni,h2h denotes the total number of packets sensor Si transmits in one DGC
with hop-by-hop scheme. We now come to a general equation for data collection delay in
chain network.

Dh2h = τ

N∑
i=1

ni,h2h (3.21)

where N is the total number of sensors in the network.

3.4.2 Data Collection Delay with 2-hop Scheme

With 2-hop scheme the data collection delay may be different between different DGC. This
is because sometimes a packet is transmitted in 2-hop transmission but sometimes in hop-
by-hop transmission. To illustrate this, let us consider the following order of transmission
in two different DGCs:

• DGC 1

1. S4 forwards pkt4 to S3 in hop-by-hop transmission

2. S3 forwards pkt3 and pkt4 to S2 in hop-by-hop transmission

3. S2 forwards pkt2, pkt3 and pkt4 to S1 in hop-by-hop transmission

4. S2 forwards pkt1, pkt2, pkt3 and pkt4 to the sink in hop-by-hop transmission

Data collection delay in DGC 1 is:

D1 = τ
∑

(number of transmissions of each sensor)

= τ [1 (of S4) + 2 (of S3) + 3 (of S2) + 4 (of S1)]

= 10τ

(3.22)
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Figure 3.11: A chain topology network consisting of 4 sensors

• DGC 2 (see Fig. 3.11)

1. S4 forwards pkt4 to S2 in 2-hop transmission

2. S3 forwards pkt3 to S1 in 2-hop transmission

3. S2 forwards pkt2 to the sink in 2-hop transmission, and pkt4 to S1 in hop-by-hop
transmission

4. S2 forwards pkt1, pkt3 and pkt4 to the sink in hop-by-hop transmission

We assume that the transmission time for one packet in 2-hop transmission and
hop-by-hop are the same. Data collection delay in DGC 2 is:

D2 = τ
∑

(number of transmissions of each sensor)

= τ [1 (of S4) + 1 (of S3) + 2 (of S2) + 3 (of S1)]

= 7τ

(3.23)

We can see that, the more 2-hop transmissions, the smaller the data collection delay.
The expected data collection delay in one DGC with 2-hop scheme is:

E[D2hop] = τ
N∑
i=1

E[ni,2hop] (3.24)

where ni,2hop is the number of packets Si transmits in one DGC with 2-hop scheme.

3.4.3 Data Collection Delay Comparison between Hop-by-hop
Scheme and 2-hop Scheme

We can see that, with hop-by-hop scheme, all the packets from Si+1, Si+2, ..., SN are
forwarded to Si; however, with 2-hop scheme, some of the packets are forwarded to Si−1
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by Si+1, thus the number of packets Si transmits is expected to be reduced compared to
hop-by-hop scheme. To illustrate this, let us take a look at sensors S3 and S4 in Fig.
3.11. In a DGC:

• With hop-by-hop scheme, n3,h2h = 2

• With 2-hop scheme

– if S4 forwards pkt4 to S3 in hop-by-hop transmission, then n3,2hop = 2 (pkt3
and pkt4)

– if S4 does not forward pkt4 to S3, but forwards to S2 in 2-hop transmission,
then n3,2hop = 1 (pkt3 only)

We can see that n3,2hop ≤ n3,h2h, hence

E[n3,2hop] < n3,h2h (3.25)

Generalizing (3.25), we have

E[ni,2hop] < ni,h2h ∀i = 1, 2, ..., N (3.26)

Therefore, from (3.21), (3.24) and (3.26), we have

D2hop < Dh2h (3.27)

(3.27) shows us that, the delay in data collection can be decreased with 2-hop scheme
compared to that with hop-by-hop scheme.

3.4.4 Numerical Results for Chain Topology Networks

Let us consider a WSN where each sensor transmits a packet of 1024 bits in hop-by-hop
and 2-hop transmission at a transmission rate of R = 250 kbps. The transmission time of
one packet is τ = 1024 bits

250 kbps
= 4.096 ms.

The other configuration settings is similar to the previous section. More specifically:

∗ Maximum hop-by-hop transmission range, d1 = 20 m

∗ Maximum 2-hop transmission range, d2 = 2d1 = 40 m

∗ Path loss exponent, α = 3.5

∗ ϵelec = 50 nJ/bit

∗ ϵamp = 100 pJ/bit/mα = 100 pJ/bit/m3.5

• N = 3 (A chain network consisting of three sensors)
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– hop-by-hop scheme

In one DGC, it is easy to see that

∗ n3,h2h = 1

∗ n2,h2h = 2

∗ n1,h2h = 3

Then

Dh2h = τ
3∑

i=1

ni,h2h = 4.096(1 + 2 + 3) = 24.576 ms (3.28)

– 2-hop scheme

In the previous section, the optimal transmission probabilities have been found
to be

∗ p2 = 0.940527402469174

∗ p3 = 0.811400340823007

Then the expected number of packets each sensor transmits in one DGC is:

∗ E[n3,2hop] = 1

∗ E[n2,2hop] = E[f1,3] + 1 = p3E[n3,2hop] + 1 ≈ 1.8114

∗ E[n1,2hop] = E[f1,2] + E[f2,3] + 1 = p2E[n2,2hop] + (1 − p3)E[n3,2hop] + 1 ≈
2.8923

Then

E[D2hop] = τ
3∑

i=1

E[ni,2hop] ≈ 4.096(1 + 1.8114 + 2.8923) = 23.362 ms (3.29)

From (3.28) and (3.29), the expected decrease in data collection delay is
Dh2h−E[D2hop]

Dh2h
=

24.576−23.362
24.576

≈ 4.94%

• N = 4, 5, ..., 11

With similar calculations, we can get the following results: (see Table 3.11). In
2-hop scheme, we analyze the data collection delay with optimal transmission prob-
abilities. We want to know how much the delay of data collection could be decreased
when the network lifetime is maximized.

We can see that, when the number of sensors in the network increases, the delay
in data collection also increases (with both hop-by-hop scheme and 2-hop scheme),
see Fig. 3.12. This is because the more sensors in the network, the more number
of transmission in one DGC
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Table 3.11: Chain network – expected data collection delay with 2-hop scheme

Data collection
delay with

hop-by-hop scheme
(ms)

Expected data collection
delay with 2-hop scheme,
with optimal transmission

probabilities (ms)

Expected
decrease in data
collection delay

N = 4 Dh2h = 40.96 E[D2hop] = 38.439 6.15%

N = 5 Dh2h = 61.44 E[D2hop] = 57.157 6.97%

N = 6 Dh2h = 86.016 E[D2hop] = 79.516 7.56%

N = 7 Dh2h = 114.688 E[D2hop] = 105.517 8.00%

N = 8 Dh2h = 147.456 E[D2hop] = 135.161 8.34%

N = 9 Dh2h = 184.32 E[D2hop] = 168.448 8.61%

N = 10 Dh2h = 225.28 E[D2hop] = 205.377 8.83%

N = 11 Dh2h = 270.336 E[D2hop] = 245.949 9.02%

3.4.5 Numerical Results for Binary Tree Topology Networks

We assume that the transmission rate for 2-hop transmission is the same as section Nu-
merical Results for Chain Topology Networks above. Thus the transmission time for one
packet is also τ = 4.096 ms. The other settings like maximum hop-by-hop transmission
range, maximum 2-hop transmission range, path loss exponent, etc. are also assumed to
be the same as in the previous section.
In the previous section, we analyzed the increase in network lifetime with “good” op-

timal transmission probabilities. Now, also with those “good” transmission probabilities,
we analyze the delay in data collection (Table 3.12).

Table 3.12: Binary tree network – expected data collection delay with 2-hop scheme

Data collection
delay with

hop-by-hop scheme
(ms)

Expected data collection
delay with 2-hop scheme,
with “good” transmission

probabilities (ms)

Expected
decrease in data
collection delay

L = 3 Dh2h = 139.264 E[D2hop] = 115.55 17.03%

L = 4 Dh2h = 401.408 E[D2hop] = 346.743 13.62%

L = 5 Dh2h = 1056.768 E[D2hop] = 928.540 12.13%

L = 6 Dh2h = 2629.632 E[D2hop] = 2019.495 23.20%

L = 7 Dh2h = 6299.648 E[D2hop] = 4993.76 20.73%

L = 8 Dh2h = 14688.256 E[D2hop] = 11895.561 19.01%

L = 9 Dh2h = 33562.624 E[D2hop] = 27605.662 17.75%

L = 10 Dh2h = 75505.664 E[D2hop] = 69334.166 8.17%

The delay in data collection is illustrated in Fig. 3.13 below. We can see that, similar
to chain network, the more levels the tree has, the more delay in data collection. This
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is because the more levels, the more sensors in the network and the more number of
transmission in one DGC.

3.4.6 Data Collection Delay with Hop-by-hop, 2-hop and Direct
Scheme as a Function of Transmission Probabilities

In this section, we analyze with different transmission probabilities, how data collection
delay varies. All sensors are assigned the same transmission probabilities. The result is
shown in Fig. 3.14 (for chain network consisting of ten sensors) and Fig. 3.15 (for
binary tree network of ten levels of sensors).
From Fig. 3.14 and Fig. 3.15, we can see that when the transmission probability

p increases, which means that the more hop-by-hop transmission, data collection delay
with 2-hop scheme also increases (data collection is slower). On the other hand, when p
is small (the more 2-hop transmission), data collection delay with 2-hop scheme becomes
smaller (data collection is faster).

Figure 3.12: Chain network – data collection delay with 2-hop scheme and hop-by-hop
scheme

3.4.7 Conclusion

There are some main results in this section:

• If the 2-hop transmission rate is assumed to be the same as hop-by-hop transmission
rate, then data collection delay with 2-hop scheme can be proved to be smaller than
that with hop-by-hop scheme.
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Figure 3.13: Binary tree network – expected decrease in data collection delay with 2-hop
scheme over hop-by-hop scheme

• With the same transmission probabilities, data collection with direct scheme is
fastest (smallest delay) compared to 2-hop scheme and hop-by-hop scheme.

3.5 2-hop Scheme when Initial Battery Levels are

Different

We have already discussed about how to compute the optimal transmission proba-
bilities for sensors in the network when the initial battery levels are the same. The
condition for finding optimal probabilities then was:

E[ε1] = E[ε2] = ... = E[εN ] (3.30)

If we can find pi, i = 2, 3, ..., N satisfying (3.30), then the network lifetime is maxi-
mized with 2-hop scheme (if the initial battery levels are the same).

However; when the initial battery levels are different, probabilities satisfying (3.30)
may not be optimal. For example, let us consider a chain network consisting of three
sensors S1, S2 and S3. The initial battery level in each sensor is (here we denote by
Bi the initial battery level of Si, i = 1, 2, 3):

– B1 = 3.806 J

– B2 = 41.708 J

– B3 = 5.308 J
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Figure 3.14: Chain network of 10 sensors – data collection delay with hop-by-hop scheme,
2-hop scheme and direct scheme as a function of transmission probabilities

The other parameters, for example, maximum hop-by-hop transmission range, max-
imum 2-hop transmission range, ϵelec, ϵamp, etc. are the same as in the previous
section.

– hop-by-hop scheme

As shown above, energy consumption of each sensor is:

∗ E[ε1] = 11.246721323006968 mJ

∗ E[ε2] = 7.480747548671312 mJ

∗ E[ε3] = 3.7147737743356557 mJ

Because the initial battery levels are different, then the number of DGCs can
be done by each sensor until it runs out of battery may also be different.

∗ For S1,
3806 mJ

11.246721323006968 mJ
= 338

∗ For S2,
41708 mJ

7.480747548671312 mJ
= 5575

∗ For S3,
5308 mJ

3.7147737743356557 mJ
= 1428

Because the network lifetime is represented by the number of DGCs done until
one sensor runs out of battery, and as we can see above, S1 runs out of battery
after 351 DGCs, then the network lifetime is 338.

– 2-hop scheme

The optimal probabilities for a chain network of three sensors when the initial
battery levels are the same are:

∗ p2 = 0.940527402469174
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Figure 3.15: Binary tree network of 10 levels – data collection delay with hop-by-hop
scheme, 2-hop scheme and direct scheme as a function of transmission probabilities

∗ p3 = 0.811400340823007

With (p2 = 0.940527402469174, p3 = 0.811400340823007), the energy con-
sumption in one DGC is balanced throughout three sensors: E[ε1] = E[ε2] =
E[ε3] = 10.841017926439638.

Because the initial battery levels are different, then the number of DGCs can
be done by each sensor until it runs out of battery may also be different.

∗ For S1,
3806 mJ

10.841017926439638 mJ
= 351

∗ For S2,
41708 mJ

10.841017926439638 mJ
= 3847

∗ For S3,
5308 mJ

10.841017926439638 mJ
= 489

Network lifetime is represented by the number of DGCs done until one sensor
runs out of battery, and as we can see above, S1 runs out of battery after 351
DGCs, then the network lifetime is 351. Compared to the lifetime of 338 with
hop-by-hop scheme, the increase in network lifetime is 3.85%.

However, for another set of probabilities:

∗ p2 = 0.221279726078279

∗ p3 = 0.887479063586813

using similar computation like above, the network lifetime is now increased
to 666 (number of DGCs done until one sensor runs out of battery) and the
increase in network lifetime compared to hop-by-hop scheme is now 97.04%
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3.5.1 Computation of Optimal Transmission Probabilities

Using the following Theorem 5, we can compute optimal probabilities for each sensor
in the network:

Theorem 5 For a network of N sensors S1, S2, ..., SN , the initial battery level
of sensor Si is denoted by Bi. The expected energy consumption of Si in one
DGC is denoted by E[εi], i = 1, 2, ..., N . With 2-hop scheme, if we can find
(pN , pN−1, ..., p3, p2) such that B1

E[ε1]
= B2

E[ε2]
= ... = BN

E[εN ]
, then the network lifetime

is maximized.

Proof See Appendix A

We can see that the condition for finding optimal transmission probabilities is

B1

E[ε1]
=

B2

E[ε2]
= ... =

BN

E[εN ]
(3.31)

To find pi satisfying (3.31), we also solve a system of equations similar to the one
shown above. If the solved solution is valid (contains only non-negative values),
then we the optimal probabilities exist and with that However, similar to the case
when initial battery levels are the same, the probabilities satisfying (3.31) do not
always exist. In those cases, we propose a method for finding “good” probabilities.
The idea behind the method is very simple: as we have known, the network lifetime
is constrained to the sensor that has minimum lifetime in the network, so if we can
prolong the lifetime of that sensor, then the overall lifetime of the network can also
be increased. The detailed algorithm is described as following:

Algorithm: Finding “good” transmission probabilities when the initial battery levels
are different
1. Finding sensor Si that has minimum lifetime with hop-by-hop scheme, that is
Bi

εi
= min

1≤k≤N
{Bk

εk
}

2. If (i = N) then we conclude that, sensor SN is always the first one running out of
battery. There is no way to prolong network lifetime with 2-hop scheme.

3. If (i < N) then we assign pN = pN−1 = ... = pi+2 = pi−1 = pi−2 = ... = p2 = p1 = 1,

then find pi+1 and pi making
Bi+1

E[εi+1]
=

Bi

E[εi]

3.5.2 Theoretical Results

Now we will analyze the network lifetime when initial battery levels are different
with hop-by-hop and 2-hop scheme. We will analyze for chain networks and binary
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networks. For each network, we generate random initial battery level for a sensor
using the following formula:

Bi = 60 ∗ rand(0, 1) (3.32)

where rand(0, 1) represents a random numbers in the range (0, 1). If we use the
C++ randomly generating function, then the average of Bi is about 0.5, which
means the average battery level of the network is about 30 J . After generating
randomly initial battery levels, we find optimal transmission probabilities for each
sensor; in cases when optimal probabilities do not exist, we find “good” probabilities
based on the algorithm above.

The network lifetime is shown in Fig. 3.16 (chain networks) and Fig. 3.17 (binary
tree networks). We can see that, the increase in network lifetime is better when the
initial battery levels are different than that when initial battery levels are the same.

Figure 3.16: Chain network – network lifetime with 2-hop scheme and hop-by-hop scheme
as a function of number of levels when initial battery levels are different

3.5.3 Conclusion

In this section, we proposed a method to find optimal transmission probabilities when
the initial battery levels are different, and an algorithm to find “good” probabilities when
optimal solutions do not exist for chain and binary tree networks.
Theoretical results show that, the increase in network lifetime is better when initial

battery levels are different (e.g., for chain network consisting of three sensors, the increase
is about 30%, compared to just about 4% when initial battery levels are the same).
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Figure 3.17: Binary tree network – network lifetime with 2-hop scheme and hop-by-hop
scheme as a function of number of levels when initial battery levels are different
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Chapter 4

Simulation Studies on Network
Lifetime and Data Collection Delay
with 2-hop Scheme

4.1 Simulation Studies for Chain and Binary Tree

Topology Networks

In this section, we use simulation to verify the theoretical computation results for network
lifetime in Chapter 3 for chain and binary tree network. More specifically, for a chain or
binary tree network, we assign the optimal or “good” transmission probabilities found by
theoretical calculation in Chapter 3 and do simulation to get the result of how many data
gathering cycles done until one sensor in the network runs out of battery. The path loss
exponent is assumed to be 3.5 for the simulation.

4.1.1 Simulation Results for Chain Networks

• Theoretical Results

• Simulation Results

4.1.2 Simulation Results for Binary Tree Networks

In Table 4.3 and Table 4.4 below, the meaning of K is the same as in Table 3.5.

• Theoretical Results

• Simulation Results (see Table 4.4)
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Table 4.1: Chain network – Theoretical calculation results for expected network
lifetime with 2-hop scheme (α = 3.5)

Network lifetime
with hop-by-hop

scheme

Expected network lifetime
with 2-hop scheme (optimal
transmission probabilities)

Expected
network lifetime

increase
N = 3 Th2h = 2667 E[T2hop] = 2767 3.75%

N = 4 Th2h = 1998 E[T2hop] = 2055 2.85%

N = 5 Th2h = 1597 E[T2hop] = 1633 2.25%

N = 6 Th2h = 1330 E[T2hop] = 1355 1.88%

N = 7 Th2h = 1140 E[T2hop] = 1158 1.58%

N = 8 Th2h = 997 E[T2hop] = 1011 1.40%

N = 9 Th2h = 886 E[T2hop] = 897 1.24%

N = 10 Th2h = 797 E[T2hop] = 806 1.13%

Table 4.2: Chain network – Simulation results for expected network lifetime with
2-hop scheme (α = 3.5)

Network lifetime
with hop-by-hop

scheme

Expected network lifetime
with 2-hop scheme (optimal
transmission probabilities)

Expected
network lifetime

increase
N = 3 Th2h = 2667 E[T2hop] = 2766 3.71%

N = 4 Th2h = 1998 E[T2hop] = 2054 2.80%

N = 5 Th2h = 1597 E[T2hop] = 1632 2.19%

N = 6 Th2h = 1330 E[T2hop] = 1355 1.88%

N = 7 Th2h = 1140 E[T2hop] = 1157 1.49%

N = 8 Th2h = 997 E[T2hop] = 1010 1.30%

N = 9 Th2h = 886 E[T2hop] = 896 1.13%

N = 10 Th2h = 797 E[T2hop] = 805 1.00%

4.1.3 Theoretical Verification and Conclusion

Comparing results in Table 4.1 and Table 4.2; Table 4.3 and Table 4.4, we can see
that the simulation results is nearly the same as theoretical results. Theoretical results
have been verified to be correct.

4.2 Simulation Studies for General Tree Topology

Networks

We now estimate how much network lifetime could be increased with 2-hop scheme in
a random network. Because of the random network topologies, it is impossible for us
to compute theoretically the optimal transmission probabilities or the network lifetime
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Table 4.3: Binary tree network – Theoretical calculation results for expected network
lifetime with 2-hop scheme (α = 3.5)

Network lifetime
with hop-by-hop

scheme

Expected network lifetime
with 2-hop scheme

Expected
network lifetime

increase
L = 3 Th2h = 1140 E[T2hop] = 1295 (K = 3) 13.59%

L = 4 Th2h = 531 E[T2hop] = 598 (K = 3) 12.62%

L = 5 Th2h = 257 E[T2hop] = 288 (K = 3) 12.06%

L = 6 Th2h = 126 E[T2hop] = 142 (K = 4) 12.70%

L = 7 Th2h = 62 E[T2hop] = 70 (K = 4) 12.90%

L = 8 Th2h = 31 E[T2hop] = 35 (K = 4) 12.90%

L = 9 Th2h = 15 E[T2hop] = 17 (K = 4) 13.33%

L = 10 Th2h = 7 E[T2hop] = 8 (K = 4) 14.29%

Table 4.4: Binary tree network – Simulation results for expected network lifetime
with 2-hop scheme (α = 3.5)

Network lifetime
with hop-by-hop

scheme

Expected network lifetime
with 2-hop scheme

Expected
network lifetime

increase
L = 3 Th2h = 1140 E[T2hop] = 1294 (K = 3) 13.51%

L = 4 Th2h = 531 E[T2hop] = 598 (K = 3) 12.62%

L = 5 Th2h = 257 E[T2hop] = 287 (K = 3) 11.67%

L = 6 Th2h = 126 E[T2hop] = 142 (K = 4) 12.70%

L = 7 Th2h = 62 E[T2hop] = 70 (K = 4) 12.90%

L = 8 Th2h = 31 E[T2hop] = 35 (K = 4) 12.90%

L = 9 Th2h = 15 E[T2hop] = 17 (K = 4) 13.33%

L = 10 Th2h = 7 E[T2hop] = 8 (K = 4) 14.29%

increase like the previous chapters. We will evaluate 2-hop scheme by simulating the
operation of the network.

4.2.1 Simulation Setup and Environment

The simulation parameters and settings for the simulator are shown in Table 4.5. We
assume that the physical and MAC conditions of the IEEE802.15.4 are used in the simu-
lations. Our simulations are written in the C language based on time-driven program. We
also assume that all the sensors are identical, uniformly, and independently distributed in
a two-dimensional square are and no sensor moves throughout the simulation. The sink
node is located at the center of the simulation area. Since all the sensors are identical,
they have the same transmitting and receiving power. We also use the first-order radio
model in our simulation by assuming the path loss exponent (α) of 3.5.
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Table 4.5: Simulation parameters and settings

Number of sensor nodes 100
Number of sink nodes 1
Network coverage 200 m x 200 m
Transmission range 20 m
Network protocol Tree-based routing protocol [17]
RANN packet size 20 bytes
RANN broadcast interval 15 s
Traffic type Constant bit rate
Data gathering cycle 10 s
Data payload size 104 bytes
MAC header size 24 bytes
Hardware specification IEEE 802.15.4
MAC protocol Beacon-enabled access method
Transmission rate 250 kbps
Number of channels 1
Energy model First-order radio model
Path loss exponent (α) 3.5
ϵelec 50 nJ/bit
ϵamp 100 pJ/bit/mα

Initial battery capacity 30 J
Processing time 1 ms

4.2.2 Simulation Scenario

We apply the tree-based routing (TBR) protocol as proposed in [17] to form a tree topology
for the sensors in the network. The RANN packet size is 20 bytes and we set the RANN
broadcast interval is 15 seconds. We model our traffic based on constant bit rate (CBR).
The CBR traffic consists of 104-byte payload size, which sends at the data packet is sent
at every 10 seconds.
We run the simulator for 30 different topologies. In each topologies, the position of

100 sensors are randomly generated. The position of the sink is fixed at the center of the
network. For one topology:

• hop-by-hop scheme simulation

After running hop-by-hop simulation, we can get the network lifetime with hop-by-
hop scheme. We denote by Th2h,i the network lifetime with hop-by-hop scheme for
topology i (i = 1, 2, ..., 30).

• 2-hop scheme simulation

For random networks, we cannot compute the optimal transmission probability for
each sensor but we assign the same transmission probability p for all the sensors
in the network. The range of p is p = 0.5, 0.51, 0.52, ...0.98, 0.99. We denote by

45



T2hop,i(p) the network lifetime with 2-hop scheme for topology i (i = 1, 2, ..., 30)
when each sensor is assigned a transmission probability p.

After running the simulator for 30 topologies, we compute:

• Average lifetime with hop-by-hop scheme: T̄h2h =
∑30

i=1 Th2h,i

30

• Average lifetime with 2-hop scheme

– when p = 0.5: T̄2hop(0.5) =
∑30

i=1 T2hop,i(0.5)

30

– when p = 0.51: T̄2hop(0.51) =
∑30

i=1 T2hop,i(0.51)

30

...

– when p = 0.98: T̄2hop(0.98) =
∑30

i=1 T2hop,i(0.98)

30

– when p = 0.99: T̄2hop(0.99) =
∑30

i=1 T2hop,i(0.99)

30

The whole simulation process is illustrated by Fig. 4.1

Figure 4.1: General tree network – simulation process

4.2.3 Simulation Results for Network Lifetime without Packet
Loss

The simulation result based on the simulation scenario above is shown in Fig. 4.2
As we can see from the graph in Fig. 4.2, the network lifetime increases when p is from

0.99 to 0.76. After reaching the top with p = 0.76, network lifetime starts to decrease
when p decreases. This is because when p is small, the sensors tend to transmit more
packets in 2-hop transmission, if the number of packets transmitted in 2-hop transmission,
the lifetime with 2-hop transmission starts to decrease. and and if there are so packets
transmitted in 2-hop transmission (p is so small), the network lifetime may be less than
that with hop-by-hop scheme.
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Figure 4.2: General tree network – network lifetime with hop-by-hop and 2-hop scheme

At p = 0.76, the average network lifetime with 2-hop scheme is maximum. Thus, for any
random network, although we cannot optimal transmission probabilities for each sensor,
it is reasonable to assign all sensors with transmission probability of 0.76 so that we can
expect the increase in network lifetime to be maximum.

4.2.4 Simulation Results for Data Collection Delay without Packet
Loss

We now analyze the delay in data collection by doing simulation. The parameters settings
are the same as in the previous section.
For the simulation scenario, we also run the simulator for 30 different topologies to get

the average data collection delay. In the simulation, all sensors are assigned the same
transmission probability p.
For each simulation, instead of measuring the network lifetime, we measure the data

collection delay with hop-by-hop scheme and the average delay with 2-hop transmission.
(We cannot measure the exact delay with 2-hop scheme, because in different DGCs, the
delay may be different, as mentioned previously in this chapter)
The result is shown in Fig. 4.3. We can see that, if the transmission probability p is

large, meaning that the number of hop-by-hop transmission is also large the delay is also
large (slower data collection). On the other hand, if p is small, meaning that the number
of 2-hop transmission is large, the delay decreases (faster data collection). However, if p
is too small, even though the delay in one DGC is small, the overall network lifetime may
be decreased. When p = 0.76, which is a possibly “good” transmission probability for
random networks (as discussed in Chapter 5 ), delay in data collection is reduced about
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16.9%.

Figure 4.3: General tree network – average data collection delay with 2-hop scheme over
hop-by-hop scheme as a function of transmission probabilities

4.2.5 Simulation Results for Network Lifetime with Packet Loss

The packet loss of, for example, 25% means that for all sensors in the network, 25% of its
transmission needs to be retransmitted due to error in transmission. In this simulation,
when a packet sent in hop-by-hop or 2-hop transmission is lost due to error, it will be
retransmitted using that kind of transmission. For example, if a packet sent in hop-by-
hop transmission needs to be retransmitted, it will be sent again also using hop-by-hop
transmission (the similar thing for 2-hop transmission).
Parameter settings are the same as above, All sensors are assigned the same transmission

probability p, p = 0.50, 0.55, ..., 0.95, 1.0. The simulator is run for 30 different general tree
topologies when the packet loss is 0%, 25%, 50% and 75%. The results are shown in Fig.
4.4. We can see that, even though with the presence of packet loss, 2-hop scheme can
prolong the network lifetime about 17% when p = 0.76.

4.2.6 Conclusion

For general tree networks, even with the presence of packet loss, average network lifetime
can be increased about 17% when the transmission probability for all sensors is p = 0.76.
In addition, when p = 0.76, average data collection delay can be reduced about 17%.
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Figure 4.4: General tree network – network lifetime with hop-by-hop and 2-hop scheme
with the presence of packet loss

4.3 Simulation Studies on Network Lifetime with 2-

hop Scheme for General Tree Topology Networks

when Initial Battery Levels are Different

We now do the simulation to study how the network lifetime varies when initial battery
levels are different. Simulation parameters and settings are the same as in the previous
section. We also run the simulator for 30 different general tree networks. For each network:

• (3.32) is used to generate initial battery level for each sensor

• After generating randomly initial battery levels for the sensors, we run the simulator
for five times, in each time:

– All sensors are assigned the same probability p, p = 0.50, 0.55, ..., 0.95, 1.0

– Network lifetime with hop-by-hop scheme and expected network lifetime with
2-hop scheme is recorded

• The average network lifetimes with hop-by-hop and 2-hop scheme are then computed

Finally, a graph is drawn based on those average network lifetimes (see Fig. 4.5).
We can see that, when the initial battery levels are different, we should not assign the
same probability for all sensors; otherwise, the network lifetime with 2-hop scheme is even
worse than that with hop-by-hop scheme. Therefore, when the initial battery levels are
different, in order for the network lifetime with 2-hop scheme to be longer than that with
hop-by-hop scheme, it is necessary to find optimal or “good” transmission probabilities
for the sensors. However, until now, we can find those solutions for chain and binary
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Figure 4.5: General tree network – network lifetime with 2-hop scheme and hop-by-hop
scheme as a function of number of levels when initial battery levels are different

tree networks, optimal or “good” transmission probabilities for general tree networks is
considered as future work.
For general tree networks, if we assign all sensors with the same probability, the network

lifetime with 2-hop scheme is even smaller than that with hop-by-hop scheme. Therefore,
it is necessary to find optimal or “good” transmission probabilities for sensors in the
network, in order to prolong the network lifetime. However, until now, we can find
solutions for chain and binary tree networks only. How to find optimal probabilities for
general tree networks is considered as future work.

50



Chapter 5

Concluding Remarks

5.1 Summary

In this research, the proposed 2-hop scheme has been analyzed in chain topology networks,
binary tree topology networks and random tree topology networks. In chain and binary
tree networks, based on theoretical computation, we showed that 2-hop scheme can be
used to increase network lifetime compared to hop-by-hop scheme by balancing energy
consumption of all sensors throughout the network (if optimal transmission probabilities
exist) or reducing energy consumption unbalance in the network (if optimal transmission
probabilities do not exist) by finding “good” transmission probability to balance energy
consumption of some top levels sensors (sensors near the sink in the topology). In random
networks, by doing simulation, we showed that on average, the network lifetime could be
increased about 16.4%
The results showed that the increase in network lifetime depends on the kinds of the

topologies. For chain networks, even with optimal transmission probabilities, the increase
is smaller than that for binary tree networks (although optimal transmission probabilities
usually do not exist for binary tree networks).
In this research, First-order radio model is used to compute energy for transmitting

and receiving packets. In this energy model, the energy for transmitting depends on the
environment in which the network operates. We analyzed the effect of environments on
the network lifetime increase and saw that, the same network, in different environments,
the increase may be very large or very small.
We also analyzed the data collection delay between hop-by-hop and 2-hop scheme. With

the assumption that 2-hop transmission rate is the same as hop-by-hop transmission rate,
delay with 2-hop scheme can be mathematically proved to be smaller than the delay with
hop-by-hop scheme, which means data collection is faster with 2-hop scheme than with
hop-by-hop scheme.
We also compared 2-hop scheme with direct scheme. Although 2-hop scheme do not

outperform direct scheme in terms of network lifetime and data collection delay, However,
in practical, there are some cases when direct scheme cannot be used:

• In large scale network, where the sensor is too far away from the sink to perform
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direct transmission.

• Each sensor use different power level to transmit data directly to the sink. For ex-
ample, in a chain network consisting of ten sensors, S4 and S5 use different power for
direct transmission. Because all sensors in the network are homogeneous regardless
of its position (near the sink or not), all of them must have capability to transmit
data with different ten power levels. .In practical, producing sensors having many
different power levels to transmit data may be expensive. On the other hand, 2-hop
scheme only requires two power levels for transmitting (corresponding to hop-by-
hop and 2-hop transmission), which means that 2-hop scheme is more economy than
direct scheme.

5.2 Contributions

There are two main contributions in this research

• We proposed 2-hop scheme, which

– Can operate in large-scale networks where direct scheme cannot be well-deployed

– Increases network lifetime (even with the presence of packet loss)

– Decreases delay in data collection compared to hop-by-hop scheme

• Solved how to find optimal probabilities

– Not only for chain but also for binary tree networks

– With same or different initial battery levels

5.3 Future Works

• As mentioned in Chapter 5, a solution to find optimal or “good” transmission prob-
abilities is necessary to prolong network lifetime when initial battery levels are
different.

• We know that, because the duty cycle of each sensor is short compared to the
interval between one duty cycle to the next, a periodical sleeping scheme is usually
used to conserve energy. A synchronized sleep/wake up scheme for 2-hop scheme is
also an interesting research in the future. One of the problem of the sleep/wake up
scheme for 2-hop scheme should be the sleep/wake up schedule for when the next
hop wakes up to receive packets sent in hop-by-hop transmission, and when the next
2-hop wakes up to receive packets sent in 2-hop transmission.

• 3-hop or 4-hop scheme could also be an interesting research.
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Appendix A

Proof of Theorems

A.1 Proof of Theorem 1

Theorem 1 E[ξi] = E[ξj] if and only if E[εi] = E[εj] ∀i, j = 1, 2, ..., N
Proof Because the transmission probabilities are not changed once the network starts

to operate, then the expected energy consumption in a DGC is equaled to those in other
DGCs. Let T be the total number of DGCs in the whole lifetime, then E[ξi] = TE[εi].
Thus, E[ξi] = E[ξj] ⇔ TE[εi] = TE[εj] ⇔ E[εi] = E[εj]. Theorem 1 has been proved.

A.2 Proof of Theorem 2

Theorem 2 For a set of transmission probabilities (pN , pN−1, ..., p3, p2), if E[εN ] =
E[εN−1] = ... = E[ε2] = E[ε1]; then with (pN , pN−1, ..., p3, p2), the network lifetime is
also maximized.
Proof If with (pN , pN−1, ..., p3, p2), the network lifetime is not maximized, then from

Lemma 2, there exists another set of transmission probabilities (p′N , p
′
N−1, ..., p

′
3, p

′
2) where

max
1≤i≤N

{E[ε′i]} < max
1≤i≤N

{E[εi]}.
In this proof, we denote by ε′i, n

′
i, f

′
1,i, f

′
2,ithe energy consumption of Si in one DGC, the

total number of packets transmitted by Si in one DGC, the number of packets transmitted
by Si in hop-by-hop transmission in one DGC, the number of packets transmitted by Si

in 2-hop transmission in one DGC, respectively, with the set of transmission probabilities
(p′

N , p′
N−1, ..., p

′
3, p

′
2).

From the precondition of the theorem, with (pN , pN−1, ..., p3, p2), E[εN ] = E[εN−1] =
... = E[ε2] = E[ε1]. Thus, max

1≤i≤N
{E[εi]} = E[εN ] = E[εN−1] = ... = E[ε2] = E[ε1]. Then,

max
1≤i≤N

{E[ε′i]} < max
1≤i≤N

{E[εi]} ⇒ E[ε′i] < E[εi], 1 ≤ i ≤ N (∗).
For sensor SN (the farthest one from the sink), in one DGC, it generates only one

packet and forwards that packet to SN−1. Because SN is the farthest node from the sink,
it does not receive any packets from other sensors. Therefore, nN = n′

N = 1. From (3.4),
we have:

53



E[εN ] = pnE[nN ]ϵt(d1) + (1− pN)E[nN ]ϵt(d2) + (E[nN ]− 1)ϵr

= pNϵt(d1) + (1− pN)ϵt(d2)

= ϵt(d2)− pN [ϵt(d2)− ϵt(d1)]

(A.1)

and

E[ε′N ] = ϵt(d2)− p′N [ϵt(d2)− ϵt(d1)] (A.2)

From (∗), (A.1) and (A.2), we have ϵt(d2)−p′N [ϵt(d2)− ϵt(d1)] < ϵt(d2)−pN [ϵt(d2)− ϵt(d1)] ⇒
p′N > pN . We also have E[f2,N ] = (1−pN)E[nN ] = 1−pN and E[f ′

2,N ] = (1−p′N)E[n′
N ] =

1− p′N . Because p′N > pN , then E[f ′
2,N ] < E[f2,N ] (∗∗).

From (B.4) and (B.6), we have

E[ni−1] = N − i+ 2− E[f2,i] (A.3)

From (A.3), E[nN−1] = 2−E[f2,N ] and E[n′
N−1] = 2−E[f ′

2,N ]. From (∗∗), E[n′
N−1] >

E[nN−1] (∗ ∗ ∗).
We have

E[εN−1] = E[f1,N−1]ϵt(d1) + E[f2,N−1]ϵt(d2) + (E[nN−1]− 1)ϵr

= (E[nN−1]− E[f2,N−1])ϵt(d1) + E[f2,N−1]ϵt(d2) + (E[nN−1]− 1)ϵr

= E[nN−1] [ϵt(d1) + ϵr] + E[f2,N−1] [ϵt(d2)− ϵt(d1)]− ϵr

(A.4)

and

E[ε′N−1] = E[n′
N−1] [ϵt(d1) + ϵr] + E[f ′

2,N−1] [ϵt(d2)− ϵt(d1)]− ϵr (A.5)

From (A.4) and (A.5), we have

E[εN−1]− E[ε′N−1] = (E[nN−1]− E[n′
N−1]) [ϵt(d1) + ϵr]

+ (E[f2,N−1]− E[f ′
2,N−1]) [ϵt(d2)− ϵt(d1)]

(A.6)

From (∗), E[εN−1]− E[ε′N−1] > 0 then

(E[nN−1]− E[n′
N−1]) [ϵt(d1) + ϵr] + (E[f2,N−1]− E[f ′

2,N−1]) [ϵt(d2)− ϵt(d1)] > 0 (A.7)

From (∗∗∗), (E[nN−1]−E[n′
N−1]) [ϵt(d1) + ϵr] < 0. Therefore, in order for the left-hand

side of (A.7) to be larger than 0, we must have (E[f2,N−1]−E[f ′
2,N−1]) [ϵt(d2)− ϵt(d1)] >

0 ⇔ E[f ′
2,N−1] < E[f2,N−1].

Continuing this reasoning, E[f ′
2,N−1] < E[f2,N−1] ⇒ E[n′

N−2] > E[nN−2] ⇒ ... ⇒E[n′
1] >

E[n1] (∗ ∗ ∗∗).
We have
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E[ε1] = E[n1]ϵt(d1) + (E[n1]− 1)ϵr

= E[n1] [ϵt(d1) + ϵr]− ϵr
(A.8)

and

E[ε′1] = E[n′
1]ϵt(d1) + (E[n′

1]− 1)ϵr

= E[n′
1] [ϵt(d1) + ϵr]− ϵr

(A.9)

From (∗ ∗ ∗∗), (A.8) and (A.9), we get E[ε1] < E[ε′1]. This contradicts with (∗).
Therefore, (pN , pN−1, ..., p2) must be an optimal solution. Theorem 2 has been proved.

A.3 Proof of Theorem 3

Theorem 3 After assigning initial values to pN , pN−1, ..., pk(2 ≤ k ≤ N), for a set
of transmission probabilities (pk−1, pk−2, ..., p2), if E[εk−1] = E[εk−2] = ... = E[ε1] then
(pk−1, pk−2, ..., p2) is the best probabilities we can choose. That is, for other (p′k−1, p

′
k−2, ..., p

′
2)

that does not make E[ε′k−1] = E[ε′k−2] = ... = E[ε′1], then max
1≤i≤N

{E[ε′i]} > max
1≤i≤N

{E[εi]}.
Proof This theorem can be considered as a generalization of Theorem 2. Its proof is

similar to the proof of Theorem 2 and we omit it here.

A.4 Proof of Theorem 4

Theorem 4 In a binary tree network, E[f1,i,j] = E[f1,i,k] and E[f2,i,j] = E[f2,i,k], i =
1, 2, ..., L; j, k = 1, 2, ..., 2i. This means that, the expected number of packets sent in hop-
by-hop and 2-hop transmission of all sensors in the same level are the same.
Proof. For all sensors in level L, in one DGC, they all generate and send one packet.

Then, from Lemma 3, E[f1,L−1,j] = pL and E[f2,L,j] = 1−pL, j = 1, 2, ..., 2L. Thus, Theo-
rem 4 is true for all sensors in level L. Let E[f1,L] = E[f1,L,j] and E[f2,L] = E[f2,L,j], j =
1, 2, ..., 2L.
For a sensor SL−1,j in level L − 1. Let SL,k and SL,k+1 be the two children of SL−1,j.

From Fig. 3.2.2, we can see that nL−1,j = f1,L,k + f1,L,k+1 + 1 ⇒ E[nL−1,j] = E[f1,L,k] +
E[f1,L,k+1] + 1 = 2E[f1,L] + 1 ⇒ E[f1,L−1,j] = pL−1(2E[f1,L] + 1) and E[f2,L−1,j] = (1 −
pL−1)(2E[f1,L] + 1). It is easy to see that E[f1,L−1,j] and E[f2,L−1,j] do not depend on j.
Therefore, Theorem 4 is true for all sensors in level L− 1.
Continuing this reasoning, Theorem 4 is true for all levels in the network.

A.5 Proof of Theorem 5

Theorem 5 For a network of N sensors S1, S2, ..., SN , the initial battery level of sensor
Si is denoted by Bi. The expected energy consumption of Si in one DGC is denoted by
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E[εi], i = 1, 2, ..., N . With 2-hop scheme, if we can find (pN , pN−1, ..., p3, p2) such that
B1

E[ε1]
= B2

E[ε2]
= ... = BN

E[εN ]
, then the network lifetime is maximized.

Proof It is obvious that, the network lifetime is the minimum lifetime of a sensor in
the network. Here we denote by T the network lifetime.

T = min
1≤i≤N

{ Bi

E[εi]
} (A.10)

If (pN , pN−1, ..., p2) is not optimal probabilities, then there exists another set of proba-
bilities (p′N , p

′
N−1, ..., p

′
2) such that T ′ > T .

Because with (pN , pN−1, ..., p2),
B1

E[ε1]
= B2

E[ε2]
= ... = BN

E[εN ]
, we have

T ′ = min
1≤i≤N

{ Bi

E[ε′i]
} >

B1

E[ε1]
=

B2

E[ε2]
= ... =

BN

E[εN ]
(A.11)

Because
Bk

E[ε′k]
≥ min

1≤i≤N
{ Bi

E[ε′i]
}, ∀k = 1, 2, ..., N then from (A.11), we have

Bk

E[ε′k]
>

Bk

E[εk]
⇔ E[ε′k] < E[εk], ∀k = 1, 2, 3, ..., N (A.12)

From (A.12), the rest of the proof is similar to the proof of Theorem 2 and we omit it
here.
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Appendix B

Proof of Lemmas

B.1 Proof of Lemma 1

Lemma 1 pi =
E[f1,i]

E[f1,i]+E[f2,i]
, ∀i = 1, 2, ..., N

Proof Let P (j, i) (1 ≤ i < j ≤ N) be the probability that Si receives a packet from Sj.
Then 1− P (j, i) is the probability that Si does not receive a packet from Sj, this occurs
if and only if the packet is forwarded to Si+1 and then forwarded to Si−1. Thus,

1− P (j, i) = P (j, i+ 1)(1− pi+1) ⇔ P (j, i) = 1− P (j, i+ 1)(1− pi+1) (B.1)

Let rk, 1 ≤ k ≤ N, be the number of packets received by Sk in one DGC. We have

E[ri−1] =
N∑
k=i

P (k, i− 1)

= P (i, i− 1) +
N∑

k=i+1

P (k, i− 1)

= pi +
N∑

k=i+1

[1− P (k, i)(1− pi)]

= pi +
N∑

k=i+1

[1]− (1− pi)
N∑

k=i+1

P (k, i)

= pi +N − i− (1− pi)E[ri]

= N − i− E[ri] + pi(E[ri] + 1)

(B.2)

The number of packets transmitted by Si in one DGC, denoted by ni, consists of f1,i
packets transmitted in hop-by-hop transmission, and f2,i packets transmitted in 2-hop
transmission. Thus,

ni = f1,i + f2,i (B.3)
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Because each sensor transmits all packets forwarded to each by other sensors, together
with one packet generated by itself, then we also have

ni = ri + 1 (B.4)

From (B.3) and (B.4), we have: f1,i + f2,i = ri + 1 ⇔ ri = f1,i + f2,i − 1, then

E[ri] = E[f1,i] + E[f2,i]− 1 (B.5)

We can see that, all the packets generated by SN , SN−1, ..., Si will be gradually received
by Si−1, except f2,i packets transmitted by Si to Si−2. Since each sensor only generates
one packet per DGC, then the total number of packets generated by SN , SN−1, ..., Si is
N − i+ 1. Thus ri−1 = N − i+ 1− f2,i, then

E[ri−1] = N − i+ 1− E[f2,i] (B.6)

Substituting (B.5) and (B.6) into (B.2), we have

N − i+ 1− E[f2,i] = N − i− (E[f1,i] + E[f2,i]− 1) + pi(E[f1,i] + E[f2,i]− 1 + 1)

= N − i+ 1− E[f1,i]− E[f2,i] + pi(E[f1,i] + E[f2,i])
(B.7)

Then, E[f1,i] = pi(E[f1,i] + E[f2,i]) ⇒ pi =
E[f1,i]

E[f1,i]+E[f2,i]
. Lemma 1 has been proved.

B.2 Proof of Lemma 2

Lemma 2 Assuming all sensors in the network have the same amount of initial battery;
then the network lifetime is maximized if and only if max

1≤i≤N
{E[εi]} is minimized.

Proof The network lifetime is defined as the time until at least one sensor drains
out battery. As mentioned in Data Gathering Model, sensors periodically transmits their
sensed data to the sink; therefore, if we know the number of DGCs completed until at
least one sensor runs out of battery, it is possible for us to calculate the operating time of
the network (by multiplying with the time for each cycle). Thus, network lifetime T can
be represented by the total number of DGCs completed until at least one sensor drains
out energy.
Let B be the initial battery energy in each sensor. Because the expected energy con-

sumption in Si in one DGC is E[εi], then the expected number of DGC, denoted by Ti,
that Si can perform until it runs out of battery is Ti =

B
E[εi]

. It is obvious that

T = min
1≤i≤N

{Ti} = min
1≤i≤N

{ B

E[εi]
} =

B

max
1≤i≤N

{E[εi]}
(B.8)

From (B.8), we can easily see that, the network lifetime T is maximized if and only if
max
1≤i≤N

{E[εi]} is minimized. Lemma 2 has been proved.
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B.3 Proof of Lemma 3

Lemma 3 In a binary tree network, pi =
E[f1,i,j ]

E[f1,i,j ]+E[f2,i,j ]
, i = 1, 2, ..., L, j = 1, 2, ..., 2i.

Proof. The proof of this lemma is similar to the proof of Lemma 2 and we omit it
here.
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