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Abstract

Nowadays, the automotive systems mainly adopt electronic control units (ECUs) to realize
X-by-wire technology. With the X-by-wire technology, the requirements or functionalities
which was not able be realized mechanically before are now becoming possible. Generally,
ECUs in an automotive system follow communication protocols to communicate with each
other through one or multiple buses. Since communication protocols greatly affect the
performance of an automotive system, protocols which can support high transmission rate
and reliability are demanded. Recently, FlexRay communication protocol is considered as
the de-facto standard of the automotive communication protocol. FlexRay communication
protocol supports high transmission rate up to 10Mbs while still keeping the properties
of reliability and fault-tolerance. These characteristics make FlexRay especially suitable
for safety critical systems.
On the other hand, testing process of automotive systems is really time-consuming

and complicated. In industry, devices implementing communication protocols should be
prepared for testing applications implemented on ECUs. Connection between ECUs and
protocol devices form a testing environment. Tests are conducted focusing on specific node
or data transmission with support of data from previous tests. Since higher requirements
result complex functionalities and therefore more ECUs are demanded, and the testing
process becomes harder along with larger number of devices and high financial cost.
This thesis proposes a framework for verifying design model of automotive systems with

FlexRay. The framework is based on UPPAAL, with a model checker of timed automata
for modeling the time-related behavior. By using the framework for verifying the design
models, developers could have better chances to find bugs at the design level with the
support of model checking technology. This may lead to a reduction of cost of the system
development while increasing the quality of applications.
Similar to the devices-based testing, the UPPAAL framework consists of a FlexRay

model and an application model. The former one represents the FlexRay devices and
the later represents the ECUs where applications are implemented. Since UPPAAL only
provides primitive synchronization using channels, the FlexRay model and the application
model have to be specially handled.
The FlexRay model is built upon the specification with three steps of abstraction:

• Essential Component Selection: The model design verification of applications
only requires functionalities of sending and receiving frames to be presented in the
FlexRay model. Therefore, only essential and necessary components which provide
the communication functionalities are selected.

• Functionality Reduction: With components selected in first step, it is not neces-
sary that the FlexRay model has the full behavior in sending and receiving frames.
Behaviors such as adjustments for error control (i.e. fault tolerance feature) can be
skipped.



• State Space Reduction: Due to the heaviness of the FlexRay model after step
one and two, further abstraction is conducted in order to reduce the state space
while preserving functionalities implemented.

The FlexRay model also provides parameters and interfaces for the communication
and access of the application model. The application model only needs to follow these
parameters and interfaces to cooperate with the FlexRay model as an automotive system
design model.
To evaluate the framework, experiments are conducted as follows: (1) A testing applica-

tion models with basic behaviors are introduced for examining the validity of the FlexRay
model; (2)A simple application is established to verify the response time of the system
which is tested by using observer model; (3)A simplified adaptive cruise control system
is introduced to show the feasibility by using the framework on verifying the practical
applications. The results of the experiments prove the validity of the FlexRay model and
the feasibility of the framework, respectively. Timing properties are especially examined
and experiences of improving the application model from checking results are learned.
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Chapter 1

Introduction

1.1 Motivation

The automotive control system is mainly composed of electronic control units (ECUs),
sensors and actuators. The sensors transmit data information to the corresponding ECUs,
where the data will be processed and further transmitted to the actuator. After receiving
the information, the actuator will give a response. Generally, the system function can
be fulfilled by these procedures mentioned above. With the rapid development of the
electronic technology and automotive industry, higher requirements are needed in term of
safety, entertainment and comfortability, and more and more electronic components are
installed in the vehicles. Therefore, the communications among components are getting
more difficult and complicated, while the conventional communication mode is no longer
satisfactory. As a consequence, more advanced communication protocols are desperately
required, in order to sustain the robustness, safety, instantaneity and reliability of the
automotive system.
Nowadays, control area network (CAN), local interconnect network (LIN), media ori-

ented system transport (MOST) and FlexRay are commonly used in automotive industry
[1]. Among those bus protocols mentioned above, CAN and LIN are the most popular
ones. CAN is an event-triggered protocol used in the power system, which has the longest
history in the global automotive industry, while LIN bus system is a low cost solution.
MOST is mainly used in the network audio/video field as one of the additional functions of
the automotive system. FlexRay is the most advanced communication standards, which
is also the focusing point of this research. FlexRay is designed for safety-critical systems
[2]. It is faster and more reliable than other protocols, allowing the event-triggered and
time-triggered messages sharing the same bus. Actually, FlexRay is also a flexible hard
real-time system, which can better meet the needs of the automotive system.
In order to ensure that the automotive system can be successfully applied in the vehi-

cles, simulations and testings are necessary. The general simulating and testing methods
employ hardware equipments to verify the bus communication such as [3] [4]. The inter-
face tool is used to separate the application layer and the transport layer, and test ECUs
and the bus, respectively. The protocol drivers and interfaces are provided by device
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vendors, the majors of which are Qtronic and Vector. Conventionally, during the test-
ing procedure, the graphical user interface (GUI) tools and the simulator are combined.
Usually, Matlab is used as the simulator, as well as some other simulation devices. The
GUI are used to check the raw data and the graphic. The configuration and the code
implementation are also needed to fulfil the system function.
The system checking takes into account of the practical communication environment

based on the hardware, such as noises, temperature and etc. However, this method has
some limitations, because it is physical-layer-based and only focuses on signals and voltage,
etc. The system functions are carried out by the code actuator. In other words, developers
have to embed the software into ECUs. Then, the ECUs are connected to the FlexRay
communication drive tool and check the devices, and the developer test and simulate the
system. Moreover, due to the fact that this method partially tests the selected nodes, it
requires a big amount of devices with high time and financial cost. In addition, it is hard
to found bugs on the high-level from the low-level data, such as system functions and
time-related properties. Therefore, a simpler and more convenient method is proposed
to test the communication between ECUs in the primary stage of the automotive system
design.

1.2 Objective

The main goal of this thesis is to propose an UPPAAL framework to test and verify
the automotive systems using FlexRay protocol. First of all, a reusable FlexRay model
is designed and established in UPPAAL. Secondly, another application model is simply
designed according to the specification of the users. Then, the two models are connected
together via the interface, forming an automotive communication system. By using UP-
PAAL, we finally check the function and time-related properties of communication system.
One of the advantages of this approach is that the model checking method can provide
exhaustive checking. Moreover, this framework checks properties from timing and func-
tional aspects and allows modifications in the primary stage of development. It is less
costly and does not need any hardware devices.

1.3 Related Works

In the recent years, significant progresses have been made on the research of the FlexRay
communication system. On the one hand, the FlexRay system is analyzed in terms of
timing and scheduling, from the prospective of the ECU. Such as in [5], [6] and [7], they
usually calculate the worst case response times of all the tasks and messages in the FlexRay
system. On the other hand, the research of FlexRay on the physical layer is did based
on the physical protocols [8][9][10]. Additionally, other properties of FlexRay are verified.
Such as the fault-tolerance analysis in [11] and [12], the author proposed a self-organized
distributed coordinator concept which performs the self-reconfiguration in case of a node
failure using redundant slots in the FlexRay schedule and combination of messages in
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existing frames and slots to avoid a complete bus restart. The starting process is also
discussed as in [13]. Although many aspects of the FlexRay system have been studied,
the most important factor is time-sensitivity for a real-time system. On the basis of
[5], we use timed automata theory for the verification. We focus on the communication
between nodes in a FlexRay communication system, then model and simulate it. A
verification framework is proposed to check the feasibility, instantaneity and reachability
of the FlexRay communication system. Additionally, we propose a FlexRay model which
can be applied in the practical development. Through the verification, developers can use
the model to modify the design system in the early design stage.

1.4 Overview of Proposed Approach

In this work, we propose an UPPAAL framework for verifying and testing automotive
systems using FlexRay protocol, where the structure is shown in Fig. 1.1. The bottom
layer is the UPPAAL model checker as the foundation of the framework. All the activities
are completed based on it. The communication layer is actually a FlexRay model, which
is abstracted from FlexRay communication protocol. It is the core of the framework to
achieve protocol service. Based on this part, the application layer is the application design
model of the automotive control systems. In addition, the configuration module provides
parameters of FlexRay model and application model. The queries are the properties
in UPPAAL, which will be tested in the model checking part. It used to verify some
properties between application layer and communication layer. By using the framework
for verification of design models, developers could have better chances to find bugs at the
design level with the support of model checking technology. This may lead to reduction
of cost of development while increasing the quality of applications.

1.5 Structure of the Thesis

This thesis is organized as follows. The background of this work is introduced in Chapter
2. Then in Chapter 3, the overview of the proposed approach is presented and the
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process of test generation is defined. Chapter 4 introduces the details of establishing
FlexRay model in UPPAAL. Chapter 5 shows the way of building application model and
interface of the FlexRay model, and discusses how to connect them together. In Chapter
6, the experimental results and evaluations are presented. Finally, Chapter 7 gives the
conclusions, as well as the future work.

12



Chapter 2

Background

2.1 Automotive System

In modern automotive industry, machinery and hydraulic system are gradually superseded
by X-by-Wire [12], which removes the machinery and hydraulic backup system, and is
safety-related with certain fault-tolerant capacity. The traditional mechanical control
components are partly replaced by ECU. With the development of the automotive elec-
tronic technologies, there are more and more electronic and electrical devices within one
system, and mostly every module is controlled by a ECU and works independently. With
the increase of the vehicle performances, more and more ECUs are equipped [14]. The
conventional point-to-point communications will cause many difficulties when installing,
checking and maintaining the system. All electronic components are connected by the
bus as a network, which reduces the nodes and conducting wire, as well as enhances the
reliability and flexibility of the system.
Recently, with the increase of active safety systems and the realization of intelligent

driver assistance function, such as the Side Assist system and Lane Assist system, the
traffic accidence can be reduced. The driving safety will be significantly promoted, but
it also yields higher requirements of the system complexity, such as the determinacy of
information.
For the safety-critical systems, they have to be strictly fault-tolerant and deterministic

with broad bandwidth. The fault tolerance and determinacy play a key role in the system
reliability, and broad bandwidth enables high-speed and more accurate data transmission.
In this case, the delay time can be dramatically reduced, and the flexibility and safety
will also be promoted. Therefore, complex car network technologies are rapidly developed
and various types of bus are used in the automotive industry, such as CAN, LIN, MOST,
FlexRay and so on.
As the most mature bus, CAN is widespread in electronic control systems and com-

munication systems of the modern automotive industry, such as engine control system,
automatic transmission control system, Anti-lock brake system (ABS), automatic cruise
control (ACC) and vehicle-mounted multi-media system [15]. As the micro control com-
munication bus of vehicles, CAN supports information exchanging among the electronic
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control devices, which forms the automotive electronic control network. LIN bus is typi-
cally used in car doors, guide pulleys, seats, engines, climate control, lightings, rain sensors
and Intelligent wipe devices. It is convenient to link those devices together into the auto-
motive network to support the accesses of various of diagnosis and services. The common
used analog signal coding can be superseded by digital signals for harness optimization
[16]. MOST is mainly used in network audio/video fields, usually as an additional func-
tion of a car. In general, it has nothing to do with the vehicle control system. FlexRay can
be used in different automotive fields, such as dynamical system chassis control system,
active safety system and wire control drive system. It can also replace several high-speed
CAN buses [17], which therefore reduces the complexity and the cost. The next evolu-
tion of the automotive network will be based on the cluster architecture, which employs
FlexRay as the strong core.
The transmission rate, reliability and cost index of CAN are appropriate in the appli-

cation of the current automotive power assembly. Due to that CAN is event-triggered,
when more than one information streams are going to be transmitted at the same time,
the traffic congestion will happen. If information is sent with different priorities, some
of them will have large time delay and it is hard to estimate the delay properties of the
information.
In the real-time system, such as X-by-Wire, the communication scheduling of the entire

network has to guarantee that the information is able to be transmitted within a known
time duration in arbitrary network conditions. However, it is difficult for the standard
CAN to meet this requirement. FlexRay is time-triggered and fault-tolerant, with small
and fixed time delay and a high speed bus. FlexRay can strictly meet the requirements of
reliability, availability and conformance, as well as safety and dynamic control functions
requirements for X-by-Wire system. The FlexRay bus system is introduced in detail as
follows.

2.2 FlexRay

The FlexRayTM Communications System is designed in automotive applications which is
robust, scalable, deterministic and fault-tolerant. It was first developed by the FlexRayTM

Consortium, a cooperation of leading companies in the automotive industry, from the
year 2000 to the year 2010. The FlexRayTM Consortium has concluded its work with the
finalization of the FlexRayTM Communications System specifications Version 3.0.1[18].
FlexRay uses x-by-wire technique to reduce the reliability on the hydraulic system of
the vehicle controls. FlexRay was first employed in 2006 in the pneumatic damping
system of BMW’s X5, and fully utilized in 2008 in the BMW 7 Series[19]. The FlexRay
specification was completed in 2009 and is widely expected to become the future standard
for the automotive industry[20] [10].
FlayRay has two separated buses, each with a transmission rate of 10 MBit/s. The in-

formation transmitted in the two buses are mainly the redundancy and the fault tolerance,
when the system is with high validity requirement. In other cases, different information
data can be transmitted on the buses, with the throughput being doubled. FlexRay can
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also be used at low rate of 2.5 or 5 MBit/s, and it also defines the start, bus or the mixed
topologies for data transmission. The access method used in FlexRay is based on the
synchronization timing. The FlexRay provides services by automatically establishing the
connection and timing synchronization. The accuracy of timing is between 0.5 µs and 10
µs, but usually 1-2 µs. By using a special algorithm, all the local clocks of the nodes are
amended to be synchronized with the overall clocks. The synchronization information is
transmitted during the stationary segment of the communication period.
Besides FlexRay also supports time-triggered and event-trigged communications. It

follows the principles of Time Division Multiple Access (TDMA). In TDMA network,
messages in communication channel are transmitted in different time slots. Each commu-
nication cycle is comprised of a certain amount of time slots. The slot number is counted
from one in an ascending order until one communication cycle ends. For FlexRay, the
nodes with the information data are allocated into the certain time slots, and they are
able to uniquely get access to the bus during their own time slots. Due to the fact that
the time duration of the information on the bus is predictable, the access to the bus is
deterministic. However, one of the drawbacks is that, the bus bandwidth can not be
fully used if it is stationarily allocated by determining the time slots of the nodes and
information data. FlexRay divides one period into static and dynamic segment. While
in the dynamic segment, the time slots are dynamically allocated, which is known as the
flexible-TDMA principles. In each case, only within a short period of time the bus can
be accessed (it is called minislots). If any access happens during a minislot, the time
slot will be expanded according to the required time. Therefore, the bus bandwidth is
dynamically changeable. It assures, on the one hand, the certainty of the bus access, and
on the other hand, offset the inadequacy of the stationary transmission.

2.3 Model Checking

Model checking [21] is an automatic technique for formal verification of finite-state concur-
rent systems. It has a number of advantages over traditional approaches for this problem,
proven by the simulation, testing, and deductive reasoning. Pioneering work in the model
checking of temporal logic formulae was done by E. M. Clarke and E. A. Emerson and
by J. P. Queille and J. Sifakis in the 1980s. At present, model checking has been applied
to many fields, such as in computer hardware, communication protocol, control system,
safety of authentication protocol. It has achieved remarkable successes, and also has been
extended to industry from academia.
The basic idea of model checking is shown in Fig. 2.1. The state system indicates the

behavior of the system. The temporal logic formula (F) describes the properties of the
system. Whether the system satisfies the expectation of properties is transformed into
math problem, {s ∈ S |M, s |= f} [21].
Model checking is an efficient searching procedure of abstracting a system or procedure

into a finite-state model. It is performed to automatically determine whether the model
impacts the properties or not, by modeling the concurrent systems as finite-state automata
and formulating the properties in temporal logic. If the state space searching shows that
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there is no violation, then the correctness with regard to the property is proved. If
the property violation is detected, a counterexample will be generated to illustrate the
property violation. However, it also includes the analysis results of the human assistance.
Based on the analysis of the counterexamples, the system process can be modified and
re-verified.
There seems to be many differences between the formal verification and testing. Specif-

ically, formal verification is static which involves system models analyzing, covering all
paths in the model. However, testing is dynamic and deals with the real-world system
itself, which is its implementation or source code, but often covering only a limited num-
ber of system paths. Model checking is more strict and exhaustive, and especially more
suitable for the verification of the large-scaled softwares and protocols, guaranteeing the
reliability, correctness, consistency and integrality.
The model checking problem is easy to describe. In the process of model checking, the

system or the process is transferred into a formalized and finite-state model, which can
be accepted by model checking tools. For the large-scaled and complicated system, an
abstract model has to be designed, omitting the uncorrelated and less important details.
To test whether the design satisfies the requirements of the specification, the first step is
to logically express these properties. The most difficult point is to make sure that all the
properties are found to be satisfied with the specification.
The main challenge in model checking is to deal with the state space explosion problem.

Due to the fact that model checking is based on the exhaustive searching of the system’s
state space, the state amount of the finite-state model exponentially increases as the con-
currency grows[22], and therefore it is very difficult to construct the achievable state space
in the computer memories, when establishing the complex models. In order to efficiently
perform model checking, it is needed to reduce the compress the state space. There are
several approaches to combat this problem. One of the proper ways is to relief the blow
up problem by utilizing the structure properties of the state space of the model, such
as symbolic model, symmetric model, partial order model and the On-the-fly model[23].
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Figure 2.2: A simple example of a timed automaton

Another approach is to abstract or decompose the complicated model test. These ap-
proaches have been implemented in different model checking tools. One of the advantages
of model checking is that it can completely and automatically execute verification, which
is supported by the effective software tools. The most famous concurrency verification
tools are SMV and SPIN, etc.

2.4 Timed Automaton

To cope with the problem of continuous time, the timed automata model was proposed
by Alur, Courcoubetis and Dill, as an extension of the automata-theoretic approach of
modeling the real-time systems [24]. Timed automaton introduces temporal constraint
based on the conventional finite state machine. Assuming that the state transition is
instantaneous, time lapse happens at a certain state. In the timed automata, clocks
always start from 0 when the system begins, and they are all synchronized and increase
with the equal rate. Clocks can be reset at arbitrary state transition point, with a time
duration starting from the previous reset until now. For fear of errors, timed automaton is
assumed to has finite times of transitions in the finite time duration. Time automation can
be expressed by state transition diagram of the temporal constraint, based on the finite
true-value clock variances [25]. In the diagram, peak points denote the locations, edges are
the transitions, clock constraints are the guards, which are related with transitions. The
transition can be taken only if the current values of the clocks satisfy the clock constraint.
The clock constraints can be also related to the locations, called the invariant. Only when
the invariant becomes true can time lapse happens at this location.
A simple example of a timed automaton is shown in Fig. 2.2. The automaton consists

of three locations s0, s1 and s2, two clocks x and y, and three transitions are a, b and c.
The automaton starts in location s0, and it can make an a transition to location s1 and
reset the clock x and y to 0. The automaton can remain in location s1 as long as x is less
than or equal to 3 and y is less than or equal to 5. When x is at least 2 and y is at least
5, it can make a b transition to location s2 and reset clock y to 0. And the automaton
remain in location s2 on condition y is less than or equal to 10. While y is at least 8, it
can make a c transition back to location s0.
The theory provides a formal framework to model and analyze the behavior of real-

time systems. The correct functioning of the real-time systems has to guarantee the strict
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timing constraints such as execution times, response times, tasks periods, communica-
tion delays, etc.Many tools have been developed based on the timed automata, such as
COSPAN, KRONOS[26], EPSILON, RT-SPIN and UPPAAL. In our research,we choose
UPPAAL as model checking tool.

2.5 UPPAAL

UPPAAL is an integrated tool environment for modeling, simulation and verification of
real time system modeled as network of timed automata [27]. It is jointly developed by
Uppsala University and Aalborg University. Since UPPAAL first came out in 1995 [28],
it has been continuously updated and the latest version is UPPAAL 4.1.11. It serves
as a modeling or design language to describe system behavior as networks of automata
extended with clock and data variables. UPPAAL is to verify the clock constraint and
system accessibility by searching the state space of the system, with high efficiency and
practicality. It has been applied successfully in case studies ranging from communication
protocols to multimedia applications.

2.5.1 Timed Automaton in UPPAAL

UPPAAL is based on the theory of timed automata and its modeling language offers
additional features such as bounded integer variables and urgency. In UPPAAL, a system
is modeled as a network of several such timed automata in parallel. The following give
the basic definitions of the syntax and semantics for the basic timed automaton [29].
Definition 1 (Timed Automaton (TA)) A timed automata is a tuple (L,l0,C,A,E,I),
where L is set of locations,l0 ∈ L is the initial location, C is the set of clocks, A is a set
of actions, co-actions and the internal τ -action, E ⊆ L × A × B(C) × 2C × L is a set
of edges between locations with an action, a guard and a set of clocks to be reset, and
I : L → B(C) assigns invariants to locations.
Definition 2 (Semantics of TA) Let (L,l0,C,A,E,I) be a timed automaton. The se-
mantics is defined as a labelled transition system < S, s0 →>, where S ⊆ L × RC is the
set of states, s0 = (l0, u0) is the initial state, and →⊆ S × (R≥0 ∪ A)×S is the transition
relation such that:
-(l, u)

d→ (l, u+ d) if∀d′ : 0 6 d′ ≤ d ⇒ u+ d′ ∈ I(l), and
-(l, u)

a→ (l′, u′) if there exists e = (l, a, g, r, l′) ∈ E s.t. u ∈ g, u′ = [r 7→ 0]u, and
u′ ∈ I(l′),
where for d ∈ R≥0, u + d maps each clock x in C to the value u(x) + d, and [r 7→ 0]u
denotes the clock valuation which maps each clock in r to 0 and agrees with u over C/r.
Definition 3 (Semantics of a network of TA) Let Ai = (Li, l

0
i , C, A,Ei, Ii) be a net-

work of n timed automata. Let l̄0 = (l01, ..., l
0
n) be the initial location vector. The semantics

is defined as a transition system < S, s0 →>, where S = (l1 × ...× ln)× RC is the set of
states, s0 =

(
l̄0, u0

)
is the initial state, and →⊆ S × S is the transition relation defined

by:

-(l̄, u)
d→
(
l̄, u+ d

)
if∀d′ : 0 6 d′ ≤ d ⇒ u+ d′ ∈ I(l̄).
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-(l̄, u)
a→ (l̄[l′i/li], u

′) if there exist li
τgτ→ l′i s.t. u ⊆ g, u′ = [r → 0]u and u′ ∈ I(l̄[l′i/li]).

-(l̄, u)
a→ (l̄[l′j/lj, l

′
i/li], u

′) if there exist li
c?giri→ l′i and lj

c!giri→ l′j s.t. u ∈ (gi ∧ gj), u
′ =

[ri ∪ rj → 0]u and u′ ∈ I(l̄[l′j/lj, l
′
i/li]).

2.5.2 The UPPAAL Modeling and Verification

UPPAAL is able to simulate the model behavior. It can simulate the execution process of
the model step by step, and also automatically test if the model satisfies accessibility and
give a trace of execution. The validity is determined by a series of property checking. The
Java client graphical interface is comprised of 3 main parts: an Editor,a simulator and a
verifier. The editor is used to create and edit the target system. Systems are represented
by a network of timed automata put in parallel. By instantiating the parameters module,
a system can add the clock constraint. Every system synchronizes with with each other
by using shared variables and communication channels. Clocks and integer variances are
expressed by 5 expressions as follows:

• Guard
Guard condition defines a condition for transition between two locations. The tran-
sition can be executed only if the guard condition is fulfilled.

• Synchronization
Synchronization serves for synchronization between timed automata. One of them
is condidered to be in a location leading to another one by means of transition
with synchronization parameter equal to name? is executed in another concurrently
running timed automaton, the transition with sync = name! will be executed in
automaton A too.

• Update
Update allows initialization of variables including the clock. The updating is per-
formed when transition is executed.

• Invariant
Invariant condition defines a condition expressing an urgency of leaving the location.
If the invariant condition is satisfied, the system can stay in or leave the location.
The location has to be abandoned before the invariant condition can be said to be
unsatisfied. If the system is not able to do it because of guard conditions for all
possible transitions and invariant condition in appropriate location are unfulfilled
at the same time, there is a deadlock in the system.

• Selection
Update allows initialization of variables including the clock. The updating is per-
formed when transition is executed.

Besides the normal location, committed and urgent locations are added in UPPAAL as
the improvement. At the urgent location, time may not elapse, all clocks with regard to
transitions at the urgent location will be reset. At committed location, the execution of
time procedure must not be interrupted and the execution procedure does not consume

19



Name Property Equivalent to
Possibly E<>p

Invariantly A[ ]p not E<> not p
Potentially always E [ ] p

Eventually A<>p not E [ ] not p
Leads to p→q A[ ] (p imply A <> q)

Table 2.1: The query language of UPPAAL

time. In addition, UPPAAL provides both the broadcast channel and the urgent syn-
chronization channel. The broadcast channel is declared by broadcast chan c, and one
sender can synchronize with arbitrary number of receivers, without any congestion. The
urgent synchronization channel is declared by urgent chan c, whose synchronous transi-
tion is without time-delay. There must not be clock constraint at the edge of synchronous
transitions. After being established at the editor, the system model is checked in the
simulator, in order to find errors before starting verification. On the other hand, users
can import the trace obtained during the verification, and test the system through the
variable view, the system view and the message sequence chart.
Verifier is used to test whether the system meet the requirements of the spectation.

The query language written in verifier is used to specify properties to be checked. It is a
subset of Timed Computation Tree Logic (TCTL) [30]. The query language consists of
path formulae and state formulae. State formula is an expression that can be evaluated
for a state without looking at the behavior of the model. Path formula is an expression
that describes the behavior of a path in the model.
To test the reachability, safety and liveness properties, UPPAAL provides 5 verification

languages, which can be summarised as follows Tab. 2.1:

• E <> p implies the possibility. E <> p is true if and only if there is a sequence
s0 → s1 → ... → sn in the timed automata, where s0 is the starting state and sn is
p.

• A[]p is Invariantly, which is equal to E <> not p.
• E[]p means Potentially always. In the timed automata, when E[]p is true and if and
only if there is a sequence s0 → s1 → ... → si → ... where p is satisfied for all state
si, and this sequence is infinite or stopped at state (ln, vn).

• A <> p means Eventually, which is equal to not E[] not p.
• p → q denotes Leads to, which is identical to A[] (p implies A <> q).

2.5.3 A Simple Example

In this section, a simple example of model checking with UPPAAL is discussed. The train
gate controls access to a bridge for several trains, as a railway control system. The bridge
is a critical shared resource which can be accessed by only one train at one time. The
system is defined as four trains and a controller. A train can not be stopped instantly and
restarting also takes time. Therefore, there are timing constraints on the trains before
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Figure 2.3: (a) The train model and (b) the gate model in UPPAAL

entering the bridge. When a train approaches, it sends an appr! signal. Thereafter, it
has 10 time units to receive a stop signal. This allows the train to stop safely before the
getting to the bridge. After these 10 time units, it takes further 10 time units to reach
the bridge if the train is not stopped. If a train is stopped, it resumes the course when
the controller sends a go! signal to it after a previous train has left the bridge and sent
a leave! signal. After 7 time units, this train passes through the bridge and send a leave!
signal after 3 time units.
The model of the train gate has two templates. Train is the model of a train, and Gate

is the model of the gate controller and the queue of the controller, shown in Fig. 2.3.
We check the simple properties and deadlock. The simple reachability properties are

expressed as:

• E <> Gate.Occ : Gate can receive (and store in queue) msg’s from approaching
trains.

• E <> Train(0).Cross : Train 0 can reach crossing.
• E <> Train(0).Cross and (forall (i : id t) i != 0 imply Train(i).Stop) : Train 0 can
cross bridge while the other trains are waiting to cross.

The following safety properties hold.

• A[] forall (i : id t) forall (j : id t) Train(i).Cross && Train(j).Cross imply i == j :
There is never more than one train crossing the bridge (at any time instance).

• A[] Gate.list[N] == 0 : There can never be N elements in the queue (thus the array
will not overflow).
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The form of the liveness properties is Train(0).Appr→Train(0).Cross. Whenever a train
approaches the bridge, it will eventually cross. To ensure the system is deadlock-free, we
verify the query A[] not deadlock.
Through model checking of the train gate system, we show what may happen. A train

may cross the bridge but the following trains will have to stop.
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Chapter 3

Construction of FlexRay Model

3.1 Overview of FlexRay Communication Protocol

Specification

This section gives explanations of the core of FlexRay communication protocol specifi-
cation which are essential in building FlexRay model in UPPAAL. FlexRay protocols
are first designed using specification and description language (SDL). For a automotive
system based FlexRay, several nodes are connected by using star, bus and other topolo-
gies, forming a functional system, which is called a cluster. Each node has bus driver
to connect to bus. A node consists of an ECU, a controller host interface (CHI) and a
communication controller (CC). Fig. 3.1 shows the structure of node in the FlexRay bus.
Applications of communication system run on ECU of each node, which is a real time

kernel that contains two schedulers for static cyclic scheduling (SCS) and fixed priority
scheduling (FPS). ECU and CC share control and configuration information in CC, and
also the processed data of ECU are stored in it. The CHI processes the data and controls
the flow between the ECU and CC within each node. The CHI has two major interface
blocks, the protocol data interface and the message data interface. The protocol data
interface deals with all data exchange with regard to the protocol operation, while the
message data interface manages all data exchange with regard to the exchange of messages
as illustrated. The protocol data interface manages the protocol configuration data, the
protocol data and the protocol status data. The message data interface handles the
message buffers, the message buffer configuration and the message buffer status data.
The CC carries out the FlexRay protocol services. CC is the vital part in FlexRay com-

munication model. The CC structure is defined in the protocol specification of FlexRay
communication system, as shown in Fig. 3.2. It is divided to six parts as depicted as
follows. Protocol Operation Control (POC) monitors overall status of CC and manages
other parts. Media Access Control(MAC) is based on a recurring communication cy-
cle. During one communication cycle, FlexRay provides the choice of two media access
schemes, TDMA and flexible-TDMA. Frame and Symbol Processing (FSP) checks the
correct timing of frames and symbols concerning the TDMA scheme, applies further syn-
tactical tests to received frames, and checks the semantic correctness of received frames.
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Figure 3.1: The topology of FlexRay bus system

Bus driver deals with coding and decoding processes. Macrotick Generation (MTG) con-
trols the cycle and macrotick counters and applies the rate and offset correction values.
The clock synchronization processing (CSP) performs the initialization at cycle start, the
measurement and storage of deviation values, and the calculation of the offset and the rate
correction values. The clock synchronization startup processing executes the initializa-
tion and commencement of the MTG process and the CSP process. This process has the
repetitive tasks of measurement and storage of deviation values and the calculation of the
offset and the rate correction values. Bus driver directs coding and decoding processes.

3.2 Abstracted FleRay Model

We abstract FlexRay communication protocol specification from the following three as-
pects.
Firstly, we focus on the communication between nodes and assume that the commu-

nication is in the case of clock synchronization and channel is no noise. The verification
of design model of applications only needs functionalities of sending and receiving frames
to be present in the FlexRay model. Therefore, only essential and necessary components
for providing communication functionalities are selected. So the clock synchronization
processing, the macrotick generation and the clock synchronization startup processing
are out of our scope in CC. Instead, we use a simple mechanism for synchronization and
startup between nodes. Moreover, the coding and decoding behaviors belong to the phys-
ical layer channel. It has nothing to do with the communication clock. So the bus driver
is removed.
Secondly, because the clock is synchronized and no interference in the normal commu-

nication case, many function modules of CC become unnecessary. it is not necessary the
FlexRay model to have the full behavior in sending and receiving frames. Behavior such
as adjustments for error control, i.e. fault tolerance feature, can be skipped. So each
module function has also been simplified on the basis of the communication function, and
the details will be discussed in the next section.
Thirdly, according to our practical experience, we further simplified the structure of
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Figure 3.2: The structure of node

node. Due to the FlexRay system is very large and has a lot of states, out of memory
happens when we check some properties in UPPAAL. Thus, we abstract FlexRay model
again. A CC manages communication of all nodes. Due to FlexRay protocol is based on
TDMA scheme, only one node can take channel In a moment. So we can through a CC
to monitor all nodes, which send data in the specified time.
Fig. 3.3 is the simplified structure of nodes. In ECU, one or more tasks run on it.

Different tasks can be designed according to the function of system in UPPAAL. In CHI,
buffers are allocated for each ECU, where the generated data of the task is stored to
the corresponding buffer. For CC, this part realizes the time driven function of the
FlexRay protocol. For each part, we model their behaviors of sending and receiving
messages, where these behaviors are related to time. POC monitors overall status of CC
and manages other parts when system normally works. Timer controls the length of time
slot. MAC is responsible for sending messages in special slots. FSP is responsible for
receiving messages and transmiting data to tasks in ECU. By using the bus module as a
buffer of storing frames, the transmission channel can be simulated.
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3.3 FlexRay Model

3.3.1 Communication Cycle

In FlexRay, communications take place in periodic cycles. In a cycle, FlexRay provides
two kinds of communication schemes, the static TDMA and dynamic minislot-based FT-
DMA with more flexibility. The time unit in the communication cycle can be divided into
4 parts: micritick level, macrotick level, arbitration grid level and communication level,
as shown in Fig. 3.4. The length of microtick is determined by clocks of the FlexRay
commination controller, where different nodes uses different clocks. The macrotick con-
sists of several microticks, and the amount is determined by the clock synchronization
mechanism. It should be noted that microtick is the minimum time unit for guaranteeing
the overall clock synchronization. Multiple macroticks can compose one static slot in
the arbitration grid level, or one minislot in the dynamic segment. There is an action
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Figure 3.5: Communication cycle of FlexRay model

point in both the static slot and the minislot, as the offset from the its starting point.
Arbitration grid level is the core part of FlexRay system, which determines the way of
communications. In the highest layer a communication cycle contains the static segment,
the dynamic segment, the symbol window and the network time (NIT). Both the static
and dynamic segments are comprised of several corresponding slots, which are periodically
repeated. The symbol window is a transmission period in which a symbol can be sent
on the network. It is responsible for synchronizing the cycle between nodes. The symbol
window contains a configurable number of maroticks. If no symbol window is required,
it is possible to configure zero maroticks. The network idle time is a communication-free
period, which contains all the macroticks which are not used in the previous three time
units in one cycle. And it also reset the value of slot counter. The dynamic segment
and the symbol window are not necessarily needed for every cycle, and the durations of
them are adjustable as required. In our research, we ignore the symbol window, because
in normal communications, it doesn’t need treatment the synchromism symbol between
nodes and do not influence the time of sending message. And we only consider the time
from the communication cycle to the macrotick level, as shown in Fig. 3.5.
The static segment uses TDMA to realize time-triggered bus access, with fixed time

duration for each cycle. Static slots are numbered in ascending order from the very
beginning. One or more static slots be allocated to the nodes. The allocation method
is unchangeable during the operating, and the allocated static slots can only transmit
message for specific nodes. Even when one static slot does not contain information data,
the system will keep idle until the next static slot comes.
The dynamic segment is event-triggered, based on the mini-slot TDMA, and it is com-

prised of a fixed amount of minislots. The time duration of the dynamic slot depends on
the length of the message, which requires one or more minislots. The system will start the
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next slot after other nodes finish receiving message.The dynamic slots also be allocated to
different nodes which send the dynamic message only in specified dynamic slot. If there
is no enough minislots for the message to transmit in one cycle, it will wait and check the
next period. What if there is no information to send within a dynamic slot, all nodes will
wait a minislot. Then dynamic slot counter will increase until the next minislot comes.
The system will keep this procedure until the dynamic segment ends. If all the required
transmissions finish before the dynamic segment ends, the system still has to wait for the
rest of the segment duration.
According to the overall clock, different nodes determine the time for sending or receiv-

ing a specific data frame with a particular ID, which is called the slot ID. To determine
this specific time, every node uses a slot counter for both the static and dynamic segments,
with the counter value being the current slot ID. During every static slot and dynamic
slot, only one node is allowed to send message on the bus. Therefore, at the beginning
of every slot, all the nodes have to check whether the message ID and the slot ID match
with each other. If and only if they are matched, this message can be transmitted.
For static messages, ECU uses static cyclic scheduling(SCS), and during the period of

the system design, the slot identifiers are allocated to nodes. The static messages are
send according to the schedule table in ECU and the length of the transmitting data
should abide by the specification defined in gPayloadLengthStatic. For dynamic messages,
ECU uses fixed priority scheduling(FPS), and the message with smaller ID will be sent
with higher priority. In one communication cycle, if there are a large number of nodes
transmitting information, or the message length is too long, there is no enough minislots
for the message with large ID to be transmitted in the period. In this case, it will wait
for the next cycle. Obviously, it is quite uncertain that all messages are able to get
the required bandwidth, which depends on how much messages has been transmitted
previously. Hence, for the information data with strict delay requirement, it is essential
to transmit it in the static segment, or allocate smaller ID (higher priority) in the dynamic
segment.
There is an example of FlexRay communication cycle, as shown in Fig. 3.6. This figure

shows 3 nodes and how the messages are sent. At the beginning of the communications,
CC configures the relevant parameters, with the slot counter and minislot counter return-
ing to 0. There are the first two communication cycles, which are used to demonstrate
the timing of message transmissions. Each node has two buffer queues to store static
and dynamic messages in CHI. For the ST message, every ECU has a scheduling table
of the transmission time. When it is the time of sending ST message, ECU will store
the operation results into the buffer with relevant ID. Every static message is assigned
with the cycle and slot numbers for transmitting in the specific time. For instance, if
the message ‘Ma’ is assigned to the first cycle and the second slot by 2/1, it will be sent
during the second slot of the first cycle. Similarly, ‘Mb’ will be transmitted in the first
slot and of the first cycle and ‘Mc’ will be sent during the first slot of the second cycle .
For dynamic messages, every dynamic message is assigned with a slot ID. The dynamic

messages are packed into frames by the bus driver with a frame ID being identical to the
allocated slot ID. This ID also represents the priority in sending messages. For instance,
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Figure 3.6: FlexRay communication cycle example

the message ‘Mf’ has ID 4, so it is the forth slot to be sent in the first cycle. Then, the
message ‘Me’ with ID 5 is sent in slot 5. Besides, if there are more than one messages
shared the identical ID, like ‘Mg’ and ‘Mh’, to be transmitted within a same cycle, ECU
will determine which one will be first transmitted according to the priority scheme. The
messages with higher priorities will be sent in the current cycle. Clearly, ‘Mg’ has higher
priority than ‘Mh’. But, the dynamic segment in first cycle does not has enough minislots
for it. So ‘Mg’ is sent in slot 6 of the second cycle. If there is no message to send in the
slot, like slot 6 in the first cycle, this slot still consumes a minislot.
As can be seen, the time of static messages transmission is predictable and its access

to the bus is deterministic. However, by assigning time slots for nodes and messages to
fix the bandwidth allocation, the bus bandwidth may not be fully used, and it is not
flexible for the later nodes expanding. Due to these reasons, dynamic segment makes up
for the weakness. It guarantees that messages with high priority still have the chance to
be transmitted even when the bus is busy. The messages with low priorities will be sent
when the bus is idle. In this case, nodes can share the bandwidth and the bandwidth can
be dynamically allocated with more flexibility. The determinacy of the bus access can be
guaranteed and the drawbacks of the static transmission are compensated.

3.3.2 Protocol Operation Control

In this sub-section, we discuss how CC is defined in different parts of the FlexRay commu-
nication protocol specification, as well as the structure realization of the FlexRay model
in UPPAAL. Every node of the FlexRay system has 6 basic Protocol Operation Control
States and different functions are realized in different states, respectively. Hence, when
the node ECU starts, the node states have to be transformed according to the relevant
protocols for the normal communication. The stares transition diagram is shown as flows
Fig. 3.7.
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Figure 3.7: Overview of protocol operation control

• Config status (including Default Config and Config): for initializations, including
the communication period and data rate;

• Ready status: for the internal communication set;
• Wakeup status: to wake up the nodes which are not communicating. In this sate,
one node sends the wake-up signals other nodes, to awaken and activate the com-
munication controller, the bus driver and the bus monitor;

• Startup status: to start the clock synchronization, as a preparation of the commu-
nication;

• Normal status (Normal Active and Normal Passive): normal active communication
status;

• Halt status: to indicate that the communication is in outage.

The FlexRay system has to be first initialized before getting to the ready status. Then,
the node states and the relevant invariants are updated according to the CHI. During
certain time duration, some nodes or the communication cluster do not work and are
in the power save mode. They should be awakened before being back to work, and
the awakened nodes can also wake up other nodes and the whole cluster. Next, the
synchronous frames are sent during the same slot of every cycle. The slot counter and the
cycle counter are initialized between nodes, and the clocks are synchronized by the clock
synchronization startup module. At this moment, the POC starts MAC and PSF modules
and then the system can achieve the normal communication status. In the communicating
process, when POC receives the preempting deferred commands from other parts of the
CC, and then it will jump to the halt state. Before the next communication cycle start,
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Figure 3.8: Protocol operation control model in UPPAAL

if the error checking sends signals, POC will change the state according to the signals.
For instance, if the node is configured not to allow the communication to be halted due
to severe clock calculation errors, than POC will transfer to normal passive status.
This research focuses on the properties of the communication time, which ignores the

processes of the system launching and synchronizing. We only emphasize the data trans-
mission and response in the normal communication status, and perform verifications to
them. Therefore, only the model of POC in the normal active status is provided in this
research. The diagram in UPPAAL is given by Fig. 3.8.
In the normal active status, the system has already finished initialization and synchro-

nization procedures, and POC starts to execute a sequence of tasks at the end of each
communication cycle. We use the start up as initial state. In this state, the time con-
strained by the invariant x<=startup offset is smaller than that by startup offset, before
the transmission. startup offset is a constant defined as 0, which indicates that the system
starts timing when the normal communication begins. Before the first transmission, we
set the Vss.vCycleCounter equal to 1, starting the first cycle. The POC model will check
that if the current cycle number is less than or equal to the max cycle value gCycleCoun-
terMax, it will send a cycle start! signal to MAC, and MAC will start the first slot of
static segment. Then POC will go to the wait for cycle end state and wait until this cycle
ends. At this moment, the first communication cycle begins, including static segment and
dynamic segment. When the last minislot in the dynamic segment finishes, MAC will
send a cycle end! signal to finish the first communication cycle. POC will again check
which cycle it is at this moment. If Vss.vCycleCounter is less than gCycleCounterMax,
Vss.vCycleCounter will plus one and the next cycle starts. if Vss.vCycleCounter is equal
to gCycleCounterMax, POC will reset the system timing, re-configure the system and
redo the previous processes.

3.3.3 Media Access Control

The media access control (MAC) deals with the usage of the public channel for the
communication clusters when there is a competition. It is the most important part of the
FlexRay model. In the FlexRay protocol, MAC is based on a recurring communication
cycle, and it control the segments allocation during the communication cycle. Different
media access schemes are employed in static segment and the dynamic segment. One
cycle duration is divided into many slots with their labels in order, and the slots with
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different ID are allocated to the relevant nodes. Therefore, frames sent from one node
have the same ID at the head of them. The frame should only be sent during the time
slots with the same ID, which efficiently avoids the nodes occupying the channel. The
execution of MAC in detail is expressed by SDL in the FlexRay protocol specification, as
shown in Fig. 3.9.

Figure 5-13: Media access process [MAC_A].
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Figure 3.9: Media access process

After the system starts, MAC will receive STANDBY command sent by POC, wait at
the ready position and make decisions based on the received zMacMode. If it is STANDY,
MAC will reset the internal communication and be back to the ready position; if it is
STARTUPFRAMECAS, it indicates that the collision avoidance action point need to be
reset, and CAS MTS testing symbol should be sent for CSMA/CD during this period.
The MAC checks whether this node is synchronized with the other external nodes. If the
value of zMacMode is none of the two mentioned above, the system will jump over the
collision avoidance operation and directly check whether this node is synchronized. If the
pExternalSync value is true, zFirstTTESlot has to be set true, which belongs to the TT-E
time gateway sink behavior; if the pExternalSync value is false, the system will jump over
this step and repeatedly start the communication cycle from static segment.
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Figure 5-16: Media access in the static segment [MAC_A].
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Figure 3.10: Media access in static segment

The MAC for static segment is shown in Fig. 3.10, and the main functions are slot
number counting, action point setting, frame assembling, frame transmitting and process
cycling\starting dynamic segment. First of all, the system wait for the cycle start until
the cycle counter start counting. The initial value of the slot counter is set at 1 by MAC
when starting the first static slot, and the vSlotCounter value in CHI has to be updated.
Then, the channel is informed that the static segment can start and the values of current
cycle and slot can be assigned. The action point and slot boundary time of the static slot
should be set and let zTransmitStatFrame be false. If there is no information data to be
sent, MAC jump back to wait for the action point state. When the action point time is
out, the channel is informed, and MAC will check zTransmitStatFrame and see whether
there are information data to be sent. Specifically, if it is true, frame transmission takes
place. Otherwise, MAC will go to wait for the static slot boundary state until this static
slot ends. At the time edge of this slot, the slot counter will plus 1, and the slot counter
value in CHI will be updated. Finally, the slot counter value is checked. If it is no larger
than the maximum value of the static slot number, the next static slot will start and the
parameters such as the action point will be reset; otherwise, it indicates that the static
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Figure 5-19: Media access in the dynamic segment [MAC_A].
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Figure 3.11: Media access in dynamic segment

segment ends and dynamic segment should start. The SDL diagram of dynamic segment
is shown as follows Fig. 3.11.
The process of the dynamic segment is similar with that of the static segment, how-

ever, with higher complexity. The MAC will first check whether minislots are assigned
for a communication cycle when starting the dynamic segment. If the minislot number
(gNumberOfMinislots) is 0, it indicates that there is no dynamic segment in the system; if
it is larger than 0, the dynamic segment will start. Before the dynamic segment cycling,
the system has to compare the offset time durations of the static slot and the minislot. If
the offset time of the minislot is longer than that of the static slot, the actionpoint should
be set at the first minislot of that dynamic slot. Otherwise, a dynamic segment offset is
added and this time duration plus the minislot offset equals to the static slot offset. It
has to be noted that this happens only at the first action point of the dynamic segment,
and in other cases the minislot action point is used as the offset. This process is shown in
Fig. 5.2 as the timing at the boundary between the static and dynamic segments. Then,
the local information has to be updated, such as the current minislot number, the dy-
namic slot counter value, the communication elements in minislots and the detection of a
possible slot counter desynchronization (zNoTxSlot). At the end of the dynamic segment
loop, the value of the last dynamic transmit slot counter is updated and the dynamic
segment should be re-synchronized. Then the NIT segment start directly.
The dynamic segment loop is briefly introduced according to the SDL Fig. 3.13 of the

FlexRay protocol specification. When every dynamic slot starts, the node will check
whether there is enough time left in the dynamic segment for transmission, or whether
there is no transmission allowed in this dynamic slot due to the detection of a possible
slot counter desynchronization as indicated by the variable zNoTxSlot. MAC will perform
the assembling dynamic frame process if a transmission is allowed. If the frame is empty,
it indicates that there is nothing to transmit; if the frame is not empty and also need
to be transmitted in the current dynamic slot, then it will be sent. If the node does not
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transmit itself, it will wait the transmissions of other nodes in the MAC until the end
of the minislot state. In the case that there is no CE start signal detected before the
minislot ends, the node jumps to the next dynamic slot process. If a CE start signal
is detected, the node notes the current minislot and update data of the channel, which
indicates that there is one node starting to send frame during this slot. MAC waits for
the end of activity.
If DTS is detected which is indicated by the CODEC process, a fault-free frame re-

ception will also enable the detection of the DTS. As soon as the DTS was received, the
node locks down the end of the dynamic slot, with the intent that potential noise during
the succeeding idle detection cannot affect the remaining dynamic slot length. The last
potential idle start signal before the CHIRP signal marks the minislot in which the frame
transmission ended, and is used to derive the last minislot of the dynamic slot. Should the
communication element end before the number of bits crosses the cFrameThreshold, the
communication element is regarded as noise and the node tries to switch to a state where
no noise was received. It does so by not applying the gdDynamicSlotIdlePhase length-
ening of the dynamic slot on the one hand and by increasing the dynamic slot counter
by two should a minislot boundary have occurred between the CE start signal and the
CHIRP signal.
After the reception of the CHIRP signal, the node awaits the end of the dynamic slot. A

CE start signal at this point in time is generally an indication of a fault on the bus; either
the preceding or the current communication element was noise or a frame transmitted
due to a fault condition. In case that the preceding element was already categorized as
noise due to its short length, the node treats the new communication element as frame
and potentially adjusts the dynamic slot counter. Under normal circumstances, no CE
start signal will be received during thewait for the end of the dynamic slot state and the
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Figure 5-21: Media access in the dynamic segment arbitration [MAC_A].

ASSEMBLE_

DYNAMIC_FRAME_A

false

set (tMinislotActionPoint);

wait for the end 

of the minislot

wait for the end 

of  activity

CE start on A

CHIRP on A

tMinislot

tMinislot

zMinislot := zMinislot + 1;

set (tMinislot);

zMinislot ?

else

else

zMinislot := zMinislot + 1;

set (tMinislot);

true

nothing to

transmit

frame vTF to transmit

 = gNumberOf-

Minislots

= gNumberOf-

Minislots

DYN_SEG_LOOP_A

zMinislot >= gNumberOfMinislots – 

gdDynamicSlotIdlePhase

or

zMinislot > pLatestTx

or

zNoTxSlot = true ?

zChannelIdle? true

false

wait for the end 

of the dynamic slot

tMinislot

zMinislot ?

zMinislot := zMinislot + 1;

set (tMinislot);

else

zChannelIdle := true;

false

CE start on A

zChannelIdle := false;

zChannelIdle := false;

zMinislotCE := zMinislot;

zEndMinislot := zMinislot;

zDTSReceived := false;

zActiveBits := 1;

zFrameThreshold := false;

zIncSlotCounter := false;

TRANSMIT_

DYNAMIC_FRAME_A

potential idle start on A

zFrameThreshold := true;

zEndMinislot := zMinislot + 

gdDynamicSlotIdlePhase;

zActiveBits =

cFrameThreshold ?
true

zEndMinislot := zMinislot;

false

DTS received on A

zNoTxSlot := false;

 >= zEndMinislot

zMinislot ?

= gNumberOf-

Minislots

= zMinislotCE

= zMinislotCE + 1

zNoTxSlot := true;

vDynResyncAttempt := true;

false

zMinislot ?

vSlotCounter := 

vSlotCounter + 1;

zNoTxSlot := true;

vDynResyncAttempt := true;

else

zFrameThreshold ? true

true

zDTSReceived := true;

zMinislot ?

 else

zDTSReceived := true;

zFrameThreshold := true;

zIncSlotCounter := false;

false
zMinislot = zEndMinislot

and zDTSReceived = true ?

zDTSReceived ?

false

true

true

zActiveBits := 1;

zIncSlotCounter := true;

zIncSlotCounter ?

false
true

zIncSlotCounter := false;

zMinislotCE := zMinislot - 1;

INCREASE_

SLOT_COUNTER_A

continue loop

INCREASE_

SLOT_COUNTER_A

continue loop

zMinislot = zMinislotCE +1

and

zFrameThreshold = false ?

exit 

loop

exit loop

wait for the end of 

the dynamic segment

wait for the end of 

the dynamic segment

tMinislot

zMinislot := zMinislot + 1;

set (tMinislot);

zMinislot ?

else

 = gNumberOf-

Minislots

Figure 3.13: Media access in dynamic segment arbitration

dynamic slot will end at the end of the minislot where zMinislot is equal to zEndMinislot.
The end of the dynamic slot causes the dynamic slot counter to be incremented and then
exported to the CHI. If the received communication element was shorter than the frame
threshold cFrameThreshold and the dynamic slot was either one or two minislots long the
node will abstain from transmitting in the following dynamic slot and a resynchronization
attempt is noted for indication to the CHI at the end of the dynamic segment. If the
received communication element was shorter than the frame threshold and the dynamic
slot was two minislots long the dynamic slot counter is incremented twice instead of just
once, as is normally the case.
When the system is synchronized and at the normal communication status, MAC will

omit the collision avoidance operation and the clock synchronization process. Hence, the
MAC model in our research directly starts the communication loop and ignore the symbol
window. The MAC model in the static segment is almost in accord with the specification.
The only difference is that we do not provide the assembly process of the frame, while
instead, we use a simple data structure to substitute the frame format. Due to the
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Figure 3.14: MAC static segment model in UPPAAL

complexity of the dynamic segment, we only extract the key processes of the with regard
to the minislot and dynamic slot, without considering the bit streams and noise problems
(the channel is assumed to be no-interference). In addition, if a frame occupies more
than one minislot, we take them as a whole. When the frame ends, MAC will compute
which monislot the frame is, according to the data length. It dose not influence the
calculation of the transmission time and response time. In our model, tslotend is used to
specify the ending ponit in different time duration. such as actionpoint, dynamic segment
action point and every dynamic slot ending point. Set timerB! is for time setting. In the
following part, we will introduce the static and dynamic segment models in UPPAAL.
The media access processing in static segment is shown in Fig. 3.14.After receiving

signals of a cycle from POC, MAC starts from the first static slot and vSlotCounter is equal
to 1. In each static slot, MAC sets timer, sends signals to MGP process and set the length
of the action point in the static slot (the boundary of the static slot). Then, MAC waits
signals of timings for sending a message at wait for the action point state. When SlotStart
is received, MAC decides whether to send a message or not and waits for SlotEnd signal.
If buffers in CHI with certain ID are empty, which means that there is no data to send,
MAC will wait until the current slot ends. If there is a requirement for sending a message
and the length of this massage is a valid number(it can be sent out during this slot),
transmission starts and MAC sets bus status to CE start. MAC changes the bus state
to CE start and starts transmitting. Then it wait at wait for the end of transmission
state until the transmission ends. When the clock x satisfies x==frame length, the bus
state will change to CHIRP and wait for the current slot ends. After receiving the SlotEnd
signal, the bus turns to idle. If the slot counter is less than the defined maximum number,
MAC increases the slot counter and jumps to next slot. When slot counter reaches the
maximum value, the static segment ends. MAC sends a dyn seg start! signal to dynamic
process and returns to the initial state.
When the static segment ends, dynamic segment starts, as shown in Fig. 3.15. Due

to the complexity of the dynamic segment, we mainly focus on the key steps of com-
puting the minislot and dynamic slot, without considering channel bittorrent and noise
problems. In addition, if a frame contains continuous multiple minislots, they are consid-
ered as a whole. At the end of the frame transmission, MAC calculates which minislot
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Figure 3.15: MAC dynamic segment model in UPPAAL

the frame is in, according to frame length. This does not affect the time calculation of
transmission and response. In this work, we use the Timer to realize it. Firstly, MAC
checks if gNumberOfMinislots is larger than 0. If it is, there is no dynamic segment in
this system. Then this communication cycle ends and MAC sends the cycle end! signal
to POC. If the answer is yes, MAC starts dynamic segment and slot counter++. Then
MAC sets timers of action point and ends the minislot to start a dynamic slot. If it
is the first slot in this dynamic segemnt, and static actionpoint is larger than minislot
actionpoint the gap between then is dynamic segment offset. In this period of time, we
use the Timer for calculation. When this time duration ends, it is equivalent to the case
when static actionpoint is no larger then the minislot actionpoint, and MAC also stays in
start of dynamic slot state. In a dynamic slot, MAC checks if the current slot ID is spec-
ified for transmission (whether there are data ready in CHI buffers matching the current
slot ID) and if there are enough minislots for transmission. If there is no information to
be sent, or there are no enough minislots for data transmission, when the current minislot
ends, this dynamic slot also ends and minislot plus 1. Also, in the case of no transmission,
if a transmission by another node is detected, we have to wait until CHIRP is detected. In
another case, the specified buffer is not empty and there are enough minislot in dynamic
segment for transmission. MAC will set the actionpoint of minislot. Then, MAC stays
in wait for the AP transmission start state and wait for transmission. When actionpoint
comes, the bus state changes to CE start, the information data in CHI buffer will be sent.
According to the information length, MAC determine the length of the dynamic length.
MAC stays in wait for the end of activity state and wait until the frame transmission
ends. When the frame transmission ends, the bus state changes to CHIRP at the channel
idle recognition point. Due to the fact that a transmission can use several minislots, we
have to count minislots between CE start and CHIRP. MAC updates current values of the
minislot and the macrotick. Then we use the return value of ComputeMacrotick(), which
indicating the number of macrosticks left in the minislot when the frame transmission
ends, to set the timer.
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Figure 3.16: Network idle time model in UPPAAL

As shown in Fig. 3.15, after receiving the dynamic slot ending signal, the bus state
changes to IDLE. MAC checks that whether the slotcounter and the minislot reach the
maximum values. If both of them do not, slot counter increase, the next dynamic slot
starts. If the slot counter is less than the maximum value but minislot value is the
maximum, or both the slot counter and minislot values reach the maximum, then the
dynamic segment ends and we make zminislot equal to 0 and wait until the next cycle. If
the slot counter value reaches the maximum, while minislot value is less than its maximum
values, no dynamic slot is possible in the segment, we should count the remaining minislots
utill gNumberOfMinislots is reached. Then the dynamic segment ends and therefore a
communication cycle finishes.
After the end of dynamic segment, there is NIT of each communication cycle. It

contains all the macroticks which are not used in the previous static and dynamic segment.
Fig. 3.16 shows the processing of NIT in UPPAAL. NIT resets slot counter value when
receiving NIT start signal. While NIT ends, the current communication cycle end and
turn into the next cycle.

3.3.4 Timmer

The reason why the arrival time of the information data can be known in advance in
the FlexRray protocol is that all nodes in the communication clusters follow a standard
global, which guarantees the determinacy of the system. However, it does not follow that
all nodes exactly keep the same synchronizing time. The truth is that the time differences
of nodes are tolerated within a small error range (usually 1-2us). Macrotick is the shortest
time unit which ensures the global time synchronization, which means that all macrosticks
in nodes of the communication cluster should be defined by the same time duration.
In CC, the clock synchronization startup process executes the initialization and start

the MTG and CSP process. The clock synchronization consists of two main concurrent
processes. The first one is the macrotick generation process which controls the cycle and
macrotick counters and applies the rate and offset correction values. It is realized by using
the correction terms to adjust the number of microticks in each macrotick. The other one
is the clock synchronization process (CSP), which performs the initialization when a cycle
starts, such as measurement and storage of deviation values and the calculation of the
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offset and the rate correction values. MTG, CSP and CSS jointly complete the processes
of synchronization and modification which are inseparable. Due to the assumption that
the synchronous transmission is error-free, this thesis mainly focuses on the research of
channel allocation and the response time for nodes, without considering MTG, CSP and
CSS. However, to ensure the correctness and conformity of every time unit, we use timer,
instead of MTG, CSP and CSS, to calculate the time length of every slot and actionpoint
within a cycle. The Timer model in UPPAAL is shown in Fig. 3.17.
Timer is used in both the static and dynamic segments. In the static segment, it controls

the actionpoint and the ending time of every static slot. The operation process of Timer in
static segment can be described as follows. Before receiving set timerA from MAC static
model, Timer waits at the initial state. When detecting set timerA, the clock will be reset
and start timing in Timer ActionPoint state. When clock x equals to tSlotActionPoint
(static slot action point) which is set by MAC, Timer sends SlotStart! and informs MAC
that the time requirement has been satisfied and transmission can start. Timer continues
to count the macrotick and when the clock time equals to the length of the static slot,
this slot ends. Then, the clock will return to 0 and wait for the next static slot.
For the dynamic segment, Timer not only calculates the action point but also controls

two special time points: one is the time difference between static slot action point and
minislot action point and the other one is the information length. Moreover, due to that
the information length is expressed by macrotick, when the dynamic segment finishes
sending message, it is needed to calculate the transmission ends in which minislot. Then,
Timer will wait the rest of macroticks in this minislot and the whole dynamic slot will
not end until this minislot finishes. In this model, we respectively use set timerB, tSlot-
Boundary and SlotEnd to represent the beginning time, different time durations and the
ending time.
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Figure 3.18: Reception related events
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Figure 3.19: Overview of frame and symbol processing

3.3.5 Frame and Symbol Processing

Frame and Symbol Processing (FSP) is for the receiving data processing in both the
static and dynamic slots. It checks the correct timing of frame and symbols with respect
to the TDMA scheme, applies further syntactical tests to received frames, and checks
the semantic correctness of received frames. Reception-related events for FSP are shown
in Fig. 3.18. In the channel, when a frame is transmitting, the channel changes from
idle to the active state. When the transmission ends, the channel idle delimiter confirms
whether the channel is free. The channel idle recognition point marks the end of the slot.
Then FSP waits for a certain time duration , until the end of the current slot or minislot.
Fig. 3.19 gives an overview of the FSP related state diagram.
When CE starts, the communication element also starts. CHIRP denotes that channel

idle recognition point is detected, which represents the frame has been completely trans-
mitted. The system will wait until the transmission ends, which also means the current
static slot/dynamic slot ends. The receiving process should start from the beginning of
CE to CHIRP. Frame decoding does not affect the receiving process. Therefore, we se-
lect two states of the FSP model: wait for CE start and wait for CHIRP, as shown in
Fig. 3.20
Here the transmission ending time is equal to the slot finishing time, and we put de-
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bus_status==CHIRP &&
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bus_status==CE_start
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go?

receive(),
reset_bus_frame()

check_frame_and_update_vSS()

wait_for_CHIRP

go?

wait_for_CE_start

go?

Figure 3.20: Frame and symbol processing model in UPPAAL

termine it in the MAC model and update the bus state to idle. When MAC starts to
transmit frames, the bus will change from idle to CE start state, and FSP can receive
frames and check whether the ID and configuration are matched with each other. If they
are matched, this frame will be labelled Vss.ValidFrame (valid frame), which is realized by
check frame and update vSS(). When finishing the frame transmission and the bus state
changes to CHIRP, FSP will store the data into the corresponding buffers, and empty the
bus. If this frame is not valid, FSP will return to the initial state and wait for the next
transmission.
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Chapter 4

Model Checking Applications with
FlexRay Model

In last chapter, we have been introducing how to abstract and establish FlexRay model in
UPPAAL. FlexRay model is the core of our framework. In this chapter, we will describe
how to build application model based on FlexRay model, how to connect application
design model to FlexRay model by using interface and how to check communication
systems design model which is composed of FlexRay model and application model. Then,
we also show an example to explain them.

4.1 Model Checking Applications with FlexRayModel

Process

In this section, the process of verifying automotive systems with the FlexRay protocol
is presented. The flow chart is shown in Fig. 4.1. First of all, in accordance with the
FlexRay communication system protocol specification, we abstract it and capture the core
behaviors of the communication controller specified in FlexRay communication protocol
specifications, and build a reusable FlexRay model. This part has been described in the
previous chapter. Then, according to our framework, application model has been set up
based on FlexRay model. Application model models the behavior of tasks in the ECUs,
the main focusing point is the message transmission in the FlexRay model. While we do
not consider the schedulers and just use the simplest model with timing of output and
input. After that, we need connect the application model to FlexRay model, forming the
communication system.
In order to more convenient check communication system with FlexRay, the FlexRay

model also provides parameters and interfaces for communication for the application
model to access. The application model links with the FlexRay model by setting the
configuration. This part only needs to follow these parameters and interfaces to cope with
the FlexRay model as an automotive system design model. There is a clear boundary
between FlexRay model and application model in UPPAAL. In this sense, users can
more simply design the application model, and do not needed to take into account of the
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Figure 4.1: Flow chart of the checking model

specification of the FlexRay communication system protocol.
Finally, we implement the simulations and verifications by writing some queries in

UPPAAL. we may to check properties of the component system design model, such as
deadlock, deadline, response time and feasibility. If one property can not be fulfilled, we
are able to find out bugs and revise the model or configuration again through the analysis
of the trace.

4.2 Interface of FlexRay Model

In order to efficiently perform communication systems checking, FlexRay model provides
an interface to connect application design model, which enables the ECUs of this applica-
tion system satisfy the FlexRay communication protocols. The interface can be divided
into two parts. The first one is the parameter settings of the communication cycle. The
settings are given in the FlexRay communication protocol specification [18] and we se-
lect the relevant parameters relative to the FlexRay model. Those parameters mainly
include the communication cycling time, the lengths of static and dynamic segments and
the capacities of static slots and minislots, as described in Tab. 4.1. The second one is
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configuration of application design model.

• We need define how many messages need to transmit in the communication cluster.
• The message are allocated in which slots of communication cycle sending.
typedef int [1, cSlotIDMax ] t msg slot ;
Type define for messages in nodes, [1, cSlotIDMax ], denoting that the slot ID is
used to identify each message. This means slots are allocated to different messages.
Note, a slot can not be allocated to multiple nodes.

• We define a data struct to describe the CHI buffer, sending buffers and receiving
buffers, which facilitate ECU’s reading and writing to CHI. CHI works as the buffer
storing the sending and receiving data, as well as the data length. The buffer ID and
slot ID are corresponded to the message ID, therefore, message can only be stored
into buffers and sent in slots, both with the same ID. The structure is defined as
follows:
typedef struct
{

int [0,MaxDataValue] data;
int [0,pPayloadLengthDynMax ] length;

} Buffer;

Buffer CHI Buffer send [cSlotIDMax+1];
Buffer CHI Buffer receive[cSlotIDMax+1];

4.3 An Example of Communication System with FlexRay

Model

4.3.1 Application Model

Automotive electronic control systems are comprised of hardware and software parts.
The hardware includes electronic control unit, relevant interfaces, sensors, executive bod-
ies and display mechanisms. Nodes can use different hardware units according to the
requirements. The software is stored in ECU. The control function of ECU changes de-
pending on the software importing, and the function of output model depend on the
intended tasks. The software dominates the electronic control system to perform obser-
vation and control functions. Those electronic devices are connected by the network and
nodes complete certain functions in a cooperative way.
FlexRay communication system is an automotive system based on the FlexRay com-

munication protocols. When developing systems, the functional correctness of the ECU
unit should be guaranteed, and the communication between nodes also has to meet the
need of the FlaxRay protocols. More importantly, the whole system should be effectively
implemented.
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Name Description Description
cStaticSlotIDMax Highest static slot ID number 2-1023

gCycleCounterMax
Maximum cycle counter value
in a given cluster.

7-63

gdActionPointOffset
Number of macroticks the action
point is offset form the beginning
of a static slot

1-63MT

gdDynamicSlotIdlePhase
Duration of the idle phase within
a dynamic slot

0-2 Minislot

gdMinislot Duration of a minislot 2-63MT

gdMinislotActionPoint
Number of macroticks the minislot
action point is offset from the
beginning of a minislot

1-31MT

gdStaticSlot Duration of a static slot 3-664 MT

gMacroPerCycle
Number of macroticks in a
communication cycle

8-16000MT

gNumberOfMinislots
Number of minislots in thedynamic
segment

0-7988

gNumberOfStaticSlots
Number of static slots in the static
segment

2-1023

gPayloadLengthStatic Payload length of a static frame
0-127
two-byte
words

gdCycle Length of the cycle 24us-16000us

gdMacrotick
Duration of the cluster wide
nominal macrotick

1-6us

gdNIT Duration of the Network Idle Time 2-15978MT

pPayloadLengthDynMax
Maximum payload length for
dynamic frames

0-127
two-byte
words

adActionPointDifference

Amount by which the static action
point offset is greater than the
minislot action point offset(zero if
static slot action point is smaller
thanminislot action point)

Table 4.1: Configuration parameters of interface
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Currently, we focus on the correctness of nodes communication, as well as the reacha-
bility and instantaneity. We extract the data of the nodes’ input and output and establish
the connection of nodes, according to the application design. Thus, we do not emphasise
on the ECU operation and scheduling problems. In the ECU of every node, we consider
tasks from the following aspects:

• We classify the task into 3 categories: the periodic, non-periodic and the mixed
task.

• One ECU model can consider more tasks, which can be correlated with each other
or not.

• To every single task, we can set worst case execution time (WCET) and best case
execution time (BCET) in the model, or deadline.

• Two read and write functions are used to realize the input and output data of the
task.

4.3.2 An Example of Communication System

Here, an example will be shown. This communication system has two ECUs, one is sender,
the other one is receiver. The sender is two period tasks which send messages in specified
slot. Each task has a executing time. And the receiver is responsible for receiving mes-
sages when receiving buffer has message. In the case of known the system function, the
first step is setting communication cycle of FlexRay model. For this system, we assume
parameters value as follow:

const int cSlotIDMax = 10;
const int cStaticSlotIDMax = 6;
const int gCycleCounterMax = 6;
const int gNumberOfStaticSlots = 6;
const int gNumberOfMinislots = 32;
const int gdCycle = 650;
const int gdStaticSlot = 5;
const int gdActionPointOffset = 2;
const int adActionPointDifference = 1;
const int gdMinislot = 3;
const int gdMinislotActionPointOffset = 1;
const int gdNIT = 4;
const int gdMacrotick = 5;
const int gdMacroPerCycle = 130;
const int pPayloadLengthDynMax = 200;
const int pPayloadLengthStatic = 200;

The next step is configuration of application design model. This system has only one
message which allocated in the second slot to sending.
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Figure 4.2: (a) The sender model and (b) the receiver model in UPPAAL

const t msg slot msg1 = 2;
const t msg slot msg2 = 7;

The last step is using two function to read and write message in CHI. The functions
are shown :

void write msg to CHI (t msg slot msg, int value, int len)
{

CHI Buffer send [msg ].data = value;
CHI Buffer send [msg ].length = len;

};

void int read msg from CHI (t msg slot msg)
{

return CHI Buffer receive[msg ].data;
};

Finally the application model is build as shown in Fig. 5.4. In the initial state of the
sender, sender output the first message msg1 to buffer of CHI after system start. Then
it will wait for the sending cycle cycle1. The FlexRay model send this message in the
second slot, and the message finally read by the receiver model from CHI. When the cycle
time comes, the second message msg2 will be stored in CHI, and it will be send in the
slot7 of dynamic segment. After that, the sender waits for the second cycle cycle2 and
send msg1 again. And then repeating this process. By this way, a communication system
is set up under the FlexRay model in UPPAAL. After that, we can simulate and verify
some properties of this system.
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Chapter 5

Experiments

In this chapter, we will show three experiments. The first is a testing example which
verifies the validity of the FlexRay model. The second is a simple application to verify
the timing properties. The third one verifies the feasibility of the proposed framework
using a practical automotive system and an adaptive cruise control system.

5.1 A Testing Example

The first test is a simple example, the basic structure of which is shown in Fig. 5.1.
This communication cluster has four ECUs. Specifically, ECU1 and ECU2 send static
messages, while ECU3 and ECU4 send dynamic messages. They are independent. One
communication cycle has 10 slots in total, where 1 to 6 are static slots, and 7 to 10 are
dynamic slots. We send messages with ECU1 using slots 1, 3, 5, ECU2 using slots 2, 4,
6, ECU3 using slots 7, 9 and ECU4 using slots 8, 10, respectively. In addition, all these
nodes send data to a common receiver. Based on the testing case structure, the interface
parameters of the test system are given as follows.

const int cSlotIDMax = 10;
const int cStaticSlotIDMax = 6;
const int gCycleCounterMax = 6;
const int gNumberOfStaticSlots = 6;
const int gNumberOfMinislots = 32;
const int gdCycle = 650;
const int gdStaticSlot = 5;
const int gdActionPointOffset = 2;
const int adActionPointDifference = 1;
const int gdMinislot = 3;
const int gdMinislotActionPointOffset = 1;
const int gdNIT = 4;
const int gdMacrotick = 5;
const int gdMacroPerCycle = 130;
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Figure 5.1: Testing example model in UPPAAL

const int pPayloadLengthDynMax = 200;
const int pPayloadLengthStatic = 200;
const t msg slot msg1 = 1;
const t msg slot msg2 = 2;
const t msg slot msg3 = 3;
const t msg slot msg4 = 4;
const t msg slot msg5 = 5;
const t msg slot msg6 = 6;
const t msg slot msg7 = 7;
const t msg slot msg8 = 8;
const t msg slot msg9 = 9;
const t msg slot msg10 = 10;

The ECU only has tasks for sending messages. These tasks check the sending buffer and
if the allocated buffers are empty, the task will immediately send data to the supplement.
The lengths of the output data of ECU1 and ECU2 are fixed. For ECU3 and ECU4,
the output data lengths are also fixed, however, the values are selectable. This sort of
design is because that the length of dynamic slots is changeable. The receiver only receive
messages once the receiving buffer is not empty. ECUs and the receiver model in UPPAAL
are shown in Fig. 5.1.

5.1.1 Verification

The communication system is verified through queries in UPPAAL.

• Check1: Is the system without a deadlock?
Formula: A[] not deadlock
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CHI_Buffer_send[msg9].length == 0

go?

write_msg_to_CHI(msg9, 59, len)

write_msg_to_CHI(msg7, 57, len)

len: int[18,20]

len: int[18,20]

go?

ECU3

(c)

CHI_Buffer_send[msg8].length == 0

CHI_Buffer_send[msg10].length == 0

go?

write_msg_to_CHI(msg10, 60, len)

write_msg_to_CHI(msg8, 58, len)

len: int[18,20]

len: int[18,20]

go?

ECU4

(d)

CHI_Buffer_receive[vSS.vSlotCounter].length>0

clean_receive_buffer_CHI(vSS.vSlotCounter)
go?

wait_for_receiving

(e)

Figure 5.2: (a) ECU1 (b) ECU2 (c) ECU3 (d) ECU4 (e) Receiver

Fulfilled only if for all possible states in the system it is guaranteed that no dead-
lock status will occur. This shows FlexRay model can continuously send and receive
messages.

• Check2: Is the message received in the allocated slot?
Formula: A[] forall (i:int[1,10]) ((CHI Buffer receive[i].length>0) imply
(vSS.vSlotCounter==i ))

Fulfilled if all messages are received in specified slot. If conditions are satisfied,
when a receiver buffer in CHI has data coming in, the buffer ID and slot ID should
be the same. It also show messages are sent in the allocated slot. The message
sending/receving follows the slot ID ordering.

• Check3: Does only one buffer receive the transmitted message in the same slot?
Formula: A[] forall (i:int[1,10]) forall (j:int[1,10]) (CHI Buffer receive[i].length>0
&& CHI Buffer receive[j].length>0) imply (j==i)

Fulfilled if only one buffer receives the message in the same slot. If two receiving
buffers in CHI have data coming in at the same time, their IDs should be the same.
It means only one node utilizes bus in every moment of the system.
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• Check4: Does ECUs successfully output message?
Formula: E <> forall (i:int[1,10]) (CHI Buffer send[i].length>0)

Fulfilled if FlexRay model can receive messages form ECUs, and ECUs transmitted
message to CHI.

• Check5: Can the message of sending buffers be sent?
Formula: forall (i:int[1,10]) ((CHI Buffer send[i].length>0) imply
(CHI Buffer send[i].length==0))

If this query is satisfied, the FlexRay model can send message from CHI.

• Check6: Is it possible all messages are received by the receiver?
Formula: A <> CHI Buffer receive[msg1].length > 0

Only fulfilled if the msg1 is received eventually by receiver. Similarly, this query can
also verify other messages, such as A <> CHI Buffer receive[msg2].length > 0 and
so on. Because the limitation of UPPAAL, messages need to be verified respectively.

5.1.2 Evaluation

Firstly, Check1 confirms that this communication system is not deadlock, and the sys-
tem can normally operate. Then, Check2 and Check3 are satisfied in this experiment,
which means that the communication capabilities are in accord with TDMA and FT-
DMA schemes of the FlexRay protocol. In addition, the FlexRay model achieves the
basic communication requirements. Messages are normally transmitted in static and dy-
namic segment. Moreover, the FlexRay model sends and stores messages in correct slots,
where the configuration of interface is effective for ECUs. Thirdly, Check4, Check5 and
Check6 verify whether the proposed interface is viable to connect ECUs and FlexRay
model. Finally, ECU can be successfully realized sending and receiving messages with
FlexRay model.
The main purpose of this experiment is to verify the validity and usability of the FlexRay

model and its interface. For the testing example, Check1 to Check6 are fulfilled. FlexRay
model can handle sending and receiving messages between nodes in the communication
system according to FlexRay communication protocols. However, the timing properties of
the FlexRay system is very important with verification requirements. In the next section,
the example of an practical system will be discussed.

5.2 Response Time Checking with FlexRay Model

In this experiment, the response time of a simple application model is checked. There is a
sender and a receiver in this model, as shown in Fig. 5.3. The sender works cyclically, and
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Figure 5.3: The structure of a simple application model

it sends a testing message right after the system starts. When a cyclic time is reached,
the sender will check whether this message has been sent out. If successful transmission is
confirmed, then the next message will be sent. Otherwise, the sender will have to wait for
the next cycle until the current message is confirmed to be successfully transmitted. The
receiver receives data from the CHI buffer and also gives the responses. The parameters
of the communication cycle of this system are set as follows:

const int cSlotIDMax = 6;
const int cStaticSlotIDMax = 3;
const int gCycleCounterMax = 6;
const int gNumberOfStaticSlots = 3;
const int gNumberOfMinislots = 30;
const int gdCycle = 910;
const int gdStaticSlot = 10;
const int gdActionPointOffset = 1;
const int adActionPointDifference = 0;
const int gdMinislot = 5;
const int gdMinislotActionPointOffset = 2;
const int gdNIT = 2;
const int gdMacrotick = 5;
const int gdMacroPerCycle = 182;
const int pPayloadLengthDynMax = 200;
const int pPayloadLengthStatic = 200;
const t msg slot msg1 = 1;

The data transmitted from the sender will be allocated to the first slot of the static
segment. The operation cycle of sender is set at 100 macroticks (MT). The sender and
receiver model are shown in Fig. 5.4.
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Figure 5.4: (a) The sender model and (b) the receiver model in UPPAAL
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Figure 5.5: Observer model

5.2.1 Verification

To verify the system response time, we build a observer model as shown in Fig. 5.5,
to check the transmission state. According to the state change, the best case response
time (BCRT) and the worst case response time (WCRT) can be calculated. When the
message is sent to the send buffer from the sender, the observer starts timing. The data
are confirmed to be sent out when the send buffer is empty. The receiver will inform the
observer after receiving the data, and then the observer will mark that this message has
been successfully transmitted. One system response has finished so far, and the response
time equals to the value of x in the received state. In the buffer state, y is the waiting
time of this message. While in the sent state, y is the time required for the transmission
of this message.
The WCRT and BCRT are checked by using a group of queries as shown in Tab. 5.2.1.

Property Result
Check1: E<> (observer.received && observer.x > 182) No
Check2: E<> (observer.received && observer.x == 182) Yes
Check3: A[] (observer.received imply observer.x <= 182) Yes
Check4: A[] (observer.received imply observer.x <= 181) No
Check5: E<> (observer.received && observer.x < 6) No
Check6: E<> (observer.received && observer.x == 6) Yes
Check7: A[] (observer.received imply observer.x >= 6) Yes
Check8: A[] (observer.received imply observer.x >= 7) No

Table 5.1: Results of the experiments
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Check1 to Check4 indicate that the time from buffered to the received of observer is
182 MT. Check5 to Check8 verify that the BCRT is 6 MT. In addition, Check9 (A[]
(observer.received imply observer.y == 5)) can be satisfied. It means sending of msg1
always costs 5 MT, which is the message length.

5.2.2 Evaluation

From this example, the timing property of the system is tested by using observer model.
In the case when the parameters are fixed, a group of BCRT and WCRT can be obtained.
According to our experience, if the configuration changes, for instance the message is
allocated to other slot to transmit, different BCRT will be got. The message sent in the
slot with smaller ID will has the fastest response. On the other hand, the settings of the
application also affect the testing result, such as the operation cycle. Hence, both the
application and FlexRay should be considered for the timing property of the system.

5.3 Adaptive Cruise Control Subsystem

Due to the fact that the cruise control subsystems can make driving more comfortable and
safer, much attention has been drawn among researchers and auto makers. One of them
which has been widely studied and accepted is the adaptive cruise control system (ACC)
and it can keep the distance between the self car and the one in front, by controlling
the car’s accelerated velocity automatically, in order to improve the active safety of the
vehicles. Adaptive cruise control is an optional cruise control system appearing on some
more luxury vehicles. The BMW E90 new 3 series have been equipped with a driving
assistant system (ACC), provided by Bosch, Germany.
ACC derives from the conventional cruise control system, and it mainly comprised

of ranging sensor, ECU and actuator. The ranging sensor is basically a radar, which
measures the relative distance, velocity and acceleration of the self car and the one in
front. The ECU calculates and controls the speed and acceleration to set for keeping
the front distance of the car. ECU also sends control commands to the relevant executive
bodies. The actuator consists of the actuator and the brake actuator, which aim to adjust
the acceleration of the vehicles as required. The ECU diagram with ACC being using in
FlexRay bus is shown in Fig. 5.6.
ECU1 periodically receives information data from two radar sensors. The information

data coming from each radar is processed by an object detection task operating on ECU1.
The processed data are transmitted in the bus to a data fusion task operating on ECU2,
as well as object selection and adaptive cruise control tasks. Then the data stream is sent
via the bus again to ECU3 running on the other two tasks and the final output is sent to
an actuator, over the same bus. All the information data are mapped onto the dynamic
segment of the FlexRay bus.
Tab. 5.3 provides the relevant parameters value of the system [7]. The length of mes-

sages equals to the number of minislots. This is WCET of each task. Then we need to
transform millisecond to macrotick or minislot. According to this paper, we know that
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Figure 5.6: Adaptive cruise control system

Bus ECUs
Message ♯Minislot Tasks WCET
msg1 64 Data Fusion 19.7 ms
msg2 64 Object Selection 1 ms
msg3 15 Adaptive Cruise Control 4.3 ms
msg4 40 Arbitration 17.6 ms

Actuator control 9 ms
Object detection 12.5 ms

Table 5.2: The relevant parameters value of the adaptive cruise system

a communication cycle is 10 ms and DYN segment is 8 ms, consisting of 72 minislots.
Therefore, we can compute a minislot and macrotick duration, which equals to the num-
ber of milliseconds. In UPPAAL, the time unit is macrotick. However, these parameter
values are very large and moreover they are not integers. In order to shorten the time
and simplify the conditions of checking, we proportionally reduce the numerical values.
Due to that all messages in this system are sent in dynamic segment, we allocate slots

for ECU, which is shown in Fig. 5.7. ECU1 sends m1 and m2 to ECU2 in slot3 and slot4,
respectively. ECU2 send m3 to ECU3 in slot5 and ECU3 send m4 to actuator in slot6.
According to the structure of ACC and the relevant parameters, the interface between

FlexRay model and ECU are set as follows:

const int cSlotIDMax = 5;
const int cStaticSlotIDMax=2;
const int gCycleCounterMax=5;
const int gNumberOfStaticSlots = 2;
const int gNumberOfMinislots = 36;
const int gdCycle= 2500;
const int gdStaticSlot=20;
const int gdActionPointOffset=2;

56



1 2 3 4 5 6 

ECU1 ECU3 

ECU2 Actuator 

Output  data flow 

Input  data flow 

Communication 

Cycle 

 

Figure 5.7: The communication cycle of adaptive control system
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x=0 write_msg_to_CHI(msg2, m2_data, m2_length)
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x=0

wait_for_sensor1

task2_executetask1_execute

intial

x== sensor_cycle

x>=BCET12

wait_for_sensor2
x>=BCET11

x== sensor_cycle

Figure 5.8: The ECU1 model of ACC

const int gdMinislot=10;
const int gdMinislotActionPointOffset=2;
const int adActionPointDifference=0;
const int gdNIT = 2;
const int gdMacrotick =5;
const int gdMacroPerCycle=410;
const int pPayloadLengthDynMax =200;
const int pPayloadLengthStatic =200;
const t msg slot msg1 = 2;
const t msg slot msg2 = 3;
const t msg slot msg3 = 4;
const t msg slot msg4 = 5;

5.3.1 Verification

For the verification of the ACC system, the following verification queries were applied.

• Check1: Is the system without a deadlock?
Formula: A[] not deadlock.
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Figure 5.9: The ECU2 model of ACC
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CHI_Buffer_receive[msg3].length>0
initial

go?

Figure 5.10: The ECU3 model of ACC

Fulfilled only if for all possible states in the system it is guaranteed that no deadlock
status will occur. This shows whether the system is valid .

• Check2: Do sensors send the message can get a response?
Formula: A <> CHI Buffer receive[msg4].length>0

This query checks the basic requirements of the system. Eventually, the actuator can
receive a message for adjustment of motor, which check the reachability of messages in
the system.

5.3.2 Evaluation

This experiment mainly verifies the feasibility and reachability. Check1 is satisfied. It
shows that FlexRay model can be used to determine the practical application of auto-
motive control systems, although this model has certain limitations. When the node is
excessive or the variable is very complex, checking query will be a long time as well as
memory overflow.
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Check2 verifies that the ACC system can respond eventually. The actuator can receive
messages and responses. In order to guarantee the reachability of messages in the design
model, we need to adjust the configuration of the communication cycle and the design of
ECUs. In the process of adjusting, we know that this property is not satisfied, when the
number of minislots is less than or equal to 20. This fully shows the flexray flexibility
and real-time. In the dynamic segment, the number of minislots is essential in the config-
uration. If the message lengths are all very large, the messages with smaller ID number
will not be sent. This problem can be solved by increasing the length of the dynamic
segment. The experience is useful for determining the minimum number of minislots for
an application. On the contrary, if the data lengths in static segment are mostly small,
we should reduce the static slot length to save the bandwidth.
Although we can easily obtain the message response time in the previous example,

verification would consume much longer time for ACC system, as well as more RAM
for a complicated communication system. Additionally, there are many ECUs within one
system having different characteristics, respectively, therefore it is difficult to analyze their
temporal properties. Moreover, the state-space explosion problem has also be considered.
Hence, there is a limit of system scale in the FlexRay model, and one easy solution is
to divide the whole system into several parts and perform model checking separately.
However, this approach can not reflect the communication flexibility of ECUs controlled
by the FlexRay bus protocols. Hence, in the future work, the checking framework has to
be modified and improved based ont the FlexRay model.
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Chapter 6

Conclusion

6.1 Summary

In this work, an UPPAAL framework to test and verify FlexRay communication systems
has been proposed. The main features of the proposed approach are summarized as
follows:
The framework provides an easy-to-use method in UPPAAL for model checking designs

of the communication system using FlexRay bus. The FlexRay model is the core of the
framework, and it does not need to change to verify different systems. We only need to set
up of the parameters of the interface, and the communication system can be connected
to the FlexRay model.
We showed two examples to explain how the framework can be used. Through the

experiments, the reachability and the feasibility can be checked. Also, we checked time
related properties, such as the response time of message and the response time of com-
munication system. During the experiment, we showed how to verify the system, how to
modify the configuration of interface to optimize the system and ECUs, and ultimately
to achieve the best response time.

6.2 Future Work

At present, our FlexRay model is not perfect. With regard to the FlexRay communication
protocol itself, it also has many features that have not yet been implemented, such as the
synchronization and start up processes. FlexRay communication system has a lot of the
time parameters. When we check a certain timing properties of application, the process
of adjusting time parameters has many changes. We still need experiments to study the
influence of the parameters of the system. In addition, the verification of the large-scaled
and complex system will cost time and the response time is hard to get because the ECUs
and transmitting message is complex. Therefore, it is better to further simplify the model
in order to save the verification time.
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