
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
Collaborative Editing Application in Mobile Ad-

hoc Networks

Author(s) Le, Nam Jr

Citation

Issue Date 2012-09

Type Thesis or Dissertation

Text version author

URL http://hdl.handle.net/10119/10764

Rights

Description
Supervisor:Associate Professor Xavier Defago, 情

報科学研究科, 修士

Collaborative Editing Application in Mobile Ad-hoc
Networks

By Le, Nam Nguyen Hoai

A thesis submitted to
School of Information Science,

Japan Advanced Institute of Science and Technology,

in partial fulfillment of the requirements
for the degree of

Master of Information Science
Graduate Program in Information Science

Written under the direction of
Associate Professor Xavier Défago

September, 2012

Collaborative Editing Application in Mobile Ad-hoc
Networks

By Le, Nam Nguyen Hoai (1010227)

A thesis submitted to
School of Information Science,

Japan Advanced Institute of Science and Technology,

in partial fulfillment of the requirements
for the degree of

Master of Information Science
Graduate Program in Information Science

Written under the direction of
Associate Professor Xavier Défago

and approved by
Associate Professor Xavier Défago

Professor Mizuhito Ogawa
Professor Mikifumi Shikida

August, 2012 (Submitted)

Copyright c© 2012 by Le, Nam Nguyen Hoai

Acknowledgements

I would like to thank Associate Professor Xavier Defago, my supervisor. He introduced
me into the world of distributed system and provided great advice during my research.
Besides the major knowledge, I have learned many skills from his attitude in the research
and teaching.
I was very pleasant and honored to have Dr. Francois Bonnet, Mr. Daiki Higashihara,

Mr. Hiroyuki Hiranuma, Mr. Nguyen Dang Thanh, Mr. Nguyen Xuan Huy as my
colleagues. They supported me a lot not only in my study but also in my life in JAIST.
I would like to thank my professors and friends in FIVE-JAIST Program.
Last but not least, I would like to say many thanks to my family. They have been

always beside me and encouraged me.

Contents

1 Introduction 5
1.1 Collaborative Editing Application . 5
1.2 Centralized vs. Decentralized Architecture 5

1.2.1 Decentralized Collaborative Editing 6
1.2.2 Commutative Replicated Data Type and TreeDoc 7

1.3 Contributions . 7
1.4 Thesis Organization . 7

2 Background 8
2.1 System Model . 8

2.1.1 Causality . 8
2.1.2 State Vector . 9

2.2 Document Consistency Properties . 9
2.3 Operational Transformation . 11

3 Document Consistency with TreeDoc 18
3.1 TreeDoc . 18

3.1.1 Local Operation . 19
3.1.2 Remote Operation . 21
3.1.3 Commutative Replicated Data Type 21
3.1.4 Rebalancing . 22

3.2 Causality Preservation with State Vector 24

4 Implementation 26
4.1 System Architecture . 26
4.2 Class Diagram . 27
4.3 Sequence Diagram . 30

5 Evaluation 32
5.1 Experiment Setting . 33

5.1.1 Operation Time . 35
5.1.2 Rebalancing Time . 37
5.1.3 Operation Latency . 38
5.1.4 Time Usage . 39

1

6 Fault Tolerance 41
6.1 Disconnection . 41
6.2 Related Works . 41
6.3 Tolerating Missing Messages . 42

6.3.1 Detection in the Normal Case . 42
6.3.2 Detection in the Special Case: Missing Joining or Leaving Messages 43
6.3.3 Fault Case 1: Missing All Messages from a User 45
6.3.4 Fault Case 2: Silent User . 47

6.4 Evaluation . 47

7 Application 50
7.1 Editing Function . 50
7.2 Collaboration Function . 56

8 Conclusion 61
8.1 Summary . 61
8.2 Open Questions . 62

Bibliography 63

A System Architecture 66

B Class Diagram 67

C TreeDoc Source Code 68

2

List of Figures

2.1 Causality Presevation Property . 9
2.2 No Causality Presevation Property . 10
2.3 No Intention Presevation Property . 11
2.4 Operational Transformation . 12
2.5 Inconsistency with Operational Transformation of DOPT Algorithm 14
2.6 SOCT2 solves the Inconsistent Case in Operational Transformation of DOPT

Algorithm . 14
2.7 Inconsistency with SOCT2 . 16
2.8 SOCT3 solves the Inconsistent Case in SOCT2 16

3.1 TreeDoc . 18
3.2 TreeDoc after inserting X at right position of character D 19
3.3 TreeDoc after inserting G at right position of character F 19
3.4 TreeDoc after deleting B . 20
3.5 Rebalancing TreeDoc . 23

4.1 System Architecture . 26
4.2 Class Diagram . 29
4.3 Sequence Diagram for the process of Local Operation 30
4.4 Sequence Diagram for the process of Remote Operation 31

5.1 Best Case of TreeDoc: the tree is balanced, the depth is logarithmic 33
5.2 Worst Case of TreeDoc: the tree degenerates as a list with every new

character added to the right, the depth is linear. 33
5.3 Experimental Environment . 34
5.4 The Empty State in the Begining of Experiment 34
5.5 Consistent State in the End of Experiment 35
5.6 Operation Time . 35
5.7 The number of Concurrent Opertions vs. Operation Time without Rebal-

ancing . 36
5.8 Rebalancing Time . 37
5.9 The Worst Case of TreeDoc vs. Rebalancing 37
5.10 Operation Time vs. The number of Concurrent Opertions with Rebalancing 38
5.11 Operation Latency . 38
5.12 The Worst Case of TreeDoc vs. Operation Latency 39

3

5.13 Completion Time . 40
5.14 Time Usage of a User during the Collaboration Session 40

6.1 Detection in the Normal Case . 43
6.2 Detection in the Special Case: Missing Joining Messages 44
6.3 Detection in the Special Case: Missing Leaving Messages 44
6.4 Fault Case when Missing All Messages from a User 46
6.5 Solution for Fault Case 1 . 46
6.6 The number of Packets vs. Loss Probability 48
6.7 Detection Time vs. Loss Probability . 49
6.8 Completion Time vs. Loss Probability . 49

7.1 Menu File . 50
7.2 New File (1. “New” in Menu File; 2. “No” in Dialog of Save File) 51
7.3 Open File (1. “Open” in Menu File; 2. Select file “Demo” in File Browser) 51
7.4 Save as (1. “SaveAs” in Menu File; 2. Select Folder in File Browser; 3.

Save in Dialog of Save File) . 52
7.5 Menu Font . 53
7.6 Font Style (1. Select text; 2. Select font style) 53
7.7 Font Type (1. Select text; 2. Select font type) 54
7.8 Text Color (1. Select text; 2. Select text color) 54
7.9 Background Color (1. Select text; 2. Select background color) 55
7.10 Copy, Cut, Paste (1. Cut; 2. Paste) . 55
7.11 Users take effect of a collaboration configuration 56
7.12 A initial state of users in the collaboration 57
7.13 A consistent state of users in the collaboration 58
7.14 Join collaboration session . 59
7.15 Accept joining request . 59
7.16 The synchronization of joining user and current users in the collaboration

session . 60

A.1 System Architecture . 66

B.1 Class Diagram . 67

4

Chapter 1

Introduction

1.1 Collaborative Editing Application

Collaborative editing application is a major part of Computer Supported Collaborative
Work (CSCW). It enables a group of people to work together on a shared document at
the same time by using their devices. Concretely, users can edit a document concurrently
and watch changes from each other. Using a collaborative editing application, a group of
people can create a final document reflecting group contribution.
Collaborative editing application is best known as a tool for developing software, al-

lowing programmers to write code together. It is also used for members in a meeting to
take notes on topics, create and revise a document. In education, collaborative editing
application is a demonstration tool.
With the advance of mobile technology, people can use mobile devices as tools for

collaborating and working anytime, anywhere. Mobile device gradually becomes more
powerful and connected over wireless network. That allows developing applications that
enable users, using their own mobile devices, to collaboratively work on the same doc-
ument without the presence of a fixed network infrastructure. Therefore, collaborative
editing application in mobile ad-hoc networks (MANETs) attracts a lot of interest.

1.2 Centralized vs. Decentralized Architecture

In a centralized architecture, collaborative editing application has to maintain a central
server. All updates of users are sent to the server and, after processing, the server sends
the updated document to all clients. The central server keeps the shared document and
manages all aspects of the collaboration. Using a centralized architecture, collaborative
editing application is easier to handle concurrent updates. Some collaborative editing
applications use this architecture such as Rendezvous [1], Dolphin [2], Jupiter [3]. How-
ever, it has a number of drawbacks in the context of MANETs. Firstly, the collaboration
completely depends on a central server; if the server fails, the collaboration stops imme-
diately. In MANETs, the presence of the server is not always guaranteed. Secondly, in
MANETs, user is frequently disconnected from the server because of the mobility, so the

5

collaboration is less responsive. Consequently, a centralized architecture is less suitable
for collaborative editing application in MANETs.
Conversely, in a decentralized architecture, every user carries a copy of the shared

document. Each user makes any changes on local document, and after that, sends directly
those changes to all other users. Using this architecture, every user is responsible for
managing the collaboration in the absence of a central server. Compared to centralized
architectures, decentralized architectures have some interesting advantages. Firstly, a
central server is not required in a decentralized architecture, so it avoids single point
of failure. Secondly, when a user is disconnected from other users, it is still able to
work on its local document. When reconnecting, disconnected user can synchronize with
other users to update its local document. Thirdly, in a decentralized architecture, all
users can concurrently make changes on their local documents anytime regardless of the
status of the server and the communication between them and the server. Clearly, that
makes decentralized architecture more attentive for collaborative editing application in
MANETs. Some examples of group editors using this architecture are Colab [4], GROVE
(Group Outline Viewing Editor) [5], REDUCE (Real-time Distributed Unconstrained
Cooperating Editing) [6, 7], GroupDesign [8], GRACE (Graphics Collaborative Editing)
[9], and Draw together [10].

1.2.1 Decentralized Collaborative Editing

Besides greater flexibility and potential, a collaborative editing application in a decen-
tralized architecture has the following major challenges:

• Document consistency: Every user in the collaboration session can update its copy
whenever it wants, which promotes concurrency in the collaboration. However, in
that context, it is difficult to keep all copies of the shared document to be similar
and correctly reflect the intention of every user. Currently, most of collaborative
editing applications are based on Operational Transformation approach to solve this
problem. However, in MANETs, high latency causes a large number of concurrent
operations while according to this approach, every concurrent operation needs pro-
cessing to be correctly executed, which affects application performance, especially
since the processing power of mobile device is still lower than current PC.

• Fault tolerance: In MANETs, mobile device frequently gets disconnected from other
devices because of device mobility, fluctuating bandwidth or device failure. Conse-
quently, in the collaboration session, when a user is disconnected, it cannot broad-
cast and receive messages consisting of joining, leaving, document operation to/from
users that it is disconnected from. That affects the process of the joining, leaving,
editing in the collaboration session. In the context of MANETs, every user is re-
sponsible for tolerating disconnection event without the presence of a central server.

6

1.2.2 Commutative Replicated Data Type and TreeDoc

Commutative replicated data type (CRDT) [26] is a new approach that supports
eventually consistent information. This approach focuses on designing data struc-
tures such that operations can commute with each other. Therefore, consistency is
archived without concurrent control.

TreeDoc [19] is a CRDT in which information is structured by a binary tree. With
TreeDoc, the identifier of each node is its path on the tree. Furthermore, during the
process of updating the tree, TreeDoc ensures that the path of each node is unique
and not changed, so the different orders of the execution of concurrent operations
lead the same state.

1.3 Contributions

The main contribution of our work is the development of an Android-based application
for decentralized collaborative editing based on the concept of TreeDoc. We have adapted
TreeDoc to our need in document consistency management. Our application minimizes
overhead of TreeDoc by developing rebalancing. In the evaluation, we carry out the the
experiment on real environment with Android mobile devices to compare the performance
of TreeDoc with Operational Transformation, an approach used by most of collaborative
editing applications, and consider rebalancing with application performance in order to
determine the most suitable value of rebalancing period.
We provide a solution for fault tolerance in our application in order for a user who went

too far outside of the transmission range of other devices can get missing messages when
it has reconnected. By experiment, we investigate the effect of message loss probability
to application performance.

1.4 Thesis Organization

This thesis is organized in the chapters as follow:

• Chapter 2 discusses the properties which the system must satisfy to ensure document
consistency and Operation Transformation approach.

• In chapter 3, we present document consistency management in our application with
the concept of TreeDoc.

• Chapter 4 is the implementation of our application.

• The performance of our application is analyzed in Chapter 5.

• Chapter 7 demonstrates the functions of our application.

• Chapter 8 provides the conclusion of this thesis and the future work.

7

Chapter 2

Background

2.1 System Model

The system consists of a collection of users, each of which maintains a copy of the shared
document containing a set of characters. User can make any operations on its local
document whenever it wants. In order to enable all users to know the last state of the
shared document, any operations generated by any users have to be broadcast to all other
users. After receiving the remote operation, each user replays the remote operation on its
own copy such that all copies of the shared document are consistent.
Operations on the shared document are of two types:

• Insert(posID ,newchar) inserts a character newchar at position posID into the doc-
ument

• Delete(posID) deletes the character located by posID within the document

2.1.1 Causality

For any pair of operations, opi and opj generated by user Si and Sj respectively, opi and opj
can be either causally related or concurrent in the sense of the Lamport’s happened-before
relation [11].

Definition 2.1. Causal precedence (→)
opi causally precedes opj (opi → opj) if:

• opi and opj are generated by the same user (Si = Sj) and opj is generated after opi.

• opi and opj are generated by two different users (Si 6= Sj) and Sj executed opi before
generating opj.

• There exists an operation opk, such that opi → opk and opk → opj.

Definition 2.2. Concurrence (||)
opi and opj are said to be concurrent (opi || opj) if opi 9 opj and opj 9 opi

8

2.1.2 State Vector

State vector [13] is a technique for capturing causal precedence among all operations in a
system. It is a modification to the clock vector introduced by Mattern [18].

Definition 2.3. State vector
Let us define the set of cooperative users in a system S1, S2,..., SN . Each user Si in the

system maintains a state vector which is a vector with N components Vi = (Vi[1], Vi[2],...,
Vi[N]) in which Vi[j] holds the number of operations generated by user Sj that has been
executed by user Si. In the beginning, Vi[j] = 0 with j=(1, ..., N). After Si executed an
operation generated by user Sj, Vi[j] = Vi[j] + 1.

Definition 2.4. Causal precedence with state vector
opi generated by Si causally precedes opj generated by Sj (opi → opj) if Vopi[i] < Vopj [i]

where Vopi is the state vector of Si when it generates opi, Vopj is the state vector of Sj

when it generates opj

2.2 Document Consistency Properties

According to [7], a collaborative editing system is said to be consistent if it respects the
following properties:

Causality preservation property

If opi causally precedes opj (opi → opj), opi is executed before opj on all copies of the
shared document. In other words, when a remote operation arrives at a user, it is executed
only when all operations causally preceding it have been executed at that user. Figure
2.1 shows that when operations are executed in the same causal order, all copies are
consistent, while Figure 2.2 shows otherwise.

ABCD

ABECD

ABCD

op1=insert(3,E)

User 1 User 2
ABCD

User 3

op1=insert(3,E) op1=insert(3,E)

op2=delete(2)

ABECD ABECD

AECDAECD AECD

op2=delete(2) op2=delete(2)

Figure 2.1: Causality Presevation Property

9

ABCD

ABECD

ABCD

op1=insert(3,E)

User 1 User 2
ABCD

User 3

op1=insert(3,E)

op2=delete(2)

AECD ACED

ABECD

AECD

op1=insert(3,E)

op2=delete(2)

ACD
op2=delete(2)

Figure 2.2: No Causality Presevation Property

Intention preservation property

The effect of an operation at all users must be the same as the intention of the user
generated that operation. Operation intention for textual document is:

• Delete: If a character is deleted on a copy, it must be deleted on all other copies.

• Insert: A character inserted on a copy must be inserted on all other copies such
that the order relation between it and other document characters is the same on all
copies.

The example in Figure 2.3a presents the case in which the intention of a delete operation
is not preserved. In this example, user 1 and user 2 generate two concurrent operations
op1 and op2 on the same object “ABCD”. User 1 generates op1 = insert(2,‘E’) with the
intention of inserting ‘E’ between ‘A’ and ‘B’, and user 2 generates op2 = delete(3) with
the intention of deleting ‘C’. However, when op2 is executed at user 1, deleted character
is ‘B’, which is not the intention of op2. That causes inconsistency.
The example in Figure 2.3b presents the case in which the intention of a insert operation

is not preserved. User 1 generates op1 = insert(4,‘F’) with the intention of inserting ‘F’
between ‘C’ and ‘D’, and concurrently, user 2 generates op2 = insert(2, ‘E’) with the
intention of inserting ‘E’ between ‘A’ and ‘B’. However, when op1 is executed at user
2, ‘F’ is inserted between ‘B’ and ‘C’, which is not the intention of op1. That causes
inconsistency.

10

ABCD

AEBCD

AECD

ABCD

AEBD

op1=insert(2,E) op2=delete(3)

ABD

op2=delete(3) op1=insert(2,E)

User 1 User 2

ABCD

ABCFD

AEBCFD

ABCD

AEBFCD

 a. No preservation

of delete operation intention

 b. No preservation

of insert operation intention

op2=insert(2,E)op1=insert(4,F)

AEBCD

op2=insert(2,E) op1=insert(4,F)

User 1 User 2

Figure 2.3: No Intention Presevation Property

Convergence property

After executing the same collection of operations, all users reach the same state. That is
eventual consistency [12].

2.3 Operational Transformation

Operational Transformation introduced by Ellis and Gibbs [13] with the DOPT algorithm
is well established for concurrency control in group editing. Currently, many products use
this approach such as Gobby, SubEthaEdit, ACE and most recently Google Wave. This
approach manages the document by a sequential array of characters and uses the index
of the character in the array for its posID . Using this approach, the local operation is
executed immediately on local copy to ensure responsiveness, and then it is broadcast to
all other users. When a user receives a remote operation, it is transformed against all of
its concurrent operations in the history by forward transformation procedure before it is
executed to preserve its intention.
Consider the example in Figure 2.4, to preserve the intention, op2 in the example shown

in Figure 2.3a should be transformed forward against op1 to become opop1
2

= delete(4)
because after user 1 executes op1, ‘C’ is in position 4 (Figure 2.4a), and op1 in the
example shown in Figure 2.3b should be transformed forward against op2 to become
opop2

1
= insert(5,‘F’) because after user 2 executes op2, the position between ‘C’ and ‘D’

is position 5 (Figure 2.4b)

11

ABCD

AEBCD

AEBD

ABCD

AEBD

op1=insert(2,E) op2=delete(3)

ABD

op2
op1 =delete(4) op1=insert(2,E)

ABCD

ABCFD

AEBCFD

ABCD

AEBCFD

a. Preservation of delete operation intention b. Preservation of insert operation intention

op1=insert(4,F) op2=insert(2,E)

AEBCD

op1
op2 =insert(5,F)op2=insert(2,E)

User 1 User 2 User 1 User 2

Figure 2.4: Operational Transformation

Specification 1 presents the forward transformation procedure.

Specification 1 Forward Transformation
Forward transformation of op1 = delete(posID 1) against op2 = delete(posID 2).

1: procedure fwtransform(op1, op2)
2: if posID1 > posID2 then
3: op1 = delete(posID 1 − 1);
4: end if
5: if posID1 < posID2 then
6: op1 = delete(posID 1);
7: end if
8: if posID1 = posID2 then
9: op1 = null;
10: end if
11: end procedure

Forward transformation of op1 = delete(posID 1) against op2 = insert(posID2, newchar2).
12: procedure fwtransform(op1, op2)
13: if posID1 ≥ posID2 then
14: op1 = delete(posID 1 + 1);
15: else
16: op1 = delete(posID 1);
17: end if
18: end procedure

12

Forward transformation of op1 = insert(posID1, newchar1) generated by Sop1 against
op2 = insert(posID2, newchar2) generated by Sop2 .

19: procedure fwtransform(op1, op2)
20: if posID1 > posID2 then
21: op1 = insert(posID1 + 1, newchar1);
22: end if
23: if posID1 < posID2 then
24: op1 = insert(posID1, newchar1);
25: end if
26: if posID1 = posID2 then
27: if newchar1 = newchar2 then
28: op1 = null;
29: else
30: if Sop1 > Sop2 then
31: op1 = insert(posID1, newchar1);
32: else
33: op1 = insert(posID1 + 1, newchar1);
34: end if
35: end if
36: end if
37: end procedure

Forward transformation of op1 = insert(posID1, newchar1) against op2 = delete(posID 2)
38: procedure fwtransform(op1, op2)
39: if posID1 > posID2 then
40: op1 = insert(posID1 − 1, newchar1);
41: else
42: op1 = insert(posID1, newchar1);
43: end if
44: end procedure

However, Ressel et al. in [14] showed that DOPT can not ensure document consistency
in all cases. Concretely, inconsistent states happen when current operations are generated
on different states. As depicted in Figure 2.5, user 1 generates op1, op3 and user 2
generates op2. When user 2 receives op1, it transforms op1 against op2 because op1||op2.
Similarly, when user 2 receives op3, it transforms op3 against op2 because op3||op2 and when
user 1 receives op2, it transforms op2 against op1 and op3 because op2||op1 and op2||op3.
However, in this case, two users are inconsistent after executing op1, op2, and op3 because
transforming op3 against op2 at user 2 can not preserve the intention of op3. That is
because op1 and op2 are concurrent and generated on the same state, while although op3
is concurrent to op2, they are generated on the different states. That is a typical case
in the sense of partial concurrency [23] when an operation is concurrent to a sequence of
operations.

13

ABCD

ABECD

ABEFD

ABCD

ABED

op1=insert(3,E) op2=delete(3)

ABD

op2
op1.op3=delete(5)

op1
op2=insert(3,E)

ABEFCD

op3=insert(4,F)

ABFED

op3
op2=insert(3,F)

User 1 User 2

Figure 2.5: Inconsistency with Operational Transformation of DOPT Algorithm

This problem is solved by SOCT2 [15]. Concretely, when a remote operation is executed
at a user, SOCT2 uses backward transformation technique to shift all of its preceding
operations backward to the beginning of the history and all of its concurrent operations to
the end of the history. After separating history, the remote operation will be transformed
forward against the set of its concurrent operations. Figure 2.6 presents how SOCT2
solves the inconsistent case in Figure 2.5.

ABCD

ABECD

ABEFD

ABCD

ABED

op1=insert(3,E) op2=delete(3)

ABD

op2
op1.op3=delete(5)

op1
op2=insert(3,E)

ABEFCD

op3=insert(4,F)

ABFED

op3
op2=insert(3,F)

User 1 User 2

ABCD

ABED

op1=insert(3,E)

ABECD

op2
op1=delete(4)

ABEFD

op3
op2

op1
=insert(4,F)

User 2 with history separation

 when executing op3

History Separation

Figure 2.6: SOCT2 solves the Inconsistent Case in Operational Transformation of DOPT
Algorithm

Specification 2 presents the backward transformation procedure.

14

Specification 2 Backward Transformation
Backward transformation of op1 = delete(posID 1) against op2 = delete(posID 2).

1: procedure bwtransform(op1, op2)
2: if posID1 ≥ posID2 then
3: op1 = delete(posID 1 + 1);
4: else
5: op1 = delete(posID 1);
6: end if
7: end procedure

Backward transformation of op1 = delete(posID 1) against op2 = insert(posID2, newchar2).
8: procedure bwtransform(op1, op2)
9: if posID1 > posID2 then
10: op1 = delete(posID 1 − 1);
11: else
12: op1 = delete(posID 1);
13: end if
14: end procedure

Back transformation of op1 = insert(posID1, newchar1) against
op2 = insert(posID2, newchar2).

15: procedure bwtransform(op1, op2)
16: if posID1 > posID2 then
17: op1 = insert(posID1 + 1, newchar1);
18: else
19: op1 = insert(posID1, newchar1);
20: end if
21: end procedure

Backward transformation of op1 = insert(posID1, newchar1) against op2 = delete(posID 2).
22: procedure bwtransform(op1, op2)
23: if posID1 > posID2 then
24: op1 = insert(posID1 + 1, newchar1);
25: else
26: op1 = insert(posID1, newchar1);
27: end if
28: end procedure

However, Vidot et al. in [16] indicated that SOCT2 is inconsistent under a scenario
when concurrent operations are not performed in the same order at all users. Consider
the example in Figure 2.7, when operation op3 generated by user 3 arrives at user 1 and
user 2, it is transformed against its concurrent operations. Concretely, at user 1, op3
is transformed in turn against op1 and op2, while at user 2, op3 is transformed in turn
against op2 and op1. Unfortunately, the results of transforming op3 at user 1 and user 2
are different, which causes to be inconsistent. Therefore, to reach consistent state, the
result of transforming an operation against a sequence of its concurrent operations must
not depend on the orders of the execution of those operations at all users.

15

ABCD

ABECD

ABED

ABCD

ABED

op1=insert(3,E) op2=delete(3)

ABD

op2
op1=delete(4) op1

op2=insert(3,E)

User 1 User 2
ABCD

User 3

op3
op1,op2

op1

=insert(3,K)

op3=insert(4,K)

ABEKD ABKED

ABCKD=insert(4,K) op3
op2,op1

op2

Figure 2.7: Inconsistency with SOCT2

In [16], Vidot et al. introduced SOCT3 to solve the inconsistent scenario of SOCT2
by an additional step to SOCT2. Concretely, like SOCT2 when a remote operation is
received, it is transformed forward against the set of its concurrent operations obtained
after the step of history separation. After that, operations in the history are rearranged by
basing on the total ordering scheme by executing forward transformation and backward
transformation. The rearrangement of the history after executing a remote operation
ensures the order of operations in the history of all users to be the same. Figure 2.8
presents how SOCT3 solves the inconsistent case in Figure 2.7.

ABCD

ABECD

ABED

ABCD

ABED

op1=insert(3,E) op2=delete(3)

ABD

op2
op1=delete(4) op1

op2=insert(3,E)

User 1 User 2
ABCD

User 3

op3
op1,op2

op1

op3=insert(4,K)

ABEKD

ABCKD=insert(4,K)

ABCD

ABECD

op1=insert(3,E)

ABED

op2
op1=delete(4)

 User 2 with history rearrangement

 after executing op1

=insert(4,K)

ABEKD

op3
op1,op2

op1

History rearrangement

Figure 2.8: SOCT3 solves the Inconsistent Case in SOCT2

However, in SOCT3, the transformation procedure becomes very complex and error-
prone [17]. Especially, with the large collaborative editing system in MANETs, many
users and high network latency can cause a large number of concurrent operations while
according this approach, every remote operation must be transformed against all of its
concurrent operations to ensure document consistency. Therefore, it consumes a lot of

16

processing power, while the process power of mobile device is low. Consequently, it is not
suitable for implementation on mobile device in the large collaborative editing application.

17

Chapter 3

Document Consistency with TreeDoc

In this chapter, we present TreeDoc [19], a commutative replicated data type that supports
eventually consistent information. In our application, we have adapted the concept of
TreeDoc to our need to ensure convergence and intention preservation properties and use
state vector technique to preserve causality property.

3.1 TreeDoc

TreeDoc [19] is a commutative replicated data type (CRDT) [26] designed for concurrent
editing without concurrency control. It manages the document as a binary tree, and the
content of document is defined by infix-order visit on the whole tree. Consider the example
of Figure 3.1, the content of the document corresponding with TreeDoc is “ABCDEF”.

D

FB

CA E

A B C D E F

0 1

0 01

Figure 3.1: TreeDoc

Instead of using an array to manage the document and the index of the character in
the array for its identifier like Operational Transformation approach, in TreeDoc, the
identifier of the character(posID) in the document is the path of the corresponding node
in the tree. The path of node is a sequence of bit {0;1} in which 0 stands for left branch
and 1 stands for right branch on the tree. For example, posID of node A; B; C; E in
Figure 3.1 are 00; 0; 01; 10, respectively.

18

3.1.1 Local Operation

When inserting a new character, the generator generates the corresponding node to the
tree at the position such that the correlation between its position and the position of
all other characters on the tree is guaranteed. After that, the generator sends inserted
character and its identifier which is the path of the corresponding node to all other users.
For example, to insert character X at right position of character D on the tree of Figure
3.1, because node D has right child, which is node F, node X is inserted at the leftmost
position of the subtree rooted at node F, and then the generator gets the path of node X,
which is 100. After executing that insert operation, the tree becomes the tree in Figure
3.2.

D

FB

CA E

A B C D E F

0 1

0 0
1

X

0

X

Figure 3.2: TreeDoc after inserting X at right position of character D

Another case is to insert character G at right position of character F on the tree of
Figure 3.2. In this case, since node F has not right child, node G is right child of F as
shown in Figure 3.3.

D

FB

CA E

A B C D E F

0 1

0 0
1

X

0

X

G

1

G

Figure 3.3: TreeDoc after inserting G at right position of character F

When deleting a character, the generator sets the corresponding node to empty node
and sends the path of the corresponding node on the tree to all other users. For example,

19

deleting character B in the tree of Figure 3.3 is executed by setting the corresponding
node to empty node, and the tree becomes the tree of Figure 3.4.

D

F

CA E

A C D E F

0 1

0 0
1

X

0

X

G

1

G

Figure 3.4: TreeDoc after deleting B

Specification 3 describes the procedures for generating node, applying local insert op-
eration and local delete operation to TreeDoc.

Specification 3 Application of local operation to TreeDoc

Generation of new node N at right position node M
1: procedure GenerateNode(M)
2: if M has right child then
3: Create node N at the leftmost position of the subtree rooted at right child of

node M ;
4: else
5: Create node N is the right child of node M ;
6: end if
7: return node N ;
8: end procedure

Application of locally deleting the character corresponding node N on tree
9: procedure ApplyLocalDeleteOperation(N)
10: Set node N to empty node;
11: Send the path of node N to all other users;
12: end procedure

20

Application of locally inserting character newchar in right position of node M
13: procedure ApplyLocalInsertOperation(M ,newchar)
14: Node N= GenerateNode(M);
15: Set the content of node N to newchar;
16: Send <the path of node N ,newchar > to all other users;
17: end procedure

3.1.2 Remote Operation

When executing remote delete operation, user gets the node at the position corresponding
with the identifier of deleted character on the tree, and sets it into empty node. When
executing remote insert operation, user creates the node at the position on the tree cor-
responding with the identifier of inserted character, and sets its content into inserted
character. Specification 4 describes the procedures for applying remote insert operation
and delete operation to tree.

Specification 4 Application of remote operation to TreeDoc

Application of remote delete operation in which the path of deleted node is posID .
1: procedure ApplyRemoteDeleteOperation(posID)
2: Get node N whose path is posID
3: Set node N to empty node
4: end procedure

Application of remote operation in which inserted character is newchar and path of
inserted node is posID .

5: procedure ApplyRemoteInsertOperation(posID,newchar)
6: Create node N whose path is posID ;
7: Set the content of node N to character newchar;
8: end procedure

3.1.3 Commutative Replicated Data Type

For any pair of concurrent operations op1 and op2, op1 is said to be commutative with
op2 if on an initial state, both the execution of op1 before op2 and the execution of op2
before op1 result in the same state in which the intention of op1 and op2 are preserved. To
prove that with the execution of update operation on TreeDoc under the way as above,
two concurrent operations op1 and op2 can commute with each other, we investigate the
following cases:

21

Two concurrent insert operations (op1 = insert(posID1, newchar1),
op2 = insert(posID2, newchar2))

When a user finishes executing op1 and op2, the share document contains both newchar1
and newchar2. Because inserting a node to a tree does not change the path of all other
nodes on that tree, posID

1
and posID

2
is unique and does not depend on the orders of the

execution of op1 and op2. In other word, the intention of op1 and op2 are always preserved.
Hence, the final state is the same.

Two concurrent delete operations (op1 = delete(posID 1), op2 = delete(posID 1))

To delete a character on the document, TreeDoc sets the corresponding node on the tree
to empty node, so executing delete operation does not change the path of all other nodes
on the tree. Furthermore, the posID of a node on the tree is unique, so the existence of
two nodes having the same posID is impossible. Therefore, after executing op1 and op2,
the share document does not contain deletedchar1 which is the deleted character of op1
and deletedchar2 which is the deleted character of op2, and posID of all other characters
is the same as before. In other words, the final state is the same.

Concurrent delete operation and insert operation (op1 = delete(posID 1), op2 =
insert(newchar2, posID2))

As indicated above, the posID of a node on the tree is unique during the execution of
insert and delete operation. After executing op1 and op2, the share document includes
newchar2 at the unique position posID

1
and does not contain deletedchar1 which is the

deleted character of op1. Therefore, the final state is the same.

3.1.4 Rebalancing

Besides the advantages, TreeDoc has the problem of overhead. Firstly, during the exe-
cution of insert operations, the tree can become unbalanced, which causes the path of
inserted node to grow indefinitely. For instance, if a user always appends to the end,
the path of node will grow with each new character. Secondly, the tree can accumulate
many empty nodes because of executing delete operations. To alleviate this problem,
rebalancing is executed periodically to make the tree balanced and discard empty nodes.

Rebalancing TreeDoc

Rebalancing process creates a binary balanced tree whose document content is the same
as document content of initial tree. Concretely, with initial tree corresponding to the
document consisting of k characters, this process operates on the initial tree by generating
nodes, removing nodes, assigning again the content of each node such that it becomes
complete binary tree including k nodes, whose height is equal to ⌈log

2
(k + 1)⌉-1, and

document content is not changed. Figure 3.5 shows the example of rebalancing TreeDoc
in Figure 3.5a to TreeDoc in Figure 3.5b.

22

C

EB D

F

G

D

A C E

A

B F

G

a. TreeDoc before rebalancing b. TreeDoc after rebalancing

Rebalancing

Figure 3.5: Rebalancing TreeDoc

Specification 5 describes the procedure for rebalancing TreeDoc.

Specification 5 Rebalancing TreeDoc

Rebalancing TreeDoc t
1: procedure Rebalance(t)
2: k= the number of nonempty nodes in t;
3: h = ⌈log

2
(k + 1)⌉-1;

4: Visit t in infix order to create nodes, remove nodes to reach complete binary tree
whose height is equal h, and assign again the content of t to be the same as before;

5: end procedure

Rebalancing TreeDoc in the large-scale system

Although the sequential order of characters in the document is preserved after rebal-
ancing, their identifiers is changed. Consequently, only updates on the copies executing
rebalancing on the same state can be exchanged with each other. Therefore, before rebal-
ancing tree, all users must agree on the same state of their trees by running a commitment
protocol. However, it is difficult for commitment protocol to execute quickly, successfully
in MANETs, which causes update operations to be blocked a long time.

Two-tier architecture

The solution for rebalancing tree in large-scale system is two-tier architecture introduced
by Zawirski et al. in [20] in which all nodes are divided into two set, core set and nebular
set:

• The core set includes well-connected nodes. Only core nodes participate in commit-
ment protocol. With above property of core set, commitment protocol is executed
quickly.

• Nebular set is dynamic, weakly connected, even disconnected. They only generate
tree updates and do not participate in commitment protocol.

23

Every node defines an epoch e numbered sequentially for each rebalance.

Rebalance in core set

When a core node initiates rebalancing, it executes a commit protocol in which it plays
the role of the coordinator to agree on the same final state in core set before executing
rebalancing. If all core nodes agree on the same final state in epoch e, they execute
rebalancing on that final state in epoch e to create the initial state in epoch e+ 1.

Rebalance in nebular set

Because nebular nodes are not allowed to participate in commitment protocol for rebal-
ancing, after core nodes execute rebalancing, nebula nodes are behind with core nodes
at one or more epochs. Consequently, all updates generated by nebular nodes cannot be
replayed at core nodes, although they can be replayed on all other nebular nodes in the
same epoch. The catch-up protocol updates a nebula node to the next epochs.

Catch-up protocol

When a nebular node N in epoch e contacts a node C in epoch e + 1, N executes catch-
up protocol to update its copy. Concretely, C sends all updates in epoch e to N. After
receiving all updates in epoch e, noted by ue, from C, N applies ue to the initial state in
epoch e to create the final state in epoch e and executes rebalancing on the final state in
epoch e to create initial state in epoch e + 1. After that, N translates updates which it
executed in epoch e but not belong to ue into epoch e + 1, then applies and broadcasts
them. Specification 6 describes the procedure for catching up.

Specification 6 Catching up nebular node in epoch e to epoch e+1

Catching-up nebular node N in epoch e after receiving all update in epoch e, noted
by ue, from node C in epoch e + 1

1: procedure Catch-up(ue)
2: Apply ue to the initial state in epoch e to reach the final state in epoch e;
3: Rebalance the final state in epoch e to create the initial state in epoch e + 1;
4: Translate updates which is not in ue into epoch e + 1, then apply and send them

to all other user;
5: end procedure

3.2 Causality Preservation with State Vector

When a user updates its local copy, it sends the operation to all other users with the
current value of its local vector. In [13], if each component of the state vector Vi, which
is the state vector of user Si, is greater than or equal to the corresponding component
of the state vector Vj, which is the state vector of user Sj, user Si has already executed

24

all operations that have been executed by user Sj. Furthermore, to preserve causality
property, when a remote operation op arrives at user Si, op is only executed if all operations
causally preceding it have already been executed by user Si. Consequently, user Si only
executes op when each component of its state vector is greater than or equal to the
corresponding component of the state vector Vop. Specification 7 presents the procedures
for executing local operation and remote operation to preserve causality property by state
vector technique.

Specification 7 Causality Preservation with State Vector technique

Execution of local operation op at user Si with state vector Vi.
1: procedure ExecuteLocalOperation(op)
2: ApplyLocalOperation(op);
3: Vop = Vi;
4: Vi[i] + +;
5: Send <op,Vop> to all other user;
6: end procedure

Execution of remote operation op with state vector Vop generated by user Sj at user
Si with state vector Vi.

7: procedure ExecuteRemoteOperation(op,Vop,Sj)
8: if Vi[k] ≥ Vop[k] , (k: 1 ≤ k ≤ N) then
9: ApplyRemoteOperation(op);
10: Vi[j] + +;
11: else
12: Wait until Vi[k] ≥ Vop[k] ,(k: 1 ≤ k ≤ N);
13: end if
14: end procedure

25

Chapter 4

Implementation

4.1 System Architecture

In this section, we present the system architecture for every collaborative user. Each
collaborative user consists of the following components as shown in Figure 4.1:

Editor

State Vector Manager

Collaboration Session Manager

Document Manager

Connection Manager

Local op Updated document

State vector of remote op

Whether remote op

is causally ready?

Remote / local op

Updated document

Message Message

Figure 4.1: System Architecture

• Document manager is responsible for applying local operation/remote operation on
the document structure, then returning new content of the document. In order to
edit, rebalance in the collaboration, document management of user Si in epoch n
has to include as follow:

– For ensuring document consistency on current document, current state xn,
structured by TreeDoc, is required.

26

– For helping other users to perform catch-up protocol to update their documents
to epoch n, Si has to keep all operations that it executed before.

– If Si is a nebular user, in the future, it will perform catch-up protocol to update
its document to the document in the epoch of core set. In order to do that, a
nebular user in epoch n needs to keep the initial state and all operations that
it is executed in the epoch n. Because the initial state of an epoch is balanced
tree, it is managed by an array structure of characters to reduce overhead.

• State vector manager is responsible for determining whether remote operation is
causally ready.

• Collaboration session manager is responsible for managing the entire collaboration.
Concretely, when it receives a message related to the remote operation, it forwards
state vector to state vector manager, operation to document manager, and the new
content of the document to editor after executing the remote operation. Further-
more, when it receives local operation from editor, it forwards operation to document
manager, updates state vector, and sends message related to that local operation to
all other users through connection manager.

• Connection Manager is responsible for sending and receiving messages to and from
all other uses

• Editor is the tool for editing the shared document.

4.2 Class Diagram

Figure 4.2 shows the class diagram of our collaborative editing application. In general,
TreeDoc structure contains a Node root. Node in TreeDoc includes:

• atom is the character corresponding with the node

• leftChild is left child node

• rightChild is right child node

• parent is parent node.

• Font is the font of the node

In a Node, Font consists:

• fontStyle are Bold, Italic, Underline, Quote, Strike-through.

• fontType are Normal, Monospace, Serif, Sans-Serif.

• fontSize is the size of the character.

• fonttextColor is the color of the character.

27

• fontbgColor is the color of background of the character.

StateVector is structured by an array of states corresponding with an array of users in
the system. When a remote operation is causally ready, the state corresponding with the
user generating that operation will be incremented.
Epoch contains a list of executed operations to perform catch-up protocol in the future.

28

TreeDoc

+applyLocalInsertOp(op: Operation): String

+applyLocalDeleteOp(op: Operation): String

+applyRemoteInsertOp(op: Operation): String

+applyRemoteDeleteOp(op: Operation): String

+rebalance(): void

+getInfixOrderContent(): String

+generateNode(left: Node, right: Node): Node

+TreeDoc()

+getPosID(node: Node): String

+translate(TreeDoc a,TreeDoc b): void

Node

+atom: Character

+Node(font: Font, value: Character, leftchild: Node, rightchild: Node, parent: Node)

+setEmptyNode()
Font

+ftFontSize: float

+dbFontColor: double

+intFontStyle: int

+intFontTyle: int

+Font(fontsize: float, fontcolor: double, fonttyle: int, fonttype: int)

Epoch

+epoch: int

+strInitialState: String

+Epoch(e: int, initialState: String)

+addOperation(op: Operation): void

Operation

 +Operation(value:Character, posID: String, font: Font, svector: StateVector)

+atom: Character

StateVector

+addElement(userID: String): void

+updateElement(userID: String): void

 +removeElement(userID: String): void

+getElement(userID: String): int

+StateVector()

+ arrStates: int[]

CollaborationSession

+executeLocalOp(op: Operation): void
+executeRemoteOp(op: Operation): void

+receiveRemoteOp(op: String): Operation

+sendLocalOp(op: Operation): String

+strUserID: String

+getOpfromList(): Operation

+isExecuted(op: Operation): Boolean

User

+strUserID: String

 +strUserIP: String

 +intUserPort: int

+User(userID: String, userIP: String, userPort: int)

+addUser(user: User): void

+removeUser(user: User): void

+CollaborationSession(editor: String,userID: String)

Editor

+treeDocument

+staVector+arrUsers

+conConection +sessSession

+editEditor

+ndRoot

+ftFont

+ftFont

Connection

+sendMessage(message: String, user: User): void

+broadcastMessage(message: String, users: Users): void

+broadcastMessage(message: String, users: Users, exceptedUser: User): void

+Connection(cosession: CollaborationSession): void

+coSession

+staVector

+ndLeftChild

+ndParent

+arrOperations

+ndRightChild

+isCausal(remoteStaVector: StateVector)

Figure 4.2: Class Diagram

29

4.3 Sequence Diagram

Figure 4.3 shows the sequence diagram for the process of a local operation. Concretely,
when user Si edits a character on local Editor , CollaborationSession gets that operation
(op) from Editor , applies it to TreeDoc, and updates the element related to user Si in
StateVector . Finally, op and state vector of Si when it generates op is sent asynchronously
to all other users though Connection.

 :Editor :CollaborationSession :TreeDoc :StateVector :Connection

User Si

executeLocalOp(op) applyLocalOp(op)

posID

updateElement (Si)

asyncSend(op,Vop)

 Edit()

Figure 4.3: Sequence Diagram for the process of Local Operation

Figure 4.4 shows the sequence diagram for the process of a remote operation. When
Connection receives a remote operation from other user, it is added to a list of operations
that is waiting for be executed. CollaborationSession gets a operation from the list of
operations, checks whether it is causally ready, and execute it on TreeDoc in the case
of causal condition. After that, CollaborationSession sets the new content of the shared
document to Editor .

30

:Connection

ReceiveOp

 :CollaborationSession

addOptoList(op)

[op is causal]

:StateVector

isCausal(op)

true / false

updateElement(Sop)

:TreeDoc

executeRemoteOp(op)

newText

 :Editor

setText(newText)

getOpfromList()
Loop

Figure 4.4: Sequence Diagram for the process of Remote Operation

31

Chapter 5

Evaluation

In this chapter, we compare the performance of two approaches for ensuring document
consistency, TreeDoc and Operational Transformation in SOCT3 [16]. After that, we
investigate the effect of rebalancing to the performance of TreeDoc.
In Operational Transformation approach, each remote operation must be transformed

against all its concurrent operations in the history to preserve its intention. Therefore,
operation time of this approach depends on the number of concurrent operations in the
system.
In contrast to Operational Transformation, using TreeDoc, concurrent operations can

commute with each other. Consequently, operation time of TreeDoc does not depend on
the number of concurrent operations in the system and only depends on editing context
of every operation. Concretely, in TreeDoc, time for executing local operation depends
on time for walking on tree from the corresponding node to root to get posID , while
time for executing remote operation depends on time for walking on tree from root to
the node corresponding with posID . In other words, operation time of TreeDoc depends
on the height of the node corresponding with every operation. Furthermore, total height
of all nodes on the tree is minimal if the tree is always balanced during the execution of
operations (operation i at height h=⌈log

2
(i+1)⌉-1, i = 1...n) like Figure 5.1. That is the

best case for operation time of TreeDoc. The worst case for operation time of TreeDoc is
the case of only editing at a certain position. In that case, the height of node increases
steadily during the execution of operations (operation i at height h = i−1, i = 1...n) like
Figure 5.2, and total height of all nodes on the tree tree is maximal.

32

A

C

Op 1 at h=0

Op 2 at h=1

G

Op 3 at h=1

B
Op=5 at h=2 Op=6 at h= 2 Op 4 at h=2 Op 7 at h=2

 Op i at h= log2(i+1) - 1

D E F

Figure 5.1: Best Case of TreeDoc: the tree is balanced, the depth is logarithmic

A

B

 Op 1 at h=0

Op 2 at h=1

C

Op 3 at h= 2

I

Op=i at h=i-1

Figure 5.2: Worst Case of TreeDoc: the tree degenerates as a list with every new character
added to the right, the depth is linear.

5.1 Experiment Setting

We experiment on 4 real android device Samsung GT-I9250 Galaxy Nexus (CPU speed:
1.2 GHz Dual Core Processor; Internal phone storage: 16GB; RAM: 1GB; OS version:
Android OS 4.0). Because Android 4.0 does not officially build the ability to connect to
ad-hoc networks, in our experiments, every mobile device is connected with each other by
wireless network in which AirMac Extreme 802.11n Wi-Fi is the based station as shown
in Figure 5.3. All mobile devices are located at the same position, and we use Ping
command, we estimate network delay in this position by 77 ms.

33

Figure 5.3: Experimental Environment

In our experiments, every device begins with the empty shared document as presented
in Figure 5.4 and generates 250 operations. Therefore, every device will execute 1000
operations consisting of 250 local operations generated by it and 750 remote operations
generated by all other devices. Figure 5.5 shows a consistent state of all devices after
experiment. In every experiment, we get 30 measurements of each sample.

Figure 5.4: The Empty State in the Begining of Experiment

34

Figure 5.5: Consistent State in the End of Experiment

5.1.1 Operation Time

Firstly, we consider average operation time for a device to finish all operations as shown in
Figure 5.6 (operation time = time for executing 250 local operations + time for executing
750 remote operations) in 4 cases:

• Operational Transformation

• The best case of TreeDoc

• The worst case of TreeDoc without rebalancing

• The average case of TreeDoc where editing positions are generated randomly in
uniform distribution without rebalancing

User
Present to editor Execute local op

Broadcast local op

Receive remote op

Execute remote op

Operation time

Operation time

Present to editor

Figure 5.6: Operation Time

In this experiment, we manipulate the number of concurrent operations in the system
by increasing operation interval, that is the period between two consecutive operations, in

35

order to investigate the trend of operation time when the number of concurrent operations
increases. Because every operation carries the state vector to reflect the status of the user
generated it, we base on the state vector of every operations to compute the number of
current operations in the system.
Figure 5.7 shows the result of this experiment. The number of concurrent operations

decreases as operation interval increases, which results in the decrease of operation time
of Operational Transformation, while operation time of TreeDoc is not changed. That is
because for Operational Transformation, the more the number of concurrent operations
is, the more the transformation procedure is executed, while for TreeDoc, concurrent
operations can commute with each other without control. Especially, when operation
interval is close to or greater than network delay, the number of current operations is
fixed by 4 operations and operation time of Operational Transformation is 1553.3 ms.
In the best case, operation time of TreeDoc is 457.57 ms, that is always better than
operation time of Operational Transformation. However, in the worst case, operation
time of TreeDoc is 3571.63 ms, that is only better than operation time of Operation
Transformation if the number of current operations is greater than 10 operations.

0

1

2

3

4

5

6

7

8

9

10

10
(24)

20
(12)

25
(10)

30
(8)

40
(6)

50
(5)

60
(4)

70
(4)

80
(4)

90
(4)

100
(4)

O
pe

ra
tio

n
T

im
e

(s
)

fo
r

10
00

 O
pe

ra
tio

ns

Operation Interval(ms)
(The Number of Concurrent Operation)

Operational Transformation
The Worst Case of TreeDoc without Rebalancing
The Average Case of TreeDoc without Rebalancing
The Best Case of TreeDoc

Figure 5.7: The number of Concurrent Opertions vs. Operation Time without Rebalanc-
ing

36

5.1.2 Rebalancing Time

With periodically executing rebalancing, the height of tree decreases, which results in the
decrease of operation time in the worst case of TreeDoc. Next, we consider rebalancing
time, operation time (2 cores, 2 nebulars) as depicted in Figure 5.8 in the worst case of
TreeDoc when manipulating rebalancing period, that is the number of operations for a
repeating rebalancing.

RebalanceExecute local op

Broadcast local op

Receive remote op

Execute remote op

Operation time

Present to editor Rebalance
User

Rebalancing time

Rebalancing time

Present to editor

Operation time

Figure 5.8: Rebalancing Time

The more the execution of rebalancing is, the more operation time decreases (Figure
5.9). However, the more the execution of rebalancing is, the more rebalancing time
increases (Figure 5.9). With rebalancing period of 200 operations, total time consisting
of rebalancing time and operation time is minimal (Figure 5.9) and operation time in the
worst case of TreeDoc is reduced by 1100.26 ms that is always better than operation time
of Operational Transformation (Figure 5.10). Therefore, 200 operations is the best value
of rebalancing period in our experiments.

50 100 150 200 250 300 400 500 600 700 800 900
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Rebalancing Period (# of Operation)

T
im

e
(m

s)
 fo

r
10

00
 O

pe
ra

tio
ns

Operation Time
Rebalancing Time
Total Time= Operation Time + Rebalancing Time

Figure 5.9: The Worst Case of TreeDoc vs. Rebalancing

37

0

1

2

3

4

5

6

7

8

9

10

10
(24)

20
(12)

30
(8)

40
(6)

50
(5)

60
(4)

70
(4)

80
(4)

90
(4)

100
(4)

O
pe

ra
tio

n
T

im
e

(s
)

fo
r

10
00

 O
pe

ra
tio

ns

Operation Interval(ms)
(The Number of Concurrent Operation)

Operational Transformation
The Worst Case of TreeDoc with Rebalancing Period=200
The Average Case of TreeDoc with Rebalancing Period=200
The Best Case of TreeDoc (Rebalancing is not needed)

Figure 5.10: Operation Time vs. The number of Concurrent Opertions with Rebalancing

5.1.3 Operation Latency

Next, we consider latency of every operation, that is the interval from the time when a
user edits a character on its editor to time when other user takes effect of that character
like Figure 5.11.

User 1 Present to editor Execute local op

Broadcast local op

Receive remote op

Execute remote op
User 2

Operation Latency

Present to editor

Figure 5.11: Operation Latency

In the worst case of TreeDoc, latency of every operation increases with operation ID
because the height of the node corresponding with every operation increases steadily
(operation i at height h = i − 1, i = 1...n). However, with rebalancing period of 200
operations, rebalancing is executed at operation ID:200; 400; 600; 800, which leads the

38

height of nodes corresponding with operation ID: 201;401;601;801 to be reduced by 7;8;9;9,
respectively and the decrease of nodes corresponding with operations after rebalancing.
Therefore, latency falls dramatically after rebalancing as shown in Figure 5.12, and the
maximum of operation latency is 146.4 ms.

0

50

100

150

200

250

O
pe

ra
tio

n
La

te
nc

y
(m

s)

1
(0)

100
(99)

200
(199)

300
(106)

400
(206)

500
(107)

600
(207)

700
(108)

800
(208)

900
(108)

1000
(208)

Operation ID
(The Height of Related Node)

Figure 5.12: The Worst Case of TreeDoc vs. Operation Latency

5.1.4 Time Usage

Finally, Figure 5.14 shows time usage of a user during the collaboration session with
rebalancing period of 200 operations and operation interval of 100 ms. Completion time
is average time for a user to finish the collaboration session. It includes the following
components as presented in Figure 5.13:

• Present time is time for updating editor

• Operation time is time for executing local/remote operation

• Rebalancing time is time for executing rebalancing

• Idle time

39

RebalanceExecute local op Execute remote op

Operation time Operation time

Present to editorUser

Rebalancing time Rebalancing timePresent timePresent time

Idle

Idle time

Present to editor Rebalance

Figure 5.13: Completion Time

In the best case of TreeDoc, the tree is always balanced during the collaboration session,
so it does not need rebalancing. Furthermore, in this case, operation time is minimal
because total height of all nodes in the tree is minimal. Therefore, process time of this
case only consists of present time and operation time and is relatively small at 3.3%
(operation time=1.8%; present time=1.5%; rebalancing time=0%) of completion time.
Conversely, in the worst case of TreeDoc, the tree has to be periodically rebalanced

to reduce operation time. Hence, process time of this case consists of present time,
operation time, and rebalancing time. In this case, process time is the largest of three
cases of TreeDoc and up to 7.3% (operation time=4.4%; present time=1.5%; rebalancing
time=1.4%) of completion time.

Worst Average Best
0

20

40

60

80

100

The cases of TreeDoc

U
til

iz
at

io
n

(%
)

Operation time
Rebalancing time
Present time
Idle time

Figure 5.14: Time Usage of a User during the Collaboration Session

40

Chapter 6

Fault Tolerance

6.1 Disconnection

In MANETs, mobile device frequently gets disconnected from other devices. In the scope
of this thesis, we concentrate on the disconnection in the case when mobile device goes
too far out of the transmission range of other devices. When a site is disconnected, it can
not receive and broadcast messages from/to sites that it is disconnected. Consequently,
in the collaboration session, not only disconnected user misses messages but also other
users miss messages generated by disconnected user during disconnection period.
Because of disconnection event, every user in the collaboration session has its own state

which may be different from the state of other users. Therefore, when a user joins the
collaboration session, it may miss some document operations to reach the last state of
the collaboration session. Furthermore, when a user joins the collaboration session, if a
current user in the collaboration session is disconnected from the joining user, it will miss
the joining message broadcast by the joining user and document operations generated by
the joining user before joining the collaboration session.
Furthermore, collaboration session has to ensure causality preservation property. Con-

sequently, a message may be blocked at a user, if that user misses messages causally
preceding it.
In order to tolerate disconnection event, the system has to solve missing messages

(operation document, leaving, joining). Concretely, the system must satisfy the following
property:

• If a user Si generates a messagem (operation document, leaving, joining), eventually,
all users receive m either directly from Si or indirectly from other users.

6.2 Related Works

One approach is that all users have to agree on the same state when a user joins the
collaboration session. Therefore, joining user is able to get the last state of the share
document easily and all current users in the collaboration session do not miss joining

41

message and document operation messages generated by joining user before joining the
collaboration session.
Concretely, in Ycab [21], all users agree on the same state by running commitment

protocol in which joining user is the coordinator. Concretely, when a user joins the
collaboration session, it broadcasts joining message and its current state to all users of
the collaboration session and waits for the replies about their states. If all users have the
same state, joining users broadcasts the message to notify all users of processing joining
messages and adding joining user to their participant list.
Contrary to Ycab, in CoWord [22], all users agree on the same state by broadcasting

synchronization message to push all operations to arrive, be executed at their destinations,
and temporarily block users from generating new operations, which is called quiescence
state. If all users reach quiescence state, they have identical document state. Therefore,
in order to join the collaboration session successfully, joining user only needs to get the
document and state vector of a current user.
This approach requires all users to be well-connected together during the process of

joining session to ensure that all messages arrive at their destinations. Therefore, the
agreement is executed correctly, quickly and the collaboration session is not blocked a
long time. However in MANETs, above condition is not always guaranteed. In this
chapter, we will provide a solution to solve missing message problem for the process of
joining, leaving, editing in a collaboration session.

6.3 Tolerating Missing Messages

Each message in a collaboration session consisting of joining message, document operation
message, leaving message has to carry a state vector to reflect the status of the user
generated it. For each user, the first message is a joining message, the next messages
are document operation messages, and the last message is a leaving message. In the
collaboration session, every user has to ensure the execution of those messages in causal
order by basing on their state vectors to detect which of the message is causally ready.
Consequently, when a message m generated by user Si arrives user Sj, Sj compares

the state vector of m, which shows the state of Si when it generated m, and the state
vector of Sj , which shows the state of Sj when m arrives Sj , in order to detect message k
that causally precedes m and Sj misses, and then, Sj sends a request to ask Si to resend
missing message k.
The following sections discuss how user Sj detects missing message by comparing its

state vector and the state vector of received message m generated by user Si in two cases.
After that, we specify two error cases in which the comparison between state vectors
cannot detect missing message and provide solutions for those cases.

6.3.1 Detection in the Normal Case

In this case, Sj detects missed messages generated by user St whose related component
appears in both the state vector of Sj, noted by VSj

, and the state vector of message m,

42

noted by Vm. As described in the section 2.3, VSj
[St] indicates the number of messages

generated by St that has already been executed by Sj , while Vm[St] indicates the number
of messages generated by St that has already been executed by user Si when it generates
m. Therefore, if Vm[St] is greater than VSj

[St], Sj realizes that it misses messages k=<
Vm[St]-1,Vm[St]-2,....,VSj

[St] > generated by St.
Figure 6.1 shows the example in which user Sj is disconnected from St, Si. Therefore, Sj

can not receive opSt0
, opSi0

generated by St, Si, respectively during disconnection period
of Sj . When Sj reconnects, it receives opSi1

generated by Si. By basing on state vector
of opSi1

, that is state vector of Si when it generates opSi1
, Sj knows that Si has already

executed one operation generated by St because VSi
[St] = 1 and one operation generated

by Si because VSi
[Si] = 1, while Sj has yet to execute any operations generated by St and

Sj . Consequently, Sj detects missing messages consisting of message 0 generated by St

(opSt0
), message 0 generated by Si (opSi0

), and sends a request to ask Si to resend those
messages.

Site St Site Si Site Sj

VSt(St=0, Si=0, Sj=0) VSi(Si=0, St=0,Sj=0) VSj(Sj=0, St=0,Si=0)

VSi(Si=0, St=1,Sj=0)VSt(St=1, Si=0, Sj=0)

VSi(Si=1, St=1,Sj=0)VSt(St=1, Si=1,Sj=0)

VSi(Si=2, St=1,Sj=0)VSt(St=1, Si=2,Sj=0)

Compare VSi(Si=1,St=1,Sj=0) with

 VSj(Sj=0,St=0,Si=0) to detect missing message:

 + Message 0 genereted by St
 + Message 0 generated by Si

<opSt0, VSt>

<opSi0, VSi>

<opSi1, VSi>

Figure 6.1: Detection in the Normal Case

6.3.2 Detection in the Special Case: Missing Joining or Leaving
Messages

In this case, Sj detects missing messages generated by St whose related component appears
in state vector of Sj and disappears in state vector of message m. This case happens
because two reasons:

• The first reason is that Si executed joining message of St before generating m, while
Sj missed joining message of St. In this case, Sj misses all of message generated by

43

St: < Vm[St]-1,Vm[St]-2,...,0 >. This context is shown in the example in Figure 6.2.
In this example, when receiving opSi0

generated by Si, Sj knows that it misses all
messages generated by St consisting of joining message and opSt1

of St.

Site St Site Si Site Sj

VSt(St=0, Si=0, Sj=0) VSi(Si=0, Sj=0) VSj(Sj=0, Si=0)

VSi(Si=0, Sj=0, St=1)VSt(St=1, Si=0, Sj=0)

VSi(Si=0, Sj=0, St=2)VSt(St=2, Si=0, Sj=0)

VSi(Si=1, Sj=0, St=2)VSt(St=2, Si=1, Sj=0)
Compare VSi(Si=1,Sj=0, St=2) with

 VSj(Sj=0,Si=0) to detect missing

message:

 + Message 0 genereted by St

 + Message 1 generated by St

<JoiningSt0, VSt>

<opSt1, VSt>

<opSi0, VSi>

Figure 6.2: Detection in the Special Case: Missing Joining Messages

• The second reason is that Si missed leaving message of St before generating m,
while Sj executed leaving message of St. In this case, Sj does not miss any messages
generated by St. Consider the example in Figure 6.3, when receiving opSi0

generated
by Si, Sj knows that it does not miss any messages generated by St because it
executed leaving message of St.

Site St Site Si
Site Sj

VSt(St=0, Si=0, Sj=0) VSi(Si=0, St=0, Sj=0) VSj(Sj=0, St=0, Si=0)

VSi(Si=0, St=1,Sj=0)VSt(St=1, Si=0, Sj=0)

VSi(Si=1, St=1,Sj=0)
No missing message

<leavingSt1, VSt>

<opSi0, VSi >

<opSt0, VSt>

VSj(Sj=0, St=1, Si=0)

VSj(Sj=0, Si=0)

VSj(Sj=0, Si=1)

Figure 6.3: Detection in the Special Case: Missing Leaving Messages

Specification 8 describes the procedure for detecting missing messages.

44

Specification 8 Detection of Missing Messages

Sj with state vector VSj
detects missing message after receiving message m with state

vector Vm generated by Si.
1: procedure DectectMissingMessages(m,Vm,Si)
2: for all St ∈ Vm do
3: if St ∈ VSj

then
4: if VSj

[St] < Vm[St] then
5: Send a request to Si for asking missing messages k=< Vm[St]−1, Vm[St]−

2, ..., VSj
[St] >;

6: end if
7: else
8: if Sj already executed leaving message of St then
9: No missing messages;
10: else
11: Send a request to Si for asking missing messages k=< Vm[St]−1, Vm[St]−

2, ..., 0 >;
12: end if
13: end if
14: end for
15: end procedure

6.3.3 Fault Case 1: Missing All Messages from a User

Consider the context in Figure 6.4 where user Sj misses all messages (joining, operation,
leaving) generated by St from the time when St joins the collaboration to the time when
St leaves the collaboration, while user Si receives and executes all of those messages. In
this context, when message opSi0

generated by Si arrives Sj , Sj can not detect missing
messages generated by St by comparing its state vector with state vector of Si because
now, the component associated with St is no longer in state vector of Si after Si executed
leaving message of user St.

45

Site St Site Si Site Sj

VSt(St=0, Si=0, Sj=0) VSi(Si=0, Sj=0) VSj(Sj=0, Si=0)

VSi(Si=0, St=1,Sj=0)VSt(St=1, Si=0, Sj=0)

VSi(Si=0, St=2,Sj=0)VSt(St=2, Si=0, Sj=0)

VSi(Si=0, Sj=0)

<JoiningSt0, VSt>

<opSt1, VSt>

<LeavingSt2, VSt>

Can't detect missing message generated by St by

compare VSi(Si=0,Sj=0) with VSj(Sj=0,Si=0)

<opSi0, VSi>

Figure 6.4: Fault Case when Missing All Messages from a User

In order to take into account this context, Si has to delay executing leaving message
until it generates a message. Concretely, in Figure 6.5, after receiving leaving message
of St, Si does not execute that leaving message immediately. After Si generates message
opSi0

and sends it to all other users, Si executes leaving message of St by removing St

from its state vector. Consequently, when Sj receives message opSi0
, it can detect missing

messages generated by St because the component associated with St is still in the state
vector of opSi0

. In the worst case where Sj misses message opSi0
, although the next

messages generated Si do not help Sj to detect missing messages generated by St, they
help Sj to detect missing message opSi0

and after that, Sj bases on state vector of opSi0

to detect missing messages generated by St.

Site St Site Si Site Sj

VSt(St=0, Si=0, Sj=0) VSi(Si=0, Sj=0) VSj(Sj=0, Si=0)

VSi(Si=0, St=1,Sj=0)VSt(St=1, Si=0, Sj=0)

VSi(Si=0, St=2,Sj=0)VSt(St=2, Si=0, Sj=0)

<Joiningst0, VSt>

<opst1, VSt>

<Leavingst2, VSt>

VSi(Si=0, St=3, Sj=0)

VSi(Si=1, Sj=0)
Compare VSi(Si=0,St=3,Sj=0) with

 VSj(Sj=0,Si=0) to detect missing

message:

 + Message 0,1,2 generated by St

<opsi0, VSi>

Figure 6.5: Solution for Fault Case 1

46

6.3.4 Fault Case 2: Silent User

In the context that if requests for asking to resend messages are lost, missing messages
will not be resent. Especially, if users fall to silent status in which they do not generate
any messages, other users can not detect missing messages.
Our solution is that if a user does not generate any messages for a period T , it has

to broadcast a state notification containing its state vector to all other users to detect
missing messages.

6.4 Evaluation

In this section, we continue considering the experiment as presented in the Chapter 2. In
order for a message which is operation document, leaving or joining to arrive its destination
under disconnection event, the system may send many packets including original or resent
message, requests for asking to resend message, state notifications for detecting messing
message. Therefore, in our experiment, when a user generates a message, for that message
to arrive at 3 other users, in the case of no disconnection, it needs to send 3 packets, each
of which is for every user, while under disconnection event, it has to send more than 3
packets.
In this experiment, we manipulate loss probability, which is the probability for a packet

not arriving at its destination. We simulate packet loss by randomly generating a number
in uniform distribution and, after that, we base on the generated number and the loss
probability to determine whether a packet is lost. For example, with loss probability of
50%, before a user sends a packet, it generates a random number in the range of 1 to 100.
If the random number is less than or equal to 50, the user makes the packet lost by not
sending this packet to its destination.
We investigate the following metrics in the worst case of TreeDoc (2 core, 2 nebular)

with rebalancing period of 200 operations, operation interval of 100 ms, and period T for
broadcasting state notification of 500 ms:

• The average number of packets sends by a user for all other users to receive all
messages (the number of packets generated)

• Average completion time for a user to finish the collaboration session (completion
time)

• Average time for a user to detecting its missing messages (detection time)

If loss probability is equal to 0%, the number of packets is equal to the number of
messages, detection time is 0, and completion time is 27.3 s. The more loss probability is,
the more the number of missing messages is, so a user has to send more packets, and take
more detection time in order for all users to get their missing messages, which results in
the increase of the number of packets, detection time, and completion time as shown in
Figure 6.6, Figure 6.7, Figure 6.8. Furthermore, the increase of detection time leads to the
increase of operation latency which is delay between time when a user presses a character

47

and time when this character appears on the screen of other user. In practice, there are
some studies about acceptable latency for users. For multiplayer games, latency affects
significantly the play and result. The acceptability of more or less latency for a game
depends on its type. For example, with First Person Shooters (FPS) which is a game for
shooting, Claypool et al. in [24] showed that s the accuracy of shooting is greatly decreased
with even modest (75-100 ms) amounts of latency, while RTS (real time strategy) games
has a fairly acceptable performance even at latency of 500 ms [25]. Obviously, acceptable
latency in collaborative text editing is higher than acceptable latency in game. When loss
probability reaches 75%, the number of sent messages reaches is 11021 packets (955.8% of
the number of messages needed to be sent), detection time is 73.7 s and completion time
is 2559.5 s. The difference between the completion time in the case of the loss probability
of 0% and that of 75%, which corresponds to 2532.2s (2559.5 − 27.3), is the period that
a user detects the missing messages and waits for these messages being resent. In other
words, that is the increasing of total latency of all operations in those two cases. Because
every user in our experiment has to execute 1000 operations, average latency for every
operation is greater than 2.5322 s calculated by 2532.2 s/1000, which is very far larger
than operation interval (100 ms). Especially, when loss probability is greater than 75%,
the collaboration session cannot terminate within 2 hours.

0 10 20 30 40 50 60 70 75 80 90 100
0

2000

4000

6000

8000

10000

12000

Loss probability (%)

T
he

 n
um

be
r

of
 p

ac
ke

ts
 g

en
er

at
ed

Figure 6.6: The number of Packets vs. Loss Probability

48

0 10 20 30 40 50 60 70 75 80 90 100
0

10

20

30

40

50

60

70

80

90

100

Loss probability (%)

D
et

ec
tio

n
tim

e(
s)

Figure 6.7: Detection Time vs. Loss Probability

0 10 20 30 40 50 60 70 75 80 90 100
0

500

1000

1500

2000

2500

3000

Loss probability (%)

C
om

pl
et

io
n

tim
e(

s)

Figure 6.8: Completion Time vs. Loss Probability

49

Chapter 7

Application

7.1 Editing Function

In this section, we show the photos of editing functions in our application. Every photo
demonstrates a sequence of consecutive actions of a function. Our application provides
the following editing functions for user:

• File (Figure 7.1)

– New: Create new document (Figure 7.2).

– Open: Open a existing document (Figure 7.3).

– Save/Save As: Save a document (Figure 7.4).

Figure 7.1: Menu File

50

Figure 7.2: New File (1. “New” in Menu File; 2. “No” in Dialog of Save File)

Figure 7.3: Open File (1. “Open” in Menu File; 2. Select file “Demo” in File Browser)

51

Figure 7.4: Save as (1. “SaveAs” in Menu File; 2. Select Folder in File Browser; 3. Save
in Dialog of Save File)

• Font (Figure 7.5)

– Font Style: Change font style (Bold/Italic/Underline/Quote/Strike-through)
of selected text (Figure 7.6).

– Font Type: Change font type (Normal/Monospace/Serif/Sans-Serif) of selected
text (Figure 7.7).

– Text Color: Change text color of selected text (Figure 7.8).

– Background Color: Change background color of selected text (Figure 7.9).

52

Figure 7.5: Menu Font

Figure 7.6: Font Style (1. Select text; 2. Select font style)

53

Figure 7.7: Font Type (1. Select text; 2. Select font type)

Figure 7.8: Text Color (1. Select text; 2. Select text color)

54

Figure 7.9: Background Color (1. Select text; 2. Select background color)

• Copy, Cut, Paste (Figure 7.10)

Figure 7.10: Copy, Cut, Paste (1. Cut; 2. Paste)

55

7.2 Collaboration Function

In order to start a collaboration session, every user who wants to join the collaboration
session in the future will be distributed a configuration file for that session. Configuration
file describes the name, the initial content of the shared document, the list of users in
core set for the collaboration session.
Initially, collaboration session only consists of the users in core set described in its

configuration file. Other sites taking the effect of the configuration file of the collaboration
session can separately edit the initial content of the shared document of the collaboration
session without sending and receiving updates to/from other users until they join the
collaboration session to become nebular users. Figure 7.11 shows that 3 users, user A,
B, and C, take effect of the configuration file of a collaboration session named “demo” in
which user A and B are core users.

User CUser BUser A

Figure 7.11: Users take effect of a collaboration configuration

Initially, user A, B, and C begin at the same state described in the configuration file as
shown in Figure 7.12.

56

User A User B User C

Figure 7.12: A initial state of users in the collaboration

Now, user A and B become core users of the collaboration session “Demo” and every
update of A and B will be sent to each other to maintain a consistent state, while user C
has yet to be a user in the collaboration session, and it is able to edit the shared document
of that session separately. Figure 7.13 shows the states of user A, B and C after a while.

57

User A User B User C

Figure 7.13: A consistent state of users in the collaboration

A user can join a collaboration session whenever it is connected with a current user of
that collaboration session. At that time, its document is synchronized with the document
of the user that it is connected with and gradually reaches the last state of the collabora-
tion session. To continue considering the scenario in Figure 7.13, user C decides to join
the collaboration session “Demo” via user A as depicted in Figure 7.14 and Figure 7.15.
Figure 7.16 shows the consistent state after synchronizing the document of C with the
current document of the collaboration session “Demo”.

58

User A User B User C

Figure 7.14: Join collaboration session

User A User B User C

Figure 7.15: Accept joining request

59

User A User B User C

Figure 7.16: The synchronization of joining user and current users in the collaboration
session

60

Chapter 8

Conclusion

8.1 Summary

In our thesis, we concern collaborative editing application in MANETs. With the limita-
tions of MANETs, decentralized architecture is more appropriate for collaborative editing
application in MANETs because using this architecture, collaborative editing application
does not need a dedicated server to manage all aspects of the collaboration. That pro-
motes the concurrency, independence and operation in the case of disconnection. However,
besides greater flexibility, decentralized collaborative application in MANETs has many
problems because mobile device can move freely outside of the transmission range of other
devices, while it have to receive and process correctly all updates from other devices es-
pecially concurrent updates. The major contribution of our work is the development of
an Android-based application for collaborative editing in which we address the problems
on document consistency and fault tolerance.
Firstly, our application replies the concept of TreeDoc, a data structure that supports

eventually consistent information to ensure document consistency. With TreeDoc, concur-
rent operations can commute with each other, so a large number of concurrent operations
do not affect application performance. We carry out the experiment on real environ-
ment with 4 android mobile devices, each of which executes 1000 operations (250 local
operations + 750 remote operations). In this experiment, we compare operation time of
TreeDoc with Operation Transformation, an approach used by many collaborative edit-
ing applications. In the best case and average case, operation time of TreeDoc is always
better than operation time of Operational Transformation. However, in the worst case,
operation time of TreeDoc is only better than operation time of Operational Transformar-
tion if the number of current operations is greater than 10 operations. With periodically
executing rebalancing, the height of TreeDoc decreases, which results in the decrease of
operation time in the worst case of TreeDoc. By experimenting, we determine that the
best value of rebalancing period is equal to 200 operations because with that rebalancing
period, total time in the worst case of TreeDoc consisting of rebalancing time and oper-
ation time is minimal. With rebalancing period of 200 operations, operation time in the
worst case of TreeDoc is reduced and always better than operation time of Operational

61

Transformation.
Secondly, we consider disconnection event in MANETs. In MANETs, mobile device

frequently gets disconnected from other devices. In the scope of this thesis, we concentrate
on the disconnection in the case where mobile device goes too far out of the transmission
range of other devices. When a site is disconnected, it stops receiving and broadcasting
message from/to sites that it is disconnected. Consequently, in the collaboration session,
when a user is disconnected, it misses messages consisting of joining messages, leaving
messages, and document operation messages from/to users that it is disconnected from.
However, disconnected user is still able to work on local document. In order to tolerating
disconnection event, we provide a solution in which every user bases on state vector
appended with each message to detect its missing messages. Consequently, every message
generated by a user in the collaboration session eventually arrives at all others users
regardless of disconnection event.

8.2 Open Questions

Optimizations on TreeDoc

The main problem of TreeDoc is unbalance, which causes the path of node to grow
indefinitely. Therefore, it is necessary to provide optimizations to TreeDoc in order to
reduce the degree of unbalance or even design new commutative replicated data type to
alleviate this problem. Besides insert, delete operation, TreeDoc needs to provide more
kinds of operation such as undo, redo, lock, unlock...

User Identification

In a wider environment, the configuration for collaboration session could be information
provided by a document server. In that case, user should be identified by some creden-
tials rather than IP address. Because IP address can change in a mobile environment,
identifying a user (a device) by its IP address is a poor choice.

Message Broadcast on MANETs

In our current application, we did not pay attention on the message broadcast scheme on
MANETs. In the future, it is necessary to develop mechanisms for broadcasting message
on MANETs to reduce message loss in the system.

62

Bibliography

[1] J. F. Patterson, R. D. Hill, S. L. Rohall and S. W. Meeks, Rendezvous: an architecture
for synchronous multi-user applications, In Proceedings of the 1990 ACM conference
on Computer Supported Cooperative Work, pp. 317-328, Los Angeles, California,
United States. ACM Press, 1990.

[2] N. A. Streitz, J. Geiler, J. M. Haake and J. Hol, DOLPHIN: integrated meeting support
across local and remote desktop environments and LiveBoards, In Proceedings of the
1994 ACM conference on Computer Supported Cooperative Work, Chapel Hill, North
Carolina, United States. ACM Press, 1994.

[3] D. A. Nichols, P. Curtis, M. Dixon and J. Lamping, High-latency, low-bandwidth win-
dowing in the Jupiter collaboration system, In Proceedings of the 8th annual ACM
symposium on User interface and software technology, pp. 111-120, Pittsburgh, Penn-
sylvania, United States. ACM Press, 1995.

[4] M. Stefik, G. Foster, D. G. Bobrow, K. Kahn, S. Lanning and L. Suchman, Beyond
the chalkboard: computer support for collaboration and problem solving in meetings,
Communications of the ACM, 30(1): 32-47, 1987.

[5] C. A. Ellis, S. J. Gibbs and G. L. Rein, Design and Use of a Group Editor, In Pro-
ceedings of the IFIP TC2/WG2.7 Working Conference on Engineering for Human-
Computer Interaction, pp. 13-28, Napa Valley, California. Elsevier, 1989.

[6] C. Sun and C. Ellis, Operational transformation in real-time group editors: issues,
algorithms, and achievements, In Proceedings of the 1998 ACM conference on Com-
puter Supported Cooperative Work, pp. 59-68, Seattle, Washington, United States.
ACM Press, 1998.

[7] C. Sun, X. Jia, Y. Zhang, Y. Yang and D. Chen, Achieving convergence, causality
preservation, and intention preservation in real-time cooperative editing systems, ACM
Transactions on Computer-Human Interaction (TOCHI), 5(1): 63-108, 1998.

[8] A. Karsenty, C. Tronche and M. Beaudouinlafon, GroupDesign: shared editing in a
heterogeneous environment, Usenix Journal of Computing Systems, 6(2): 167-195,
1993.

63

[9] C. Sun and D. Chen, Consistency maintenance in real-time collaborative graphics
editing systems, ACM Transactions on Computer-Human Interaction (TOCHI), 9(1):
1-41, 2002.

[10] C. L. Ignat and M. C. Norrie, Draw-together: graphical editor for collaborative draw-
ing, In Proceedings of the 2006 20th anniversary conference on Computer supported
Cooperative Work, pp. 269-278, Banff, Alberta, Canada. ACM Press, 2006.

[11] L. Lamport, Time, Clocks, and the Ordering of Events in a Distributed System,
Comm. ACM, vol. 21, no. 7, pp. 558-565, 1978.

[12] P.R. Johnson and R.H. Thomas, RFC 677: Maintenance of Duplicate Databases,
http://www.faqs.org/rfcs/rfc677.html, Jan. 1975.

[13] C. A. Ellis and S. J. Gibbs, Concurrency control in groupware systems, In Proceedings
of the 1989 ACM SIGMOD international conference on Management of data, pp. 399-
407, Portland, Oregon, United States. ACM Press, 1989.

[14] M. Ressel, D. Nitsche-Ruhland and R. Gunzenhuser, An integrating, transformation-
oriented approach to concurrency control and undo in group editors, In Proceedings
of the 1996 ACM conference on Computer Supported Cooperative Work, pp. 288-297,
Boston, Massachusetts, United States. ACM Press, 1996.

[15] M. Suleiman, M. Cart and J. Ferri, Serialization of concurrent operations in a dis-
tributed collaborative environment, In Proceedings of the international ACM SIG-
GROUP conference on Supporting group work: the integration challenge, pp. 435-445,
Phoenix, Arizona, United States. ACM Press, 1997.

[16] N. Vidot, M. Cart, J. Ferri and M. Suleiman, Copies convergence in a distributed real-
time collaborative environment, In Proceedings of the 2000 ACM conference on Com-
puter Supported Cooperative Work, pp. 171-180, Philadelphia, Pennsylvania, United
States. ACM Press, 2000.

[17] G. Oster, P. Urso, P. Molli, and A. Imine, Proving correctness of transformation func-
tions in collaborative editing systems, LORIAINRIA Lorraine, Rapport de recherche
RR-5795, Dec. 2005.

[18] F. Mattern, Virtual time and global states of distributed systems, In Proceedings
of the International Workshop on Parallel and Distributed Algorithms, pp. 215-276.
Elsevier Pub., 1989.

[19] Nuno Preguia, Joan Manuel Marqus, Marc Shapiro, and Mihai Letia, A commutative
replicated data type for cooperative editing, In Int. Conf. on Distributed Comp. Sys.
(ICDCS), pages 395403, Montral, Canada, June 2009.

[20] Marek Zawirski, Marc Shapiro, and Nuno Preguia, Asynchronous rebalancing of a
replicated tree, Conference Franaise de Systmes d’Exploitation (CFSE), Saint-Malo,
France, May 2011.

64

[21] D. Buszko, W. Lee and A. Helal, Decentralized ad-hoc groupware API and framework
for mobile collaboration, In Proceedings of the 2001 International ACM SIGGROUP
Conference on Supporting Group Work, pp. 5-14, Boulder, Colorado, USA. ACM
Press, 2001.

[22] C. Sun, S. Xia, D. Sun, D. Chen, H. Shen and W. Cai, Transparent adaptation of
single-user applications for multi-user real-time collaboration, ACM Transactions on
Computer-Human Interaction (TOCHI), 13(4): 531 - 582, 2006.

[23] Allison C., Concurrency Control for Real Time Groupware, CE94: Concurrent En-
gineering Research and Applications, pp. 163170, A global Perspective, Pittsbourg,
August 1994.

[24] Mark Claypool, Tom Beibeder, Rory Coughlan, Corey Lusher, John Plunkett, Em-
manuel Agu, The Effects of Loss and Latency on User Performance in Unreal Tourn-
ment 2003, Computer Science Department at Worchester Polytechnic Institute, 2004.

[25] Paul Bettner, Mark Terrano, 1500 archers on a 28.8: Network programming in Age
of Empires and beyond, the game developer conference proceedings, 2001.

[26] Marc Shapiro, Nuno Preguica, Carlos Baquero, and Marek Zawirski, A compre-
hensive study of Convergent and Commutative Replicated Data Types, Rapport de
recherche 7506, Institut Nat. de la Recherche en Informatique et Automatique (IN-
RIA), Rocquencourt, France, January 2011.

65

Appendix A

System Architecture

Editor

State Vector Manager

Collaboration Session Manager

Document Manager

Connection Manager

Local op Updated document

State vector of remote op

Whether remote op

is causally ready?

Remote / local op

Updated document

Message Message

Figure A.1: System Architecture

66

Appendix B

Class Diagram

TreeDoc

+applyLocalInsertOp(op: Operation): String

+applyLocalDeleteOp(op: Operation): String

+applyRemoteInsertOp(op: Operation): String

+applyRemoteDeleteOp(op: Operation): String

+rebalance(): void

+getInfixOrderContent(): String

+TreeDoc()

+catch-up(op: Operation): void

+getPosID(node: Node): String

Node

+Node(font: Font, value: Character, leftchild: Node, rightchild: Node, parent: Node)

+setEmptyNode()

+atom: Char
Font

+ftFontSize: float

+dbFontColor: double

+intFontStyle: int

+intFontTyle: int

+Font(fontsize: float, fontcolor: double, fonttyle: int, fonttype: int)

Epoch

+epoch: int

+strInitialState: String

+Epoch(e: int, initialState: String)

+addOperation(op: Operation): void

����e�ector

+arrStates: int []

+addElement(userID: String): void

+updateElement(userID: String): void

 +removeElement(userID: String): void

+getElement(userID: String): int

+StateVector()

+ isCausal(LocalStaVector:StateVector, remoteStaVector: StateVector): Boolean

�oll��oration�ession

+executeLocalOp(op: Operation): void
+executeRemoteOp(op: Operation): void

+receiveRemoteOp(op: String): Operation

+

+sendLocalOp(op: Operation): String

+strUserID: String

+isExecuted(op: Operation): Boolean

User

+strUserID: String

 +strUserIP: String

 +intUserPort: int

+User(userID: String, userIP: String, userPort: int)

+addUser(user: User): void

+removeUser(user: User): void

+CollaborationSession(editor: String,userID: String)

Edi�or

��reeDocu�ent

�����ector

��rrUsers

�con�onection ��ess�ession

�edi��di�or

�nd�oo�

��rrNodes

���Font

�onnection

+sendMessage(message: String, user: User): void

+broadcastMessage(message: String, users: Users): void

+broadcastMessage(message: String, users: Users, exceptedUser: User): void

+Connection(cosession: CollaborationSession): void

+arr�perations

Ma�orNode

+MajorNode(parent: Node)

+addNode(node: Node)

+ftFont

+node arent

+�node!eft�hild

+�node�i"ht�hild

+�node�ontainer

+id: String

OpfromWaitList(): Operation

+ generateNode(left: Node, right: Node): Node

�peration

+Operation(value:Character, posID: String, font: Font, svector: StateVector)

+atom: Character

+staVector

Figure B.1: Class Diagram

67

Appendix C

TreeDoc Source Code

1 import java . u t i l . ArrayLis t ;
pub l i c c l a s s TreeDoc {

3 MajorNode root ;
/∗∗

5 ∗ Apply remote d e l e t e ope ra t i on
∗ @param op : d e l e t e ope ra t i on

7 ∗ @return de l e l e d node
∗/

9 pub l i c DocNode applyRemoteDeleteOp (Operation op) {
DocNode u = getNode (op . posID) ;

11 u . setAtom (nu l l) ;
r e turn u ;

13 }
/∗∗

15 ∗ Apply remote i n s e r t ope ra t i on
∗ @param op : i n s e r t ope ra t i on

17 ∗ @return i n s e r t ed node
∗/

19 pub l i c DocNode applyRemoteInsertOp (Operation op) {
DocNode u = getNode (op . posID) ;

21 u . setAtom (op . atom) ;
u . setFont (op . f ont) ;

23 r e turn u ;
}

25 /∗∗
∗ Get the node cor responding with a posID

27 ∗ @param posID : posID o f the node
∗ @return the node cor responding with posID

29 ∗/
pub l i c DocNode getNode (St r ing posID) {

31 ArrayList<Str ing> pathdi s = new ArrayList<Str ing >() ;
ArrayList<Integer> pathbi t = new ArrayList<Integer >() ;

33 decodePosID(posID , pathdis , pathbi t) ;
DocNode u = nu l l ;

35 f o r (i n t i = 0 ; i < pathdi s . s i z e () ; i++) {
St r ing d i s g = pathdi s . get (i) ;

37 i n t d i r e c t i o n = pathbi t . get (i) ;

68

u = gotoNode (u , d i r e c t i o n , d i s g) ;
39 }

r e turn u ;
41 }

pub l i c DocNode gotoNode (DocNode u , i n t d i r e c t i o n , S t r ing d i s g) {
43 MajorNode tempMj = nu l l ;

i f (u == nu l l)
45 tempMj = root ;

e l s e {
47 i f (d i r e c t i o n == 1)

tempMj = u . r i g h t ;
49 e l s e

tempMj = u . l e f t ;
51 }

i f (tempMj != nu l l) {
53 i n t i ;

f o r (i = 0 ; i < tempMj . arrDocNode . s i z e () ; i++) {
55 i f (d i s g . equa l s (tempMj . arrDocNode . get (i) . id) == true) {

u = tempMj . arrDocNode . get (i) ;
57 break ;

}
59 i f (tempMj . arrDocNode . get (i) . id . compareTo (d i s g) > 0) {

DocNode uu = new DocNode(nul l , f a l s e , nu l l , d i s g) ;
61 uu . majorNode = tempMj ;

tempMj . arrDocNode . add (i , uu) ;
63 u = uu ;

break ;
65 }

}
67 i f (i == tempMj . arrDocNode . s i z e ()) {

DocNode uu = new DocNode(’ ’ , f a l s e , nu l l , d i s g) ;
69 uu . majorNode = tempMj ;

tempMj . arrDocNode . add (uu) ;
71 u = uu ;

73 }
} e l s e {

75 DocNode uu = new DocNode(’ ’ , f a l s e , nu l l , d i s g) ;
MajorNode mm = new MajorNode () ;

77 mm. add (uu) ;
mm. par rent = u ;

79 i f (d i r e c t i o n == 1)
u . r i g h t = mm;

81 e l s e i f (d i r e c t i o n == 0)
u . l e f t = mm;

83 e l s e
root = mm;

85 u = uu ;
}

87 r e turn u ;
}

89 /∗∗

69

∗ Generate a node on the t r e e
91 ∗ @param l e f t : the node at r i g h t po s i t i o n o f i n s e r t ed node

∗ @param r i gh t : the node at l e f t po s i t i o n o f i n s e r t ed node
93 ∗ @param u : i n s e r t ed node

∗ @return i n s e r t ed node
95 ∗/

pub l i c DocNode generateNode (DocNode l e f t , DocNode r i ght , DocNode u) {
97 i f (root == nu l l) {

MajorNode um = new MajorNode () ;
99 um. add (u) ;

root = um;
101 r e turn u ;

}
103 i f (l e f t == nu l l && r i gh t == nu l l) {

u = addToMajorNode(root , u) ;
105 r e turn u ;

}
107 i f (l e f t == nu l l) {

i f (r i g h t . l e f t == nu l l) {
109 MajorNode um = new MajorNode () ;

um. add (u) ;
111 r i g h t . l e f t = um;

um. par rent = r i g h t ;
113 } e l s e {

u = addToMajorNode(r i g h t . l e f t , u) ;
115 }

r e turn u ;
117 }

i f (r i g h t == nu l l) {
119 i f (l e f t . r i g h t == nu l l) {

MajorNode um = new MajorNode () ;
121 um. add (u) ;

l e f t . r i g h t = um;
123 um. par rent = l e f t ;

} e l s e {
125 u = addToMajorNode(l e f t . r i gh t , u) ;

}
127 r e turn u ;

}
129 i f (l e f t . i s a n c e s t o r (r i g h t) == true) {

131 i f (r i g h t . l e f t == nu l l) {
MajorNode um = new MajorNode () ;

133 um. add (u) ;
r i g h t . l e f t = um;

135 um. par rent = r i g h t ;
} e l s e {

137 u = addToMajorNode(r i g h t . l e f t , u) ;
}

139

} e l s e {
141 i f (l e f t . r i g h t == nu l l) {

70

MajorNode um = new MajorNode () ;
143 um. add (u) ;

l e f t . r i g h t = um;
145 um. par rent = l e f t ;

} e l s e {
147 u = addToMajorNode(l e f t . r i gh t , u) ;

}
149 }

r e turn u ;
151 }

/∗∗
153 ∗ Apply l o c a l i n s e r t ope ra t i on

∗ @param be fo r e : the node at r i g h t po s i t i o n o f i n s e r t ed node
155 ∗ @param a f t e r : the node at l e f t po s i t i o n o f i n s e r t ed node

∗ @param u : i n s e r t ed node
157 ∗ @return posID o f i n s e r t ed node

∗/
159 pub l i c S t r ing app lyLoca l In s e r top (DocNode be fo re , DocNode a f t e r , DocNode u

)
{

161 u=generateNode (be fo re , a f t e r , u) ;
S t r ing p = getPosID (u) ;

163 r e turn p ;
}

165 /∗∗
∗ Apply l o c a l d e l e t e ope ra t i on

167 ∗ @param u : de l e t ed node
∗ @return posID o f de l e t ed node

169 ∗/
pub l i c S t r ing app ly l o ca lDe l e t eOpera t i on (DocNode u) {

171 u . setAtom (nu l l) ;
S t r ing p = getPosID (u) ;

173 r e turn p ;
}

175 pub l i c DocNode addToMajorNode(MajorNode mj , DocNode u) {
i n t i ;

177 f o r (i = 0 ; i < mj . arrDocNode . s i z e () ; i++) {
i f (mj . arrDocNode . get (i) . id . compareTo (u . id) > 0) {

179 u . majorNode = mj ;
mj . arrDocNode . add (i , u) ;

181 r e turn u ;
}

183 }
i f (i == mj . arrDocNode . s i z e ()) {

185 u . majorNode = mj ;
mj . arrDocNode . add (u) ;

187 r e turn u ;
}

189 r e turn nu l l ;
}

191 long de s i r e dhe i g h t ;
long extranode ;

71

193 s t a t i c i n t cur r enthe i ght ;
i n t addedindex ;

195 /∗∗
∗ Rebanlance Tree

197 ∗ @param NodeList : the l i s t o f nodes o f r eba lanced Tree
∗/

199 pub l i c vo id r eba lanc ing (ArrayList<DocNode> NodeList) {
f o r (i n t y = NodeList . s i z e () − 1 ; y >= 0 ; y−−) {

201 i f (NodeList . get (y) . getAtom () == nu l l) {
NodeList . remove (y) ;

203 }
}

205 de s i r e dhe i g h t = ((long) (Math . l o g (NodeList . s i z e () + 1) / Math . l o g (2)))
− 1 ;

extranode = (long) (NodeList . s i z e () − Math . pow(2 , d e s i r e dhe i g h t + 1) +
1) ;

207 i f (extranode > 0) {
de s i r e dhe i g h t++;

209 }
cur r enthe i ght = 0 ;

211 addedindex = 0 ;
Rebalancing (root , NodeList) ;

213 }
void Rebalancing (MajorNode u , ArrayList<DocNode> NonemptyNdList) {

215 whi le (u . arrDocNode . s i z e () > 1) {
u . arrDocNode . remove (1) ;

217 }
i f (u . arrDocNode . get (0) . l e f t != nu l l) {

219 i f (cu r r enthe i ght < de s i r e dhe i g h t) {
cur r enthe i ght++;

221 Rebalancing (u . arrDocNode . get (0) . l e f t , NonemptyNdList) ;
cu r r enthe i ght−−;

223 } e l s e {
u . arrDocNode . get (0) . l e f t = nu l l ;

225 }
} e l s e {

227 i f (cu r r enthe i ght < de s i r e dhe i g h t) {
DocNode uu = new DocNode(’ ’ , true , nu l l , ”1”) ;

229 MajorNode mm = new MajorNode () ;
mm. add (uu) ;

231 mm. parrent = u . arrDocNode . get (0) ;
u . arrDocNode . get (0) . l e f t = mm;

233 cur r enthe i ght++;
Rebalancing (u . arrDocNode . get (0) . l e f t , NonemptyNdList) ;

235 cur r enthe i ght−−;
}

237 }
u . arrDocNode . get (0) . id = ”1” ;

239 u . arrDocNode . get (0) . setAtom (NonemptyNdList . get (addedindex) . getAtom ()) ;
u . arrDocNode . get (0) . r eba lance = true ;

241 addedindex++;
i f (cu r r enthe i ght == de s i r e dhe i g h t && extranode > 0) {

72

243 extranode−−;
i f (extranode == 0) {

245 de s i r edhe i ght −−;
}

247 }
i f (u . arrDocNode . get (0) . r i g h t != nu l l) {

249 i f (cu r r enthe i ght < de s i r e dhe i g h t) {
cur r enthe i ght++;

251 Rebalancing (u . arrDocNode . get (0) . r i gh t , NonemptyNdList) ;
cu r r enthe i ght−−;

253 } e l s e {
u . arrDocNode . get (0) . r i g h t = nu l l ;

255 }
} e l s e {

257 i f (cu r r enthe i ght < de s i r e dhe i g h t) {
DocNode uu = new DocNode(’ ’ , true , nu l l , ”1”) ;

259 MajorNode mm = new MajorNode () ;
mm. add (uu) ;

261 mm. parrent = u . arrDocNode . get (0) ;
u . arrDocNode . get (0) . r i g h t = mm;

263 cur r enthe i ght++;
Rebalancing (u . arrDocNode . get (0) . r i gh t , NonemptyNdList) ;

265 cur r enthe i ght−−;
}

267 }
}

269 s t a t i c i n t nonEmptyNode ;
s t a t i c i n t EmptyNode ;

271 /∗∗
∗ Trans la te nodes that don ’ t belong to epoch n to epoch n+1

273 ∗ @param a : Tree be fo r e r eba lanc ing
∗ @param b Tree a f t e r r eba lanc ing

275 ∗/
pub l i c s t a t i c vo id Trans la te (TreeDoc a , TreeDoc b) {

277 cur r enthe i ght = 0 ;
nonEmptyNode = −1;

279 EmptyNode = 0 ;
ArrayList<Str ing> posIDPair = new ArrayList<Str ing >() ;

281 v i s i t f o r T r a n s l a t e (a , a . root , b , posIDPair) ;
}

283 s t a t i c pub l i c vo id v i s i t f o r T r a n s l a t e (TreeDoc a , MajorNode r , TreeDoc b ,
ArrayList<Str ing> posIDPair) {

285 f o r (i n t i = 0 ; i < r . arrDocNode . s i z e () ; i++) {
i f (r . arrDocNode . get (i) . r eba l ance == true

287 && r . arrDocNode . get (i) . l e f t != nu l l) {
cur r enthe i ght++;

289 v i s i t f o r T r a n s l a t e (a , r . arrDocNode . get (i) . l e f t , b , posIDPair) ;
cu r r enthe i ght−−;

291 }
DocNode temp = r . arrDocNode . get (i) ;

293 i f (temp . r eba lance == true) {
i f (temp . getAtom () != nu l l) {

73

295 nonEmptyNode++;
EmptyNode = 0 ;

297 } e l s e {
EmptyNode++;

299 }
} e l s e {

301 St r ing oldPosID = a . getPosID (temp) ;
applytoRebalanceTree (cur r enthe i ght , EmptyNode , nonEmptyNode ,

303 temp , b) ;
S t r ing newPosID = b . getPosID (temp) ;

305 posIDPair . add (oldPosID) ;
posIDPair . add (newPosID) ;

307 }
i f (r . arrDocNode . get (i) . r eba l ance == true

309 && r . arrDocNode . get (i) . r i g h t != nu l l) {
r . arrDocNode . get (i) . r i g h t . par rent = r . arrDocNode . get (i) ;

311 cur r enthe i ght++;
v i s i t f o r T r a n s l a t e (a , r . arrDocNode . get (i) . r i gh t , b , posIDPair) ;

313 cur r enthe i ght−−;
}

315 }
}

317 pub l i c s t a t i c vo id applytoRebalanceTree (i n t Height , i n t IndexEmptyNode ,
i n t NotEmptyNode , DocNode temp , TreeDoc b) {

319 St r ing d i s = ”0” ;
char s trHe igh = (char) Height ;

321 i f (IndexEmptyNode == 0) {
d i s = d i s + ” | ” + ”+” + strHe igh ;

323 } e l s e {
char strindexEmptyNode = (char) IndexEmptyNode ;

325 d i s = d i s + ” | ” + ”−” + strindexEmptyNode + ” | ” + ”+” + strHe igh ;
}

327 i f (temp . id . equa l s (””) == f a l s e) {
d i s = d i s + ” | ” + temp . id ;

329 }
temp . id = d i s ;

331 i f (NotEmptyNode == −1) {
DocNode u = b . FindNode (0) ;

333 i f (u . l e f t == nu l l) {
MajorNode mm = new MajorNode () ;

335 mm. add (temp) ;
temp . majorNode = mm;

337 u . l e f t = mm;
mm. par rent = u ;

339

} e l s e {
341 temp . majorNode = u . l e f t ;

i f (u . l e f t . arrDocNode . get (u . l e f t . arrDocNode . s i z e () − 1) . id
343 . e qua l s (”1”) == true) {

u . l e f t . arrDocNode . add (u . l e f t . arrDocNode . s i z e () − 1 , temp) ;
345

} e l s e {

74

347 u . l e f t . arrDocNode . add (temp) ;
}

349 }
} e l s e {

351 DocNode u = b . FindNode (NotEmptyNode) ;
i f (u . r i g h t == nu l l) {

353 MajorNode mm = new MajorNode () ;
mm. add (temp) ;

355 temp . majorNode = mm;
u . r i g h t = mm;

357 mm. parrent = u ;
} e l s e {

359 temp . majorNode = u . r i g h t ;
i f (u . r i g h t . arrDocNode . get (u . r i g h t . arrDocNode . s i z e () − 1) . id

361 . e qua l s (”1”) == true) {
u . r i g h t . arrDocNode . add (u . r i g h t . arrDocNode . s i z e () − 1 , temp) ;

363

} e l s e {
365 u . r i g h t . arrDocNode . add (temp) ;

}
367 }

}
369 }

/∗∗
371 ∗ Get posID o f a node on the t r e e

∗ @param u : the node on the t r e e
373 ∗ @return posID o f parameter node

∗/
375 pub l i c S t r ing getPosID (DocNode u) {

St r ing pathbi t = ”” ;
377 St r ing pathdi s = ”” ;

byte a = 1 ;
379 byte onebyte = 0 ;

i n t numberofbit = 0 ;
381 DocNode temp = u ;

whi l e (temp . majorNode != root) {
383 St r ing d = temp . id ;

MajorNode majorNode = temp . majorNode ;
385 temp = temp . majorNode . par rent ;

i f (temp . r i g h t == majorNode) {
387 onebyte = (byte) (onebyte | a) ;

}
389 numberofbit++;

a = (byte) (a << 1) ;
391 i f (numberofbit % 8 == 0) {

pathbi t = pathbi t + (char) ((onebyte << 8) >>> 8) ;
393 a = 1 ;

onebyte = 0 ;
395 numberofbit = 0 ;

}
397 pathdi s = d + ”−” + pathdi s ;

75

399 }
r e turn pathbi t + ” : ” + pathdi s ;

401 }
/∗∗

403 ∗ Decode posID
∗ @param rece ivedpos ID

405 ∗ @param pathdi s : the ar ray o f disambiguous o f posID
∗ @param pathbi t : the ar ray o f b i t o f posID

407 ∗/
void decodePosID(St r ing posID , ArrayList<Str ing> pathdis ,

409 ArrayList<Integer> pathbi t) {
i n t index = posID . indexOf (” : ”) ;

411 St r ing d i s a r r = posID . s ub s t r i n g (0 , index) ;
S t r ing b i t a r r = posID . s ub s t r i n g (index + 1 , posID . l ength ()) ;

413 index = d i s a r r . indexOf (”−”) ;
whi l e (index != −1) {

415 pathdi s . add (d i s a r r . s ub s t r i n g (0 , index)) ;
d i s a r r = d i s a r r . s ub s t r i n g (index + 1 , d i s a r r . l ength ()) ;

417 index = d i s a r r . indexOf (”−”) ;
}

419 pathdi s . add (d i s a r r) ;
kk = b i t a r r ;

421 i i = −1;
f o r (i n t i = 0 ; i < pathdi s . s i z e () − 1 ; i++) {

423 pathbi t . add (0 , getNext ()) ;
}

425

}
427 St r ing kk ;

i n t i i , j j ;
429 byte dd ;

pub l i c i n t getNext () {
431

i n t k = 0 ;
433 i f (i i == −1) {

j j = 0 ;
435 }

i f (i i == 8 | | i i == −1) {
437 dd = (byte) kk . charAt (j j) ;

j j ++;
439 i i = 0 ;

}
441 i f (i i < 8) {

k = (i n t) (dd & 1) ;
443 dd = (byte) (dd >> 1) ;

i i ++;
445 }

r e turn k ;
447 }

}

Listing C.1: TreeDoc.class

76

import java . u t i l . ArrayLis t ;
2 pub l i c c l a s s MajorNode {

pub l i c DocNode par rent ;
4 pub l i c ArrayList<DocNode> arrDocNode ;

pub l i c MajorNode () {
6 arrDocNode = new ArrayList<DocNode>() ;

par rent = nu l l ;
8 }

/∗∗
10 ∗ add a DocNode to major node

∗ @param u : DocNode
12 ∗/

pub l i c vo id add (DocNode u) {
14 u . majorNode = th i s ;

arrDocNode . add (u) ;
16 }

}

Listing C.2: MajorNode.class

1 pub l i c c l a s s DocNode {
pub l i c Character atom ;

3 pub l i c S t r ing id ;
pub l i c MajorNode majorNode ;

5 pub l i c MajorNode l e f t ;
pub l i c MajorNode r i g h t ;

7 pub l i c boolean r eba lance ;
pub l i c Font font ;

9 pub l i c DocNode(Character a , boolean s , Font f t , S t r ing d i s) {
atom = a ;

11 l e f t = nu l l ;
r i g h t = nu l l ;

13 id=d i s ;
f on t=f t ;

15 r eba lance=f a l s e ;
}

17 }

Listing C.3: DocNode.class

1 import java . u t i l . ArrayLis t ;
pub l i c c l a s s Operation {

3 pub l i c i n t epoch ;
pub l i c S t r ing gene ra to r ;

5 pub l i c StateVector s ta t eVec to r ;
pub l i c i n t optype ;

7 pub l i c S t r ing posID ;
pub l i c Character atom ;

9 pub l i c Font font ;
pub l i c Operation (St r ing gen , StateVector vers , i n t opetype , S t r ing pos , Font

f , i n t e , Character a)
11 {

77

gene ra to r=gen ;
13 s ta t eVec to r=ver s ;

optype=opetype ;
15 atom=a ;

font=f ;
17 epoch=e ;

posID=pos ;
19 }

}

Listing C.4: Operation.class

78

