
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title Model Checking Real-Time Systems with Schedulers

Author(s) Le Vo Hue, Quan

Citation

Issue Date 2012-09

Type Thesis or Dissertation

Text version author

URL http://hdl.handle.net/10119/10769

Rights

Description
Supervisor:Associate Professor Toshiaki Aoki, 情

報科学研究科, 修士

Model Checking Real-Time Systems with Schedulers

By Le Vo Hue Quan

A thesis submitted to
School of Information Science,

Japan Advanced Institute of Science and Technology,
in partial fulfillment of the requirements

for the degree of
Master of Information Science

Graduate Program in Information Science

Written under the direction of
Associate Professor Toshiaki Aoki

September, 2012

Model Checking Real-Time Systems with Schedulers

By Le Vo Hue Quan (1010217)

A thesis submitted to
School of Information Science,

Japan Advanced Institute of Science and Technology,
in partial fulfillment of the requirements

for the degree of
Master of Information Science

Graduate Program in Information Science

Written under the direction of
Associate Professor Toshiaki Aoki

and approved by
Associate Professor Toshiaki Aoki

Professor Kokichi Futatsugi
Associate Professor Kazuhiro Ogata

August, 2012 (Submitted)

Copyright c© 2012 by Le Vo Hue Quan

Table of content

1 Introduction 6
1.1 Real-time operating systems . 6
1.2 Verifying real-time systems with model checking tools 7
1.3 Problem . 8
1.4 Our approach . 9
1.5 Outline of thesis . 10

2 Background 12
2.1 Scheduling problem . 12

2.1.1 Tasks . 12
2.1.2 Scheduler . 13
2.1.3 Scheduling problem . 14

2.2 Scheduling analysis . 14
2.3 Model checker selection . 15

2.3.1 SPIN . 15
2.3.2 UPPAAL . 16
2.3.3 TIMES . 17
2.3.4 Summary . 17

3 Abstraction of Scheduler 19
3.1 Overview . 19
3.2 Model of the abstraction scheduler . 19
3.3 Converting from model to UPPAAL . 23
3.4 Generating priority assignment set . 24

3.4.1 Implementing priority assignment generation 27

4 Verification Framework 30
4.1 Framework for verification . 30
4.2 Preemption . 34
4.3 To invoke scheduler by system call . 34
4.4 To invoke sporadic task . 35
4.5 Using verification framework . 35

1

5 Experiment 37
5.1 Real-time Sorting Machines Problem . 37

5.1.1 Design . 37
5.1.2 Scheduling analysis . 38
5.1.3 Experiment . 39
5.1.4 Appropriate scheduling policies . 41
5.1.5 Evaluation . 49

6 Conclusion and Future work 50
6.1 Conclusion . 50
6.2 Related Works . 51

6.2.1 Model-based framework for Schedulability Analysis Using Uppaal
4.1[7] . 51

6.2.2 TIMES Tool . 52
6.2.3 RTSM group . 52

6.3 Future work . 53
6.3.1 Provide criterion of choosing appropriate scheduler 53
6.3.2 Prove the correctness of abstracted scheduler model 53
6.3.3 Realistic situation of real-time systems 53

Bibliography 55

7 Appendix 57
7.1 UPPAAL . 57

2

List of Figures

1.1 RTOS main Component . 6
1.2 Task management structure . 7
1.3 The overview of our approach . 9

2.1 Overview of Uppaal . 16
2.2 Times tool framework . 17

3.1 Example abstracted scheduler model . 20
3.2 Execution relation of tasks under Round robin algorithm 22
3.3 The relation on task execution under EDF mechanism 23
3.4 Graph representation of this sample ASM model 26
3.5 Implementation design . 27

4.1 A system verification framework in which abstracted scheduler work 30
4.2 Basic model of scheduler . 31
4.3 Basic model of periodic task . 32
4.4 Basic model of sporadic task . 33
4.5 Embedded miss deadline error property . 34
4.6 Scheduler invocation . 35
4.7 Sporadic task invocation . 35

5.1 Design for the Real-Time Sorting Machines example 37
5.2 Abstracted Scheduler Model for RTSM problem 39
5.3 RTSM checking result . 41
5.4 Modified basic task model . 42
5.5 Task transition after a sporadic task invocation 45

7.1 (a) A simple client communicating with (b) a simple buffer. 57
7.2 Three different automata with a local clock 59

3

List of Tables

3.1 ASM model table . 21
3.2 Table representation of this sample ASM model 26

5.1 ASM model for RTSM . 40
5.2 Scheduling policies for real-time system . 43
5.3 Summary of appropriate scheduling policy for RTSM design 49

4

Acknowledgements

First and foremost, I would like to express my deepest thanks to my supervisor− Associate
Professor Toshiaki Aoki for his guidance through the study program in JAIST, Japan. His
valuable advice and support have helped me to overcome many difficulties in the studying
and researching during my study in JAIST. He has made me interested in science and
doing research. My study could not have been completed without him.

Secondly, I would like to acknowledge Asia Jinzai Program for giving me the chance
to study abroad, and the financial support on the study of Master program in JAIST,
Japan.

Thirdly, I would like to thank to all teacher, staff at JAIST who have helped me a lot
during the study time in JAIST, Japan.

Finally and most importantly, I would like to thank my family for their unconditional
love and encouragement through my study program and throughout my life.

5

Chapter 1

Introduction

1.1 Real-time operating systems

In computer science, real-time computing (RTC), or reactive computing, is the study of
hardware and software systems that are subject to a ”real-time constraint” e.g. oper-
ational deadlines from event to system response. Real-time programs must guarantee
response within strict time constraints. Often real-time response times are understood to
be in the order of milliseconds and sometimes microsecond. Real-time software may use
one or more of the following: synchronous programming languages, real-time operating
systems, and real-time networks, each of which provide essential frameworks on which to
build a real-time software application.

A real-time operating system (RTOS) is an operating system (OS) intended to serve
real-time applications request. Nowadays real-time systems are used in a wide variety of
applications, systems, including space applications, electronic automotive and so on. Due
to its application to many areas in society, the correctness of RTOS in time domain is very
important. It means that the problem of checking whether the system complete its work
and deliver its service on time or not is the most important point in design and developing
of RTOS. As the structure of RTOS, there are some key components like following figure:

Figure 1.1: RTOS main Component

6

In the task management component, scheduler with scheduling policies will guarantee
the correctness of RTOS in real-time domain. Because a real-time system is composed
by many tasks, and scheduler is the component which determine the execution order of
task.

Figure 1.2: Task management structure

The challenge of schedulability analysis is now concerned with guaranteeing that the
applied scheduling principles for a set of system properties ensure that the timing deadlines
are met.

1.2 Verifying real-time systems with model checking

tools

There are two main approaches in verifying real-time systems:

• Simulation: try to make a simulation tool in order to simulate the behaviors of
real-time systems.

• Model checking: try to create finite-state models that represent the task’s state
transition, system environment and scheduler behavior. By using model-checking
engine to verify the collaboration between those model.

In the first approach, there are many researches about creating different simulation
tools for different systems with the variety of system environments, scheduler policies and
task properties. For example

• Realtss: A Real-time Scheduling Simulator - gives a framework to evaluate the
real-time scheduling algorithm with given a specific of task set. Using this tool
we can evaluate a scheduling algorithm without worry about a system environment
implementation.

7

• RTSSIM: A Simulation Framework for Complex Embedded Systems - provides a
framework to analysis the task behavior in time domain and resource usage. Using
this tool we can understand how a task will behave in real execution.

• Stress: Simulator for Hard Real-Time Systems - provides a framework to simulate
both applications and kernel software on various architectures. It comprises a single
generic language for architecture description, kernel software, and application soft-
ware.
...

However, if we need to prove the correctness of real-time system - for example, whether
an execution will has a deadlock condition or not - this approach is not appropriate.
Because in simulation tools, they just only simulate the execution of the system in some
specific circumstances. They can not provide the evidence to prove the correctness of
real-time system for all situation of the system.

The second approach to verify real-time system is based on model-checking technique.
Recent years, model-checking has turned out to be a useful technique for verifying tem-
poral properties of finite state systems. In the last few year, model-checking has been
extended to real-time systems, with time considered to be a dense linear order. We can
use this state of the art - timed automaton - in order to deal with scheduling analysis
of real-time system. A timed extension of finite automata through addition of a finite
set of real valued clock variables has been put forward so called timed automata and the
corresponding model-checking problem has been proven decidable for a number of timed
logics including timed extensions of CTL (TCTL) and µ-calculus (Tµ) [5].

In this approach, the TIMES tool and a framework created by UPPAAL group [7] are
outstanding works. These works provide framework in order to analyze scheduling prob-
lems. We need to provide necessary system information into these tool: task properties,
scheduling policies, resource constraints, and so on. The tool will base on model checking
engine to exhaustively check all system states. By exhaustively check all state of the
system, model-based analysis tool can give a firm evidence on our desired properties of
real-time systems.

1.3 Problem

Recent years, there are many research about verifying the validity of some specific schedul-
ing mechanism of different system. We also have another direction in scheduling analysis,
that is finding the set of condition on a task design so that the scheduling problem is feasi-
ble or not. This is classical problem, and it is have been investigated by many researcher.
However, in other research they usually deal with a lot worst-case assumption on task and
system. These assumption are usually based on a worst case computation time of a task.
However typically, systems fail, in a timing sense, in very constrained circumstances, with
the average-case, as often seen on the testcase, performing adequately. So the consequent
result when we base on worst-case assumption will very pessimistic.

8

By using second approach - model-based scheduling analysis - we can deal with more
exactly timing information of real-time tasks. However, beside the detail task behavior
which reflects the detail timing information of task, there are many information related
to real-time scheduling analysis. For example, if we want to check if a given task design is
suitable with a new environment or not. We have to implement the system environment
in model checking tool first, like in [1]. After having an environment, we have to check
all combinations of scheduling strategies, task priority, task offset, task activation time.
This work in some case is not reasonable. Because, the combination of all above factors
is large number and due to the functional limitation of model-checking tool, implement
every possible scheduling policy is almost impossible.

In the case of UPPAAL tool, because we can not access the internal information of
a process (template) from another template. So, we can not implement the Slack
Stealing scheduling mechanism, because in order to compute slack time of all current
task, it requires to have the access to all information of current running task.

1.4 Our approach

To deal with above problem, we proposal a method to abstract the behavior of scheduler.
This abstraction makes it possible to check RTS with multiple schedulers at once and
analyze broad properties related to the schedulers. Our purpose is by using abstracted
scheduler, we can find out in which set of condition on real-time tasks, a given task design
will be feasible, like:

• Scheduling policy

• Task priority

• Task cost

Following figure is the overview of our approach:

Figure 1.3: The overview of our approach

9

• Abstracted Scheduler Model: we will define what is the abstracted scheduler
model in here.

• Scheduling verification framework in UPPAAL: we are trying to do schedul-
ing analysis in more effective way than traditional approach. Therefore, we need a
framework to verify scheduling problem. The framework is built in UPPAAL model
checking tool. The framework will contain task, task behavior and scheduler. The
framework is reusable.

• Generate scheduler implementation: in the verification framework, it has scheduler
component. This scheduler component is in UPPAAL language, so we need a im-
plementation of our abstracted scheduler in UPPAAL language. We will propose an
algorithm in order to automatically translate from abstracted scheduler model into
UPPAAL programming language.

• Generating priority assignment: our purpose is through abstracted scheduler to find
out set of conditions in which a given task design is feasible. In our work, this set
of conditions will contain: task priority assignment and scheduler policy. We will
propose an algorithm which automatically generate all possible priority assignment
from abstracted scheduler model.

1.5 Outline of thesis

In this thesis we will report our work as following order:

• Chapter background:

– We will discuss about the common standard of real-time system to do schedul-
ing analysis and our research scope, goals.

– We will explain why we choose UPPAAL as our model checking tool in order
to realize our idea.

• Chapter Abstraction Scheduler

– We will introduce the formal model of Abstraction Scheduler and its meaning.

– Proposing an algorithm to transform Abstraction Scheduler model into UP-
PAAL model.

– How to generate the priority assignments for a given task design from abstrac-
tion scheduler model.

• Chapter Verification Framework:

– Explaining the system framework in which abstraction scheduler will work.

– Explain how to implement our idea in UPPAAL model-checking.

10

• Chapter Experiment and evaluation: we will do an experiment on Real-time sorting-
machine system design.

• Chapter Conclusion: we will summarize our achievement in this work and also future
improvement needed for our work.

11

Chapter 2

Background

In this chapter we will mention about what is the important factors need to be considered
when we do scheduling analysis. In the second part of this chapter, we will briefly describe
about available model checking tools for real-time system, and why we choose UPPAAL
as our model-checker tool for this thesis.

2.1 Scheduling problem

In this section, we will give a discussion on what is the scheduling problem of real-time
system. At the core of any schedulability problem are the notions of tasks and scheduler.
Tasks are logical units of computation. Tasks are executed under the decision of scheduler.
The added constraints to this basic setup is what defines a specific schedulability problem.
In this section, we define a range of classical schedulability problems.

2.1.1 Tasks

A schedulability problem always consists of a finite set of tasks that we consistently will
refer to as T = t1, t2, ..., tn.

Depending on the consequences that may occur because of a missed deadline, a real-time
task can be distinguished in three categories:[3]

• Hard: A real-time task is said to be hard if producing the result after its deadline
may cause catastrophic consequences on the system under control.

• Firm: A real-time task is said to be firm if producing the result after its deadline
is useless for the system, but not cause any damage.

• Soft: A real-time task is said to be soft if producing the result after its deadline
has still some utility for the system, although causing a performance degradation.

Each task has a number of attributes that we refer to by the following functions:

• INITIAL OFFSET: T → N

Time offset for initial release of task.

12

• BCET: T → N≥0

Best case execution time of task.

• WCET: T → N≥0

Worst case execution time of task.

• MIN PERIOD: T → N

Minimum time between task releases.

• MAX PERIOD: T → N

Maximum time between task releases.

• OFFSET: The time offset into every period, before the task is released.

• DEADLINE: T → N≥0

The number of time units within which a task must finish execution after its release.
Often, the deadline coincides with the period.

• PRIORITY: Task priority.

These attributes are subject to the obvious constraints that BCET (t) ≤ WCET (t) ≤
DEADLINE(t) ≤ MIN PERIOD(t) ≤ MAX PERIOD(t). The periods are ignored
if the task is non-periodic.

The interpretation of these attributes is that a given task ti cannot execute for the
first OFFSET (ti) time units and should hereafter execute exactly once in every pe-
riod of PERIOD(ti) time units. Each such execution has a duration in the interval
[BCET (ti),WCET (ti)]. The reason why tasks have a duration interval instead of a spe-
cific duration is that tasks are often complex operations that need to be executed and the
specific computation of a task depends on conditionals, loops, etc. and can vary between
invocations. Furthermore, for multi-processor scheduling, considering only worst-case ex-
ecution times are not is insufficient as deadline violations can result from certain tasks
exhibiting best-case behavior.

We say that a task t is ready (to execute) at time τ iff:

1. τ ≥ INITIAL OFFSET(t)

2. t has not executed in the given period dictated by τ .

2.1.2 Scheduler

In order to determine which task to execute and which tasks to hold, scheduling policy
is needed. Scheduling policies vary greatly in complexity depending on the constraints of
the schedulability problem.

Scheduling strategy for real-time systems can be classified into 2 groups: preemptive
and non-preemptive.

13

• Preemptive scheduling is the act of temporarily interrupting a task being carried
out by a computer system, without requiring its cooperation, and with the intention
of resuming the task at a later time.

• Non-preemptive scheduling is a style of computer multitasking in which the system
will never initiates a context switch from a running task to another.

Preemption characteristic is determined by many factor of task depend on the strategy of
scheduler: task deadline, activation time, priority and so on. A good scheduling strategy
for real-time system is a policy that guarantee all hard real-time periodic and sporadic
task are meet their deadline.

2.1.3 Scheduling problem

Now, we define what it means for a system to be feasible. For a given system’s design
with scheduling policies is said to be feasible if no execution satisfying the constraints of
the system violates a deadline.

2.2 Scheduling analysis

In other researches like [2, 7, 9] scheduling analysis for real-time systems is based on some
assumption for the system:

• The system can be in finite number of states.

• There are transitions between states.

• The transitions are sensitive to the time in which they occur.

• There is a global clock in the system that measure its time (global clock tics).

• All states and transitions share the same clock rate (but can have clocks of their
own with the same rate)

In our work, we also work with above assumptions, because it will make our work
is reasonable when compare with related work. In real-time system or another operat-
ing system, the system environment contains a lot of information and components like:
scheduler itself, resource (memory, bus, i/o component), communicate control component,
tasks (with different types), system kernel. Deal with everything at once will make the
problem of scheduling analysis become unnecessary complicated. Therefore, in our work
and also in many related works, we want to focus on scheduler itself and system tasks.

For the scheduler and task in real-time system, there are also many factors we need to
consider when do scheduling analysis. Among that factors, the important factors need to
be considered in many related research are:

• Scheduling strategy

14

• Number and task type : periodic, sporadic.

• Task properties: activation time, offset, worst and best computation time, deadline,
task behavior

These above factors is our aimed system or the scope of our research. About the goal
or purpose of performing scheduling analysis is to aim the the following common goals:

• Reachable state: checking if some desired states are reached or not in system exe-
cutions.

• Deadline miss: check that all hard real-time tasks are done by their deadline or not.

• Deadlock conditions: check that if the deadlock conditions is happen or not in
system execution.

2.3 Model checker selection

As the discussion in chapter Introduction, we want to follow model-based scheduling
analysis in order to realize our approach. Our intention is choosing a model-checking tool
that can be applied for various features of real-time systems like: time related properties,
cost.

2.3.1 SPIN

SPIN is a general tool for verifying the correctness of distributed software models in
a rigorous and mostly automated fashion. It was written by Gerard J. Holzmann and
others in the original Unix group of the Computing Sciences Research Center at Bell
Labs, beginning in 1980. The software has been available freely since 1991, and continues
to evolve to keep pace with new developments in the field.

Systems to be verified are described in Promela (Process Meta Language), which sup-
ports modeling of asynchronous distributed algorithms as non-deterministic automata
(SPIN stands for ”Simple Promela Interpreter”). Properties to be verified are expressed
as Linear Temporal Logic (LTL) formulas, which are negated and then converted into
Bchi automata as part of the model-checking algorithm. [18]

In the basic Promela language there is no mechanism for expressing properties of clocks
or of time related properties or events. There are good algorithms for integrating real-
time constraints into the model checking process, but most attention has so far been given
to real-time verification problems in hardware circuit design, rather than the real-time
verification of asynchronous software, which is the domain of the Spin model checker.
[17] The best known of these algorithms incur significant performance penalties compared
with untimed verification. Each clock variable added to a model can increase the time
and memory requirements of verification by an order of magnitude. Considering that
one needs at least two or three such clock variables to define meaningful constraints, this
seems to imply, for the time being, that a real-time capability requires at least three to

15

four orders of magnitude more time and memory than the verification of the same system
without time constraints.

Promela is a language for specifying systems of asynchronous processes. For the defi-
nition of such a system we abstract from the behavior of the process scheduler and from
any assumption about the relative speed of execution of the various processes. It can be
hard to define realistic time bounds for an abstract software system. Typically, little can
be firmly known about the real-time performance of an implementation. It is generally
unwise to rely on speculative information, when attempting to establish a system’s critical
correctness properties.

2.3.2 UPPAAL

Uppaal is a tool box for modeling, simulation and verification of real-time systems, based
on constraint-solving and on-the-fly techniques, developed jointly by Uppsala University
and Aalborg University. It is appropriate for systems that can be modeled as a collec-
tion of nondeterministic processes with finite control structure and real-valued clocks,
communicating through channels and (or) shared variables.

Uppaal consists of three main parts: a description language, a simulator, and a model-
checker. The description language is a non-deterministic guarded command language
with data types. It serves as a modeling or design language to describe system behavior
as networks of timed automata extended with data variables. The simulator and the
model-checker are designed for interactive and automated analysis of system behavior by
manipulating and solving constraints that represent the statespace of a system description.
They have a common basis, i.e., constraint-solvers.The simulator enables examination of
possible dynamic executions of a system during earlymodeling (or design) stages and thus
provides an inexpensive mean of fault detection prior to verification by the model-checker
which covers the exhaustive dynamic behavior of the system.

Figure 2.1: Overview of Uppaal

16

2.3.3 TIMES

Times is a modelling and schedulability analysis tool for embedded real-time systems,
developed at Uppsala University. It is appropriate for systems that can be described as a
set of preemptive or non-preemptive tasks which are triggered periodically or sporadically
by time or external events. It provides a graphical interface for editing and simulation,
and an engine for schedulability analysis. [19]

A system specification in Times consists of three parts: the control automata modelled
as a network of timed automata extended with tasks, a task table with information about
the processes triggered (released) when the control automata changes location, and a
scheduling policy.

Figure 2.2: Times tool framework

Times tool provides a facility to perform scheduling analysis with expressive task-model.
It means that we can set many parameters of tasks of real-time system in Time tool:
priority, computation time, deadline, period and behavior. However, in Times tool we
can only analyze four kinds of scheduling policy: Rate Monotonic, Deadline Monotonic,
Earliest Deadline First, First Come First Served.

2.3.4 Summary

Our goal in this thesis is trying to find out in which set of conditions of tasks in real-time
system, scheduling problem is feasible. As the briefly description about Spin model-
checker tool above, SPIN can not directly deal with real-time properties. Moreover, in
Spin we can not deal with the cost of a task’s behavior like: computation time, switching
cost, and so on. So the choice of SPIN is not appropriate in our research.

In the case of Times tool, it has the framework for us to perform scheduling analysis
with various task properties: periodic, aperiodic, sporadic, task priority, so on. It can give
us evidence to prove that with a given task set and a specific scheduling policy, the system
is feasible or not based on UPPAAL engine. However, it can not give us in which task
properties set, the system is feasible. Moreover, if we can to verify the system in different
situations, we have to do this verification one by one. It is not reasonable because the

17

combination of task properties (task priority, computation time, task behavior, arrival
time, deadline, and so on) is large.

Therefore, after considering related model-checking tools used for timed related sys-
tem, we choose UPPAAL as our model-checking tool in order to realize our idea in this
thesis. Because it provides us a open framework to realize our idea in real-time sys-
tem concept. Moreover, UPPAAL tool also supports stopwatch automata. By using
stopwatch automata we can dealwith the fifth assumption 2.2 in scheduling analysis for
real-time system. In Appendix part, we will briefly introduce about Uppaal model based
on Uppaal tutorial available at http://www.it.uu.se/research/group/darts/uppaal/
small_tutorial.pdf

18

http://www.it.uu.se/research/group/darts/uppaal/small_tutorial.pdf
http://www.it.uu.se/research/group/darts/uppaal/small_tutorial.pdf

Chapter 3

Abstraction of Scheduler

3.1 Overview

The purpose of scheduler in real-time scheduling is to decide the execution order of sys-
tem’s task such that the real-time properties are hold. Real-time properties are:

• Every hard real-time tasks meet its deadline.

• Every soft real-time tasks finish their task in reasonable time.

In this chapter, we will introduce our idea about creating an abstraction scheduler and
explain how to use this model to verify a system.

3.2 Model of the abstraction scheduler

There are two main method in abstraction techniques: under-approximation and over-
approximation method. In under-approximation we will create an abstraction model
which is a subset of real problem, and try to prove the incorrect facts of real-problem
by using under-approximation model. In contrast, over-approximation method, we will
create an abstraction model which is a superset of real problem, and try to prove the
correct facts of real-problem by using over-approximation model.

A scheduler will create an execution order of task depends on input parameters. Input
parameters are scheduling policy, task priority, task deadline, activation time and so on.
In our work, we want to propose a method to create an abstraction scheduler. This can
abstract the scheduling policy, task priority and task cost. In addition, in our work we
can deal with the functional view of real-time task. Therefore we need a mechanism to
describe the abstracted scheduler and how to use it.

Firstly, we will introduce the concept in order to define the abstraction scheduler:

Definition A model of abstracted scheduler S is a set of {T,E,f} where T is a set of
tasks {t1, t2, t3,...}, and E is a set of edges between the task E ⊆ {(t1, t2)|t1, t2 ∈ T}.
Where edge is the relation on tasks represent the execution order of task. That is, each

19

edge can be followed from one task to another task or itself. We have 2 types of edges:
non-preemptive edge and preemptive edge

• Non-preemptive edge: the succeeding task can not preceding task

• Preemptive edge: the succeeding task can preempt preceding task

f: is the assignment function of abstracted scheduler model, it will assign a edge to it’s
corresponding value: preemptive or non-preemptive.

We can define the abstracted scheduler model formally like following:

Definition Abstraction Scheduler : S = (T,E,f)

– T = (t1, t2, t3, ...)

– E ⊆ T x T

– f: E → {1, 0.5}

∗ ”1” is corresponding with non-preemptive edge.

∗ ”0.5” is corresponding with preemptive edge.

For example, in a system with 5 tasks and we want to have an abstracted scheduler
work like following definition:

• Example abstraction scheduler model : S1 = {T, E, f}

– T = { t1, t2, t3, t4, t5 }
– E = {(t1, t2), (t2, t3), (t2, t4), (t3, t4), (t4, t5), (t1, t5)}
– f: (1,2) → 1 ; (2,3) → 0.5 ; (2,4) → 0.5; (3,4) → 1; (4,5) → 1; (1,5) → 0.5

We can get a abstraction model like in following figure:

Figure 3.1: Example abstracted scheduler model

20

Where each node represent a task in the system, each transition represent the edge of
abstracted scheduler model (ASM). The transition name represent the name (or value) of
each edge in ASM.

• Transition with no name: the succeeding task can not preempt the preceding task

• Name of transition is Preemptive: the succeeding task can preempt the preceding
task

After we have a abstracted scheduler model is defined by using our method 3.2, we can
represent it by using an 2-dimension array. For example, like in our previous example,
the ASM model can be represented like:

Task T1 T2 T3 T4 T5

T1 NG NG NG NG NG
T2 1 NG NG NG NG
T3 NG 0.5 NG NG NG
T4 NG 0.5 1 NG NG
T5 0.5 NG NG 1 NG

Table 3.1: ASM model table

In above example of abstracted scheduler model (ASM model), we will have following
execution order of this given 5 tasks:

• If there is only one task ready for execution, it will has permission for execution.

• When task 1 is executing, task 2 is ready for execution. Task 2 must wait until task
1 finish it’s work.

However, in this situation, if task 5 is ready for execution, it will preempt the
execution of task 1.

Task 1 will continue it’s execution after task 5 finish it’s work

• It is the same mechanism in the case that task 2 is executing and task 3 or task 4
is ready for execution.

Through this simple example, we can get an idea of the meaning of abstracted scheduler
model. It will make a abstracted schedule among many possible schedules created by
different scheduling policies. Each scheduling policy based on it’s algorithm and the
input information from task in order to make the schedule of task.

For example, in the case of round robin scheduling algorithm, we will have following
execution relation between tasks:

21

Figure 3.2: Execution relation of tasks under Round robin algorithm

In the case of Earliest Deadline First scheduling algorithm, depend on the task infor-
mation - task activation time, offset, deadline - it will give a different schedule of task
execution. For example, we have following task design information:

• Task activation time

– Task 1 is activated at 0 time unit.

– Task 2 is activated at 0 time unit.

– Task 3 is activated at 4 time unit.

– Task 4 is activated at 4 time unit.

– Task 5 is activated at 6 time unit.

• Task deadline

– Task 1 has to be finished within 7 time unit.

– Task 2 has to be finished within 4 time unit.

– Task 3 has to be finished within 5 time unit.

– Task 4 has to be finished within 5 time unit.

– Task 5 has to be finished within 10 time unit.

Based on above assumption on task information, we will have following relation between
task executions:

22

Figure 3.3: The relation on task execution under EDF mechanism

Therefore, we can recognize that the relation between task execution will be various
under different scheduling policies and different settings. Our abstracted scheduler model
will create an abstracted relation between task execution order. By applying the ab-
stracted model to a concrete example, we can known that which set of conditions it cover.

3.3 Converting from model to UPPAAL

In our work, we will use UPPAAL model checking tool as the verification tool. UPPAAL
has its own programming language. So in order to make our idea work, we must have
UPPAAL code for abstracted scheduler. This section we will introduce how to convert
the abstraction scheduler model (ASM) into UPPAAL code.

23

By using algorithm 1, we can translate ASM description into UPPAAL code.
input : Abstracted Schedule model table - ASM table
output: Uppaal scheduling code

1 declare iterator i, j ;
2 for each task i in system do
3 if task i is schedulable then
4 switch i do
5 case i
6 for each task j on i row do
7 if ASM table[i,j] = 1 then
8 if task j is schedulable then selectedTask = j;
9 end

10 else if ASM table[i,j] = 0.5 then selectedTask = i;

11 end

12 endsw
13 otherwise
14 selectedTask = i;
15 endsw

16 endsw

17 end

18 end
19 for each task i in system do
20 running array[i] = 0 ; // Stop all task

21 end
22 running[selectedTask] = 1;

Algorithm 1: How to convert from ASM model to UPPAAL code
The idea of this algorithm is based on the execution order relation’s value of task in

table form, to determine which task will be executed first, which task will be next. In the
UPPAAL framework, we have an array - running - to indicate which task is currently
executing. Based on the input table information, we will set the appropriate value to this
array.

The UPPAAL programming language is C-like language, however it does not support
switch - case control, so in the UPPAAL code it will be replaced by if - then - else
control sequence.

3.4 Generating priority assignment set

In our research, many information of scheduling problem is abstracted. One of important
information is task priority. Task priority is needed to schedule real-time tasks in almost
scheduling algorithms. Therefore, after having an abstracted scheduler model, we want
to extract information that in which priority set the tasks design of system is feasible.

24

Following algorithm will help us to do that:

input : Abstracted Schedule model table - ASM table
output: Priority assignment set

1 declare iterator i, j and index ;
2 List out all possible combination from number of task - nn combination into
result array ;

3 for each task i in system do
4 for each task j in system do
5 if i == j then
6 next;
7 end
8 else
9 index++;

10 end
11 if ASM model[i,j] == 1 then
12 for each k in result array do
13 if result[k]i < result[index]j̇ then
14 remove result[k];
15 end

16 end

17 end
18 else if ASM model[i,j] == 0.5 then
19 for each k in result array do
20 if result[index]i >= result[index]j̇ then
21 remove result[k];
22 end

23 end

24 end

25 end

26 end
27 Eliminate wrong initial selection;

Algorithm 2: How to generate priority assignment from ASM model
The idea this algorithm is we base on the relation of execution order in ASM model, to

determine the priority assignment of tasks:

• If a task can preempt another task, this task will have a higher priority than the
preempted task.

• If a task can not preempt another task, it will have a lower priority than the pre-
ceding task.

• If there is no execution order relation between tasks, these can can have arbitrary
priority assignment.

25

• Because the graph model is transitive, so the relation of task has transitive property.

For example, if we have a ASM model is described as following:

ASM Model S: (T, E, f)

T: t1, t2, t3

E: {(t1,t2), (t1,t3)}

f: (t1,t2) → 0.5, (t1,t3)→ 0.5

Task Task1 Task2 Task3

Task1 NG NG NG
Task2 0.5 NG NG
Task3 NG 0.5 NG

Table 3.2: Table representation of this sample ASM model

Figure 3.4: Graph representation of this sample ASM model

Based on above algorithm for generating priority assignment, we will get following
assignment:

(1 , 2 , 2)
(1 , 2 , 3)
(1 , 3 , 2)
(1 , 3 , 3)

Listing 3.1: Priority assignment list for this sample model

26

3.4.1 Implementing priority assignment generation

Our work is based on UPPAAL model checking tool, however above algorithm is used for
evaluating our abstracted scheduler model. Therefore, we will use a structure supported
programming language to realize our idea. In this work, we use Java as the language to
implement automatic priority generation algorithm. In this sub-section, we will explain
how we implemented it in Java.

As the design for this implementation, we will have only one processing component
which represent our algorithm, as following figure 3.5

Figure 3.5: Implementation design

As in algorithm description, the input of algorithm is a abstracted scheduler model in
table form. We will represent it in Java by using 2-dimensional array.

• The NG value will be represented by 0.

• The 1 value will be represented by 1.

• The 0.5 value will be represented by 0.5.

For example, in previous example, input of our algorithm will be:

double [] [] asm = new double [] [] {{0 ,0 , 0} ,{0 .5 , 0 , 0} ,{0 ,0 . 5 , 0}}

Listing 3.2: Input for our example model

Base on the automatic priority generation algorithm, we have two main steps:

• Step 1: List all possible priority combinations and put into result array.

27

• Step 2: Eliminate wrong combination from result array.

In our example, for the first step, by using Java we will get following implementation:

int i , j , k ;
ArrayList<Object> r e s u l t = new ArrayList<Object >() ;
for (i = 1 ; i<=3; i++)
{

for (j = 1 ; j<=3; j++)
{

for (k = 1 ; k<=3;k++)
{

r e s u l t . add (new int [] { i , j , k }) ;
}

}
}

Listing 3.3: First step of automatic generating algorithm

The second step, we will base on the abstracted scheduler model in table form to
eliminate wrong priority assignment:

for (i = 1 ; i<=3; i++)
{

for (j = 1 ; j <= 3 ; j++)
{
i f (i != j)
{

i f (asm [i] [j] == 1)
{

for (k = 0 ; k<r e s u l t . s i z e () ; k++)
{

i f (((int []) r e s u l t . get (k)) [i] < ((int []) r e s u l t . get (k)) [j])
r e s u l t . remove (k) ;

}
}
else i f (asm [i] [j] == 0 . 5)
{

for (k = 0 ; k<r e s u l t . s i z e () ; k++)
{

i f (((int []) r e s u l t . get (k)) [i] >= ((int []) r e s u l t . get (k)) [j])
r e s u l t . remove (k) ;

}
}

}
}

28

}

Listing 3.4: Second step of automatic generating algorithm

The content of result array is the priority assignments after running this algorithm, as
following listing:

(1 , 2 , 2)
(1 , 2 , 3)
(1 , 3 , 2)
(1 , 3 , 3)

29

Chapter 4

Verification Framework

In this chapter, we will explain how we implement our idea and build a framework for
checking real-time system with abstracted scheduler.

4.1 Framework for verification

In order to use the abstraction scheduler model to verify a system, we need a framework
in order to describe system component and make everything work together. Following
framework allow us to put any new scheduling algorithm into the system. Moreover, in
the system model we can describe the detail functional view of tasks, along with some
abstracted component like: task cost.

Figure 4.1: A system verification framework in which abstracted scheduler work

Our framework contains 4 main parts:

30

• System configuration: contains general configuration for the system. We can specify
the number of periodic tasks, sporadic tasks, total tasks, and the scheduler ID. In
addition, we will specify how many channels are needed in the verification model:
channel for communicating between scheduler model and task model, channel for
communicating between task behavior model. For system management, we also
declare arrays of running thread (task) in the system in this component.

• Scheduler model: it contains 2 part: a basic model and scheduling algorithm imple-
mentation part.

– Scheduler basic model: is depicted as figure 4.2. This model work as the basic
state transition of scheduler. Initially the broadcast channel GO! is signaled
to ensure all threads are in their correct state. The scheduler then executes
for wcet time. If there are any schedulable threads, the appropriate thread is
selected, by setting the corresponding index in the running array to 1. If no
threads are schedulable all indices in running are set to 0. This is handled by
the two methods selectThread() and idle() respectively.

Figure 4.2: Basic model of scheduler

– Scheduler algorithm implementation: is the implementation for selectThread()
and idle() in scheduler basic model.

• Periodic task model: it also contains 2 component Basic model and Model for
describing task behavior.

– Basic model: it work like a basic state transition of periodic task, depicted as
figure 4.3. This basic model must be supplied with parameters to determine
its ID, period, deadline, and offset corresponding with task design.

31

∗ Initially the task waits if an offset is specified. This waiting process is sig-
naled after receiving ”GO” signal from scheduler. Each task in the system
will have an clock variable named ”releasedTime”. This clock variable will
measure the time of running task and help us to realize the preemption of
scheduling algorithm. After passing specified offset, the periodic task will
set its schedulable variable to be true, reset it’s own clock releasedTime
= 0, and call function runScheduler() in order to invoke scheduler model.

∗ Basic model will communicate with task behavior model through run
channel. The run channel is signaled with the current ID of the thread,
run[pID]!, it then waits for a response on the same channel, which in-
dicates the task is done with its behavior. It is then ensured that it has
completed before its deadline, otherwise it results in a deadlock, and the
system is not schedulable. The scheduler model is invoked to determine
which task to schedule next. The same procedure continues for each period
of the periodic thread.

Figure 4.3: Basic model of periodic task

– Task behavior model: it work as the detail description of real-time task. Task
cost: switching cost, computation code will be abstracted as a time value.

32

Each task will has one or a number of task behavior models. But, all behavior
models of task must be have a common channel to communicate with basic
model. In order to receiving the running signal, and return the computation
time to task.

• Sporadic model: it similar to the periodic model. It contains 2 part: a basic model
and behavior model. In basic model, it must be invoked by a signaling fire with the
sporadicID. The basic model is depicted in figure 4.4. This model must be supplied
with parameters for its ID, minimum inter-arrival time, and deadline. When the
minimum inter-arrival time since the last release of this task has passed, the firable
array is set to true for the specific task, and it is ready to be fired again. The signal
fire is generated by a invocation from a periodic task’s behavior in our framework.

Figure 4.4: Basic model of sporadic task

About checking real-time properties by using our framework. Like we can see in 4.5,
when a task model go from ”ExecutingThread” state to ”DONE” state, it must check
guard condition releasedTime <= deadline. Therefore, if the execution time of a task
behavior exceeds it’s deadline, the task model can not perform this transition. Therefore,
the system will go to deadlock condition. So, if we want to check deadline miss error, we
can do it by checking the deadlock condition in the system. By using following query:

A[] not deadlock

Beside that, if the given task design has deadlock condition by itself, we can also use
above query to verify the system.

33

(a) (b)

Figure 4.5: Embedded miss deadline error property

4.2 Preemption

In our approach scheduler can preempt a running task. To realize this behavior of sched-
uler, we will base on the stopwatches function of UPPAAL tool. About the definition
and power of stopwatches automaton, we can reference to [20]. By using stopwatch, at
different location of model, we can set different clock rate

• clock rate = 0: it mean that the current task is not running

• clock rate = 1: it mean that the current task is running

In order to realize the preemption, we put a clock variable into each model (scheduler
model, periodic task model, sporadic task model). If we want to preempt current task i,
we just need to add this update command into a transition of a model:

executionTime’ == running[i]

where running is an array indicate the state of task: running (1) or preempted (0).

4.3 To invoke scheduler by system call

In real-time operating system, scheduler is just only invoked by a system call. In our
framework, we only deal with scheduler and system tasks. There is no kernel implemen-
tation. In order to realize above fact, the scheduler will be invoked by a signal sent from a
task. In the framework initialization period, all task will receive ”GO” signal from sched-
uler model. After passing the initialization period, when the task is ready to perform it’s
work, task model will invoke scheduler by call a function run scheduler() like in task
model 4.3, 4.4.

34

Figure 4.6: Scheduler invocation

4.4 To invoke sporadic task

The sporadic task is a system task respond for a random event. Like in previous section,
our framework only deal with scheduler and task. Therefore, there is no input event into
our framework. In order to fire a sporadic task, we provide a array which indicate a
sporadic task is fireable or not, after the condition on sporadic task design. When we
want to fire an sporadic task, we will send a signal through communication channel fire.
In figure 4.7, when a sporadic task 4 is ready to be fired, we set like:

fireable[4] = true, fire[4]!

Figure 4.7: Sporadic task invocation

4.5 Using verification framework

Our framework has 4 main components. To use this framework, we can follow following
step:

• Create task model:

– Create the basic task model for both periodic and sporadic task if necessary.
4.3 4.4

35

– Declare a communication channel between basic model and task behavior.

– Create task behavior model for each task, based on task design of the system.
In each behavior model, we must declare a clock variable, in order to realize
preemption characteristic.

• Create scheduler model:

– Create the basic scheduler model as depicted in 4.2.

– Implement selectThread() function as to realize abstracted scheduler.

• In system configuration: declare necessary information for the configuration of sys-
tem - tasks, scheduler, communication channel.

• In system data: declare necessary global data like: number of task, number of task
types.

In next chapter, we will provide an example, in order to give more detail sample of
above steps.

36

Chapter 5

Experiment

In this chapter, we will describe our experiment based on following sample problem:

• Real-time Sorting Machines: this is the sample real-time system designed by UP-
PAAL research group [15]

5.1 Real-time Sorting Machines Problem

5.1.1 Design

The overall idea of RTSM is to sort candy available in two different colors, white and blue.
The candy is from now on referred to as objects. The sorting problems is kept simple,
because the focus is to try different real-time aspects. The design of RTSM is based on
some requirements.

The overall design idea of RTSM is depicted in Figure 5.1. The objects are placed in
the Feeder which places one at a time on the conveyor belt with some space between.
This ensures a constant flow of objects to be sorted, and prevents two objects from being
right beside each other.

Figure 5.1: Design for the Real-Time Sorting Machines example

The conveyor moves the objects to the right, as the arrows indicate. When the object
leaves the Feeder it passes by Sensor 1, which determines whether it is a white or a blue
object. Sensor 1 on the figure is actually two sensors placed on each side of the conveyor
belt, and then encapsulated in a small cube. The cube is built to prevent external light

37

from interfering with the sensors. The use of two sensors has two purposes. Firstly,
the sensors emit light to each other, keeping a constant high amount of light, easing
the detection of objects breaking this light, and therefore spot when objects pass by the
sensor. Secondly, the object might not always be in the middle of the conveyor belt,
making the light it reflects either higher or lower than expected, this is compensated for,
by using the average of the two sensor inputs.

Based on what color is detected, either Motor 1 or Motor 2 must be activated when
the object is in front of the motor. Activation of a motor involves pushing the object into
the correct bin, thereby sorting the objects.

Sensor 2 is not used as a part of the actual sorting, but is used during an initial
calibration phase. This phase is used to determine the values read by Sensor 1 dependent
on the color of the object and the speed of the conveyor. Sensor 2 is then used to
measure the speed of the conveyor by measuring the time difference between when the
object passes Sensor 1 and Sensor 2. The speed of the conveyor belt is then used to
calculate the following timing constraints:

• An object is added to the conveyor belt each 500ms.

• It takes 180ms to push an object off the conveyor belt.

• It takes 858ms to move from Sensor 1 to Motor 1.

• It takes 1326ms to move from Sensor 1 to Motor 2.

5.1.2 Scheduling analysis

Based on above system design, real-time sorting machine system contains 4 task: 2 peri-
odic tasks and 2 sporadic tasks. Because 2 sporadic tasks are fired by a periodic task, in
order to push an object off the conveyor on time. Therefore when these 2 sporadic tasks
is ready to be fired, they should be fired as soon as possible. Based on this fact, we can
guess that 2 sporadic task must have higher priority than periodic task. Depending on
what scheduling policy is applied for this system design, the system is feasible or not.s

This system design is implemented by [15]. Based on the result of experiment we have
the worst-case execution time for:

Name WCET in clock cycles
Periodic Read Sensor 1330
PeriodicMotorSpooler 16022
SporadicPushMotor 9204

The traditional scheduling analysis approach always try to analyze the system in worst-
case of interference. So, if we try to follow this approach, we will get following processor
utilization for this given task design:

1330

16022
+

9024

16022
+

9024

16022
= 1.209 > 1

38

So, if we follow the traditional approach, this given task design is unschedulable. How-
ever, in model-based analysis we can check the correct behavior of task design, and give
more accurate result. For example, in this given task design, the periodic task fire 2
sporadic tasks in exclusive region. Therefore, there is no case of 2 sporadic tasks can be
fired at the same time. It is one of strong evidence that following model-based analysis is
appropriate for real-time systems.

In our approach, we will abstract the scheduling policy by using an abstracted scheduler
model. By using the abstracted scheduler model, priority assignment for each task is
abstracted. After finding out the correct scheduler abstraction, we will try to extract
the set of appropriate priority assignment for this set of task, and also which scheduling
policy is suitable for this given task design.

5.1.3 Experiment

In order to use our approach to perform scheduling analysis for this system design, we
have to follow steps in 4.5.

First, we will create 2 basic model for periodic task and sporadic task. Based on the
implementation of RTSM in [15], we can build task behavior model for 2 sporadic task,
and 2 periodic task.

Now we need to define what is our intention abstracted scheduler for this given task
design. Our intention will control 4 tasks of this given design are scheduled like in figure
5.2

Figure 5.2: Abstracted Scheduler Model for RTSM problem

This abstracted scheduler can be declared by using our formal definition for abstracted
scheduler model like following:

39

• Abstracted Scheduler for RTSM - S = {T, E, f}

– T = { t1, t2, t3, ... }
– E = {(t1, t2), (t2, t3), (t2, t4)}
– f: (1,2) → 1 ; (2,3) → 0.5 ; (2,4) → 0.5

The representative version in computer understandable mean is:

Task T1 T2 T3 T4

T1 NULL NULL NULL NULL
T2 1 NULL 0.5 0.5
T3 NULL NULL NULL NULL
T4 NULL NULL NULL NULL

Table 5.1: ASM model for RTSM

By using translation algorithm from ASM model to UPPAAL code, we can get following
implementation code for this abstracted scheduler in UPPAAL.

void se l e c tThread (){
int i ;
for (i : ThreadID){
i f (s chedu lab l e [i]) {

i f (i == 1)
se l ec tedThread = 1 ;

else i f (i == 2) {
i f (s chedu lab l e [1] == fa l se)

se l ec tedThread = 2 ;
else

se l ec tedThread = 1 ;
}
else i f (i == 3)

se l ec tedThread = 3 ;
else i f (i == 4)

se l ec tedThread = 4 ;
} }

for (i = 0 ; i <= tota lThreads ; i ++){
running [i] = 0 ;

}
running [se l ec tedThread] = 1 ;
}

Listing 5.1: Implementation code for ASM model of RTSM

40

Because UPPAAL does not support switch - case command, so in the implementation
code we change it to if - else control command.

After we have a model for scheduler, basic model of task, task behavior model, we need
to configure the system component into UPPAAL like:

Listing 5.2: Configuration code for RTSM

// d e c l a r e in fo rmat ion f o r p e r i o d i c ta sk s
Per iodicThread1 = PeriodicThread (1 , 120000 , 120000 , 0) ;
Per iodicThread2 = PeriodicThread (2 , 240000 , 240000 , 0) ;
// d e c l a r e in fo rmat ion f o r sporad i c ta sk s
SporadicThread3 = SporadicThread (3 , 240000 , 3600) ;
SporadicThread4 = SporadicThread (4 , 240000 , 3600) ;
System
// Sporadic Threads
Template 0003 3 , SporadicThread3 ,
Template 0003 4 , SporadicThread4 ,
// Pe r i od i c Threads
Template 0006 1 , PeriodicThread1 ,
Template 0017 2 , PeriodicThread2 ,
// Scheduler

Scheduler ;

Now we will check our system with following query:

A[] not deadlock

We will get the result of after verifying by using UPPAAL engine - figure 5.3. It means
that RTSM system is feasible under our abstracted scheduler abstraction.

Figure 5.3: RTSM checking result

5.1.4 Appropriate scheduling policies

We have got the RTSM system is feasible under the ASM model5.1. In our approach,
priority and scheduling policy is abstracted. Now, we will try to extract the priority as-
signment set and appropriate scheduling policy for RTSM system through our abstracted
scheduler 5.1

41

Priority assignment

By using the algorithm for generating priority assignment from ASM model, algorithm 2.
Will get following priority assignment for this given task design of RTSM system.

(2 , 1 , 2 , 2)
(2 , 1 , 3 , 4)
(2 , 1 , 4 , 3)
(2 , 1 , 4 , 4)
(2 , 1 , 3 , 3)
(3 , 1 , 2 , 2)

(3 , 1 , 2 , 3)
(3 , 1 , 3 , 2)
(3 , 1 , 3 , 3)
(4 , 1 , 2 , 2)
(4 , 1 , 2 , 3)
(4 , 1 , 3 , 2)

(4 , 1 , 3 , 3)
(4 , 1 , 4 , 3)
(4 , 1 , 3 , 4)
(4 , 1 , 4 , 4)
(4 , 1 , 2 , 4)
(4 , 1 , 4 , 4)

Listing 5.3: Priority assignment for RTSM system

In order to check those priority assignment is valid or not, we have created a slightly
different task model and scheduler model in our framework. In the task model, we will
add a guard condition when task move from ”Start” state to ”Ready for executed” state
5.4. The purpose of this guard condition is to check current task has a higher priority
assignment than current executing thread or not. Based on that, it will invoke scheduler
in order to select the highest priority task to be executed.

Figure 5.4: Modified basic task model

void se l e c tThread (){
int i ;
s e l ec tedThread = −1;
s e l e c t ed Th re a dP r i o r i t y = −1;
for (i : ThreadID){
i f (s chedu lab l e [i] && t h r e a d P r i o r i t y [i] >

s e l e c t e d Th re a dP r i o r i t y){
se l ec tedThread = i ;
s e l e c t ed Th re a dP r i o r i t y = t h r e a d P r i o r i t y [i] ;
} }

for (i = 0 ; i <= tota lThreads ; i ++){
running [i] = 0 ;

}

42

running [se l ec tedThread] = 1 ;
}

Listing 5.4: A scheduler implementation which select the highest priority task

After we assign priority for each system task like in 5.5, we can use UPPAAL engine
to verify the validity of our priority assignment

int t h r e a d P r i o r i t y [ThreadID] = {3 , 1 , 3 , 3} ;

Listing 5.5: Example of assigning priority to task

Appropriate scheduling policy

In this section, we will discuss how we can examine that a scheduling policy is fix with
our abstracted model or not. There are many scheduling policies for real-time system.
As we can see in our previous part, we can classify scheduling policy for real-time system
into 2 groups:

• Preemptive

• Non-preemptive

Preemptive Scheduling policies Non-preemptive scheduling policies
Earliest Deadline First Spring

Rate Monotonic
Deadline monotonic
Background service

Earliest Deadline Late Server
Improved Priority Exchange Server

Polling server
Defferable Server
Priority Exchange

Sporadic server
Slack stealer

Dynamic Priority Exchange Server
Dynamic Sporadic Server
Total Bandwidth Server

Table 5.2: Scheduling policies for real-time system

In this abstracted scheduler model, we have 2 preemptive transitions in the model.
Therefore, only preemptive category of scheduling policies is appropriate with our inten-
tion. Following we will check which policy is fix with our abstraction model.

43

• Earliest Deadline First - EDF:The principle of this scheduling policy is: the task
with the (current) closes deadline is assigned the highest priority in the system. In
our sample task design, we have for task with following deadline respectively:

– Periodic task 1: 120000 µs

– Periodic task 2: 240000 µs

– Sporadic task 1: 3600 µs

– Sporadic task 2: 3600 µs

Based on above deadline of the tasks, we can have following priority assignment for
this scheduling policy:

(2 , 1 , 3 , 4)
(2 , 1 , 3 , 3)
(2 , 1 , 4 , 3)
(2 , 1 , 4 , 4)

Above priority assignment is subset of our feasible priority assignment set. There-
fore, this scheduling policy is fix with our abstracted scheduler model.

• Rate Monotonic - RM The principle of this scheduling policy is: the static
priorities are assigned on the basis of the cycle duration of the task: the shorter the
cycle duration is, the higher is the task’s priority. In order to apply this scheduling
policy, all the task in system must be periodic. However, in our sample design,
we have 2 tasks are sporadic with unpreditable inter-interval time. Therefore this
scheduling policy is not fix with our abstracted scheduler model.

• Deadline-monotonic - DM The principle of this scheduling policy is: each task
is assigned a priority inversely proportional to its deadline. Based on the task’s
deadline, we have following priority assignment for our sample system’s tasks:

(2 , 1 , 3 , 4)
(2 , 1 , 3 , 3)
(2 , 1 , 4 , 3)
(2 , 1 , 4 , 4)

Like in EDF policy, above priority assignment is subset of our feasible priority
assignment set. Therefore, this scheduling policy is fix with our abstracted scheduler
model.

• Background service The principle of this policy is: try to schedule sporadic task
in background. It means when there is no periodic task instance is ready to be
executed, the ready sporadic task can execute. In our tasks design, when periodic

44

task 2 is executing, it will fire one of 2 sporadic task and wait until sporadic task
finish. By examining the execution time of periodic task 2 after firing sporadic task,
this periodic task 2 invoke 2 methods, with the executing time is larger than 3600
µs. Moreover, the periodic task 1 always try to detect object on conveyor. So there
is no case such that no periodic task is ready for executed.

Figure 5.5: Task transition after a sporadic task invocation

Therefore, this scheduling policy is not fix with our abstracted model.

• Earliest Deadline Late Server - EDLS The principle of this policy is: to use
the idle times of an EDL schedule to execute sporadic requests as soon as possible.
When there are no sporadic activities in the system, periodic tasks are scheduled
according to the EDF algorithm. Whenever a new sporadic request enters the
system (and no previous sporadic is still active) the idle times of an EDL scheduler
applied to the current periodic task set are computed and then used to schedule the
sporadic request pending.

In our task design

– the allocated time for one slot is 24s

– two periodic tasks take totally 16,1s in WCET

– one sporadic tasks take 6,4 s in WCET

So, based on the task information, scheduler can compute that there are 7,9s idle
time, it is enough to serve the sporadic task. We can conclude this information
because when we do the scheduling analysis with model-checking approach - like
using our framework - we can recognize that two sporadic tasks are never activated
at the same time.

However, in our current approach the information guarantees the feasible or not
of a scheduling policy is priority assignment.Therefore, under the guidance of our
abstracted scheduler model, we can not determine that this scheduling policy is fix
with our abstracted model or not.

45

• Polling server - PS The principle of this scheduling policy is: creating a periodic
task whose purpose is to serve sporadic task request as soon as possible. Assign the
server task with highest priority, capacity equal to one sporadic tasks.

If we apply this scheduling policy, our system will has another priority task who
represent two sporadic tasks. We will have following priority assignment for the
system’s task:

{2 , 1 , 3 , 4}
{2 , 1 , 4 , 3}
{2 , 1 , 3 , 3}
{2 , 1 , 4 , 4}

Above priority assignment is a subset of our feasible priority assignment set. There-
fore this scheduling policy is fix with our abstracted scheduler model.

• Deferrable Server - DS The principle of this scheduling policy is: creating a
periodic task whose purpose is to serve sporadic task request as soon as possible.
The capacity of server is remain even if there is no requests are pending upon the
invocation of the server. Assign the server task with highest priority, capacity equal
to one sporadic tasks.

In this policy, we also have a periodic task who serve sporadic tasks. However,
because of its priority is highest and capacity always remain even if there is no
sporadic task. So in our given task design, 2 periodic tasks do not have time for
execution. It will lead to the deadline miss error for those tasks.

Therefore, this scheduling policy is not fix with our abstracted scheduler.

• Priority Exchange - PE The principle of this scheduling policy is: like DS,
however it differs from DS in the manner in which the capacity is preserved. PE
preserves its high-priority capacity by exchanging it for the execution time of a
lower-priority periodic task.

In our experiment, we assume that the task and scheduler switching cost is negligible.
We assign the value of these switching cost to zero. So, if we apply this scheduling
policy into our system, we will have following priority assignment:

{2 , 2 , 3 , 4}
{2 , 2 , 4 , 3}
{2 , 1 , 4 , 4}
{2 , 1 , 3 , 3}

Above priority assignments is not a subset of our feasible priority assignment set.
However, there is two priority assignment which belong to our generated assignment
set. Therefore this scheduling policy is fix with our abstracted scheduler model.

46

• Sporadic Server - SS The principle of this scheduling policy is: like DS and PE,
however SS replenishes its capacity only after it has been consumed by sporadic
task execution. The replenishes time is decided as:

– The replenishment time - RT - is set as soon as SS becomes active and Cs >
0. Let Ta be such a time. The value of RT is set equal to Ta plus the server
period (RT = Ta + Ts)

– The value of RA (replenishes amount) is set equal to the capacity consumed
within the interval [Ta,Ti]

In this scheduling policy, it basically base on DS and PE, so we will have following
priority assignment:

{2 , 1 , 3 , 4}
{2 , 1 , 3 , 4}
{2 , 1 , 4 , 4}
{2 , 1 , 3 , 3}

However when a sporadic task is activated, server’s amount will be replenished.
Although the priority assignment is okay. But based on task design, periodic task
1 can not meet its deadline, if sporadic server has highest priority after serving a
sporadic task.

Therefore, this scheduling policy is not fix with our abstracted scheduler model.

• Improved Priority Exchange Server - IPES The principle of this scheduling
policy is: The idle times of the EDL algorithm can be precomputed off-line and the
server can use them to schedule sporadic request, when there are any, or to advance
the execution of periodic tasks. In the latter case, the idle time advanced can
be saved as sporadic capacity at the priority levels of the periodic tasks executed.
As the explanation in Earliest Late Deadline Server, we can not determine this
scheduling policy is fix with our abstracted scheduler model or not.

The only problem of applying this policy is the difficulty of policy implementation
in real-time system. The cost of computation idle time of all task in the system,
is also the problem need to be considered. However, in our experiment, we assume
that such cost is negligible.

• Slack stealer - SStealer The principle of this scheduling policy is: when an
sporadic request arrives, the Slack stealer steal all the available slack from periodic
tasks and uses it to execute sporadic requests as soon as possible. If no sporadic
requests are pending, periodic tasks are normally scheduled by RM.

By applying this scheduling policy, the priority assignment for this system’s task
will be:

47

(2 , 1 , 3 , 4)
(2 , 3 , 1 , 4)
(2 , 4 , 1 , 3)
(2 , 3 , 4 , 1)

Above priority assignment is not a subset of our feasible priority assignment set.
However, there is one priority assignment which belong to our generated priority
assignment set. So we can determine that this policy is feasible in our system.

• Dynamic Priority Exchange Server - DPES The principle of this scheduling
policy is: adapted to work with a deadline-based scheduling algorithm. The server
will has a lowest priority, and it can be later reclaimed when sporadic requests enter
the system.

This scheduling policy is fix with our abstracted scheduler model. In sense of EDF
scheduling algorithm, our sample system just has 4 tasks with 2 periodic tasks and 2
sporadic tasks. Periodic task 2 will fire one of 2 sporadic tasks when it is executing.
So the priority assignment will the same as in EDF policy.

• Dynamic Sporadic Server - DSS The principle of this scheduling policy is: we
can views as the combination of Dynamic Priority Exchange Server with Sporadic
Server.

If we apply this scheduling policy, because it is the combination of DPES and SS,
the priority assignment will like in SS. Therefore, this scheduling policy is fix with
our abstracted scheduler model.

• Total Bandwidth Server - TBS The principle of this scheduling policy is: in
order to improve Sporadic Server in the case of the deadline of sporadic task is late,
it will assign a possible earlier deadline to each sporadic request.

Like the explanation in EDLS, any assignment of sporadic task to its earlier deadline
will make our sample system feasible. Therefore, this scheduling policy is fix with
our abstracted scheduler model.

48

5.1.5 Evaluation

Scheduling policy Fix with ASM model or not
Spring NG

Earliest Deadline First OK
Rate Monotonic NG

Deadline monotonic OK
Background service NG

Earliest Deadline Late Server N/A
Improved Priority Exchange Server N/A

Polling server OK
Deferrable Server NG
Priority Exchange OK

Sporadic server NG
Slack stealer OK

Dynamic Priority Exchange Server OK
Dynamic Sporadic Server OK
Total Bandwidth Server OK

Table 5.3: Summary of appropriate scheduling policy for RTSM design

Through this experiment, we can understand clearly that we can find out the appropriate
scheduling policy based on the guidance of abstracted scheduler model. Without using
the abstracted scheduler model, in order to check above scheduling policies precisely one
by one for a given system design, we have to implement all of it in model checking tool.
As we explain in 1.3, this work is almost impossible and costly.

In addition, through this experiment with RTSM example, we have demonstrated how
we can apply our approach into scheduling analysis with a given task design. Through
this experiment we can get an idea of how to use an abstracted scheduler model to
do scheduling analysis. We known how to extract priority assignment from abstracted
scheduler model, and how to do experiment of getting appropriate scheduling policies.

49

Chapter 6

Conclusion and Future work

6.1 Conclusion

The correctness of hard real-time systems is crucial, because failures can cause disasters.
Many researches have been done to improve different aspects of the development process,
ranging from model checking tools, to real-time specific languages and profiles, to WCET
analysis and scheduling. In many researches, they are based on WCET analysis. This is
important factor of real-time systems, in order to ensure the schedulability of the system.
However, if we only based on WCET, we will miss the behavior of the task and lack of
information about scheduler.

In this research, we deal with the problem of doing scheduling analysis for real-time
system in different settings. We propose the abstracted scheduler model in order to do
above problem at once. It means that we can abstract different settings of real-time
system into only one setting. By follow this method, we can overcome the limitation of
implementation of difficult settings for real-time system in model-checking tools. Beside
that, by using our framework, we can deal directly with the functional view of the task.
By going to detail of task behavior we can solve the problem of assuming worst-case
condition in other scheduling analysis researches. Moreover, our framework is reusable
with task model, framework configuration. For a new system, we need to modify the
abstracted scheduler implementation and the corresponding task behavior 4.5

In addition, we also provide algorithm in order to extract the correct settings for a given
task design for a real-time system. We can generate the appropriate priority assignment
for the task after having a feasible abstracted scheduler. For a new task design, we can
base on some criterion of choosing appropriate scheduling policy like in our evaluation
part.

In conclusion, throughout this research, we have addressed some important aspects in
real-time model checking. It is task behavior, scheduler, cost, priority and timing problem.
We have proposed a new approach in real-time model checking.

50

6.2 Related Works

In this section, we will give a small discussion about other related works in scheduling
analysis that follow model checking approach. Throughout this discussion we can realize
what is our advantage compare with other researches.

There are many researches in scheduling analysis using model-checking technique. How-
ever, by using UPPAAL as the model-checking engine we have 3 outstanding researches:

• Model-based framework for Schedulability Analysis Using Uppaal 4.1 [7]

• TIMES tool [19]

• Real-time Sorting Machine design group [15]

6.2.1 Model-based framework for Schedulability Analysis Using
Uppaal 4.1[7]

This is a research of UPPAAL research group. This work takes the advantage of model-
checking method and overcomes the limitation of simulation approach for multi-core plat-
form. By using UPPAAL engine, they provide a framework to do scheduling analysis for
real-time system in various architectures. Their framework contains:

• A rich collection of attributes for tasks, including: off-set, best and worst case execu-
tion times, minimum and maximum interarrival time, deadlines, and task priorities.

• Facility to represent task dependencies.

• Assignment of resources, for example processors or busses, to tasks.

• Scheduling policies including First-In First-Out (FIFO), Earliest Dead-line First
(EDF), and Fixed Priority Scheduling (FPS).

• Possible preemption of resources.

This work focus on the schedulability problems that: A system of tasks with constraints
and resources with scheduling policies is said to be schedulable if no execution satisfying
the constraints of the system violates a deadline.

By using this framework we can create a suitable scheduling analysis system so that fix
with the desired problem, with:

• Generic task: a task model with basic task transition state. We can specify how
many tasks exist in target system with their information.

• Number of resources in target system.

• Scheduling polices that used in target system.

51

This is a very useful framework to do scheduling analysis for real-time systems. How-
ever, in the case of finding out which set of conditions for a given task design such that
the system is feasible, by using this framework we must:

• Implement all possible scheduling policy: this work is almost impossible due to the
limitation of UPPAAL engine. It does not allow access to another model’s state
from another model.

• Checking all the combination of the variation of target system design like: priority of
task, scheduling policies, task’s cost, assignment of task to resource, and so on. By
doing this work, it is very tedious. Moreover if the number of system information
is large, it will take a lot of time for performing model-checking the system and
analyze the result.

6.2.2 TIMES Tool

Like in the discussion of how we choose the appropriate model-checking tool for our re-
search, TIMES is useful tool for performing scheduling analysis and scheduling simulation
of systems that can be described as a set of tasks which are triggered periodically or spo-
radically by time or external events. In order to use TIMES tools to analyze schedulability
of a given design, we must:

• Specify how many periodic, sporadic tasks are in the system.

• Specify each task’s properties like: activation time, deadline, offset, behavior, pri-
ority, best case execution time, worst case execution time.

• Specify what is the scheduler policy in 4 predefined scheduler policies

Like in the previous work, in TIMES tool the number of scheduling policy is limited.
Performing scheduling analysis in TIMES does not provide the set of conditions in which
a given task design are feasible or not.

6.2.3 RTSM group

The RSTM project not only designed the system but also implemented it in different
mean. There are already implemented the system in Java, LRBJOP physical board and
develop a version of model-based scheduling analysis.

In model-based version of RTSM project, they have create a way to analyze the schedu-
lability of they system:

• Task: has many properties like: priority, deadline, offset, activation time, best case
execution time, worst case execution time.

• Scheduler: they just only implemented the deadline monotonic policies.

52

In this work, we can only analyze the schedulability of a specific setting of the system.
For example the setting of this project is

• Task priority assignment is (2, 1, 3, 4)

• Number of task and task behavior: there are 4 tasks, with 13 task behaviors are
modeled in UPPAAL.

• Scheduling policy: deadline monotonic policies.

Therefore, this work can not give us any information about the set of conditions (priority
assignment, scheduling policy) in which the RTSM design is feasible.

6.3 Future work

In this section, we will discuss what should be done in order to improve our work.

6.3.1 Provide criterion of choosing appropriate scheduler

Currently, after having a feasible abstracted scheduler, we will base on the experiment of
each scheduling policy to choose the appropriate one. In order to improve this process,
we need a mechanism that support extracting scheduling policy criterion from abstracted
scheduler model. We can base on the transition type in abstracted scheduler model, to
decide the criterion for appropriate scheduling policy.

6.3.2 Prove the correctness of abstracted scheduler model

In our work, we have proposed a abstracted scheduler model. As a abstraction, we need
to prove the soundness of our model. It means that we need to prove properties that are
satisfied in abstracted model are also satisfied in concrete models.

6.3.3 Realistic situation of real-time systems

In order to make our work can handle the realistic situation of real-time systems, we must
consider following issues:

Environment interrupt

Currently, in our framework, a sporadic task is only invoked by another task. Therefore, it
is more useful if we have an mechanism to enable the interrupt from user or outside event.
It can be implemented as a spooling periodic task. It will periodically check interrupt
from user, in order to fire corresponding sporadic task. However, it should be possible
to model hardware interrupts as sporadic tasks, provided a minimum inter-arrival time is
present and obeyed.

53

Cost of scheduler and task

Now, in our framework, we assume that the task and scheduler switching cost is zero. If
we can deal with these switching cost into the framework, the scheduling analysis will be
more accurate. As a idea for this improvement, we can add a dummy state into basic
scheduler and basic task model. In this dummy state, we will add a execution time
represent the switching cost of scheduler. However, we need to consider carefully about
the behavior of scheduler after adding this dummy state.

54

References

[1] Model Checking Multi-task Software on Real-time Operating Systems, Toshiaki Aoki,
Japan Advanced Institute of Science and Technology, Japan, 2008

[2] Model-Checking for Real-Time Systems, Kim G. Larsen, Paul Petterson, Wang Yi,
BRICS∗∗, Aalborg University, DENMARK, Uppsala University, SWEDEN

[3] Hard Real-Time Computing Systems - Predictable Scheduling Algorithm and Appli-
cations, Giorgio C. Buttazzo, Kluwer Academic Publishers, 1997

[4] Realtss: a real-time scheduling simulator, Arnoldo Diaz, Ruben Batista and Oskardie
Castro, Department of Computer Systems, Instituto Technolgico de Mexiali, Mexico,
2007

[5] T. A. Henzinger, Z. Nicollin, J. Sifakis, and S. Yovine, Symbolic model checking for
real-time systems. In Logic in Computer Science, 1992

[6] Model-Based Schedulability Analysis of Safety Critical Hard Real-Time Java Pro-
grams, Thomas Bogholm, Henrik Kragh-Hansen, Petur Olsen, Bent Thomsen, Kim
G.Larsen, Aalborg University, 2008

[7] Model-based Framework for Schedulability Analysis Using UPPAAL 4.1, Alexandre
David, Jacob Illum, Kim G. Larsen, Arne Skou, Aalbord University, 2009

[8] An Analysis of Research on Block Scheduling, Sally J. Zepeda, R. Stewart Mayers,
University of Geogia, Southeastern Oklahoma State University

[9] An Abstract Model for Scheduling Real-Time Programs, Alvaro E. Arenas, Labora-
torio de Computo Especializado, Universidad Autonoma de Bucaramanga, Calle 48
No 39 -234, Bucaramanga, Colombia

[10] Counterexample-based abstraction refinement, Edmund Clarke , Orna Grumberg ,
Somesh Jha , Yuan Lu , Helmut Veith , 2000

[11] Schedulability Analysis Using Two Clocks, ELena Fersman, Leonid Mokrushin, Paul
Pettersson, and Wang Yi, Uppsala University

[12] Decidable and Undecidable Problems in Schedulability Analysis Using Timed Au-
tomata, Pavel Krcl and Wang Yi, Uppsala University

55

[13] T. Amnell, E. Fersman, L. Mokrushin, P. Pettersson, and W. Yi. Times: a
tool for schedulability analysis and code generation of real-time systems. cite-
seer.ist.psu.edu/amnell03times.html, 2003.

[14] Gerd Behrmann, Alexandre David, and Kim G. Larsen. A Tutorial on
Uppaal. http://www.it.uu.se/research/group/darts/papers/ texts/new-tutorial.pdf,
2004. Online: 6/12-2007.

[15] Real-time sorting machines project page http://iprojectideas.blogspot.jp/

2011/11/real-time-sorting-machine.html

[16] Uppsala University and Aalborg University. UPPAAL. http://www.uppaal.com

[17] Spin Model Checker http://spinroot.com/spin/Man/promela.html#section6

[18] General information about spin and real-time system http://en.wikipedia.org

[19] Times tool official website http://www.timestool.com/

[20] The impressive Power of Stopwatches, Franck Cassez, Kim Larsen, IRCCyN/CNRS
UMR 6597, France, Dep. of Computer Science, Aalborg University, Denmark

56

http://iprojectideas.blogspot.jp/2011/11/real-time-sorting-machine.html
http://iprojectideas.blogspot.jp/2011/11/real-time-sorting-machine.html
http://www.uppaal.com
http://spinroot.com/spin/Man/promela.html#section6
http://en.wikipedia.org
http://www.timestool.com/

Chapter 7

Appendix

7.1 UPPAAL

Uppaal is a verification tool developed in co-operation between Uppsala University and
Aalborg University [16]. This appendix provides an introduction to parts of the syntax
used in Uppaal. For a more throughout description see [14]. This is only the most basic
of Uppaal in order to understand the models presented in this thesis. A small example
is used to describe some of the terminology used in Uppaal, when creating a model. The
example illustrates a simple buffer, which allows add and remove instructions, and a
couple of clients requesting to add or remove from the buffer. The example is depicted in
Figure 7.1, containing both the client and buffer model.

(a) (b)

Figure 7.1: (a) A simple client communicating with (b) a simple buffer.

In general a Uppaal model contains a set of finite state machines (FSMs), called tem-
plates. The buffer and the client are templates. These templates represent parts of the
system, and consist of two basic elements, states and transitions. A state is represented
by a circle, and a transition is a directed edge between two states. Each state can have
a unique name attached, e.g. the buffer has a state called Ready and the client a state

57

called Idle. The name must only be unique for the given template. Each state can have
an invariant, a Boolean expression which must always evaluate to true when the FSM is
in this state. For example size >= 0, while the buffer is in the Ready state, this ensures
that the buffer can not be dequeued when it is empty. Transitions connect states, and
they can loop to the same state. A transition can have four attributes:

• Select: Non-deterministically selects a value from a type and assigns it to a variable.
The syntax is: < V ariableName >:< Type >, e.g. the buffer uses client: ClientID
to represent the client requesting an add or remove. ClientID is defined as an integer
with a specific range representing the number of clients.

• Guard: A Boolean expression which must evaluate to true for the FSM to be able to
follow the transition, e.g. notFull() prevents the clients from adding more elements
if the buffer is full. Here notFull() is a custom developed method returning true if
the buffer is not full, and false otherwise. This could also be guaranteed using an
invariant stating size <= MaxSize. Note even though the guard is fulfilled, the
transaction cannot be performed if it violates the invariant of the target node.

• Sync: Sends or receives on a channel, which is shared among the machines. An
“!”represents send/signal and a “?”represents receive/ listen, e.g. remove[client]?
receives a remove request from a specific client.

• Update: A comma separated list of variable assignments, using normal assignment
operators, e.g. size+ + increments the size of the buffer.

To ease the readability of the model, the attributes are color-coded by type and attributes
should be placed near the corresponding state or transition.

The states in the template can be normal, urgent, or committed. A simple example
depicted in Figure 7.2 is used to describe the different states. Three different templates
are shown, called P0, P1, and P2 representing three isolated processes, each containing a
local clock x. Time is represented by clocks in Uppaal, which are constantly increasing
and represented by natural numbers. A template must contain exactly one initial state,
which is the starting point, represented by a small circle inside the state. Each of the
processes has the initial state set to S0, the clock x is then reset on the transition to
state S1, which is normal in P0, urgent in P1, and committed in P2. An urgent state
is represented by a small U and committed by a small C inside the state. The following
describes how the difference in the S1 state affects the different processes.

• Normal: Time can elapse in this state, and the value of the clock x in state S2
cannot be ensured.

• Urgent: The time is frozen during an urgent state. The value of the clock x is
therefore ensured to also be 0 when entering S2. An urgent state is semantically
equivalent to resetting a designated clock, y, on all incoming edges and add the
invariant y¡=0 to the state, ensuring it to leave before time elapses.

58

Figure 7.2: Three different automata with a local clock

• Committed Similar to urgent states, time is frozen. Furthermore, if a template is
in a committed state, the next transaction must leave this state, i.e. when P2 is in
S1 the only possible transition is to S2, independent of other states in the system.
Note, if P1 is in S1, then P0 is able to take a transition, but if P2 is in S1, then P0
cannot take a transition.

At first glance the difference between urgent and committed might not seem that ob-
vious, but the strength of committed is the ability to create an atomic sequence. When
different templates need to exchange values, this must be done through public variables,
e.g. the buffer from the first example might be extended to return the dequeued value to
the client. If several clients can communicate with several buffers, and the public variable
is shared between the buffers, can result in a race condition, the committed state ensure
that this is not possible. This concludes the description of Uppaal.

59

	Introduction
	Real-time operating systems
	Verifying real-time systems with model checking tools
	Problem
	Our approach
	Outline of thesis

	Background
	Scheduling problem
	Tasks
	Scheduler
	Scheduling problem

	Scheduling analysis
	Model checker selection
	SPIN
	UPPAAL
	TIMES
	Summary

	Abstraction of Scheduler
	Overview
	Model of the abstraction scheduler
	Converting from model to UPPAAL
	Generating priority assignment set
	Implementing priority assignment generation

	Verification Framework
	Framework for verification
	Preemption
	To invoke scheduler by system call
	To invoke sporadic task
	Using verification framework

	Experiment
	Real-time Sorting Machines Problem
	Design
	Scheduling analysis
	Experiment
	Appropriate scheduling policies
	Evaluation

	Conclusion and Future work
	Conclusion
	Related Works
	Model-based framework for Schedulability Analysis Using Uppaal 4.1MBFSA09
	TIMES Tool
	RTSM group

	Future work
	Provide criterion of choosing appropriate scheduler
	Prove the correctness of abstracted scheduler model
	Realistic situation of real-time systems

	Bibliography
	Appendix
	UPPAAL

