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Abstract This paper discusses the state feedback stabilization problem of a de-
terministic finite automaton (DFA), and its application to stabilizing model pre-
dictive control (MPC) of hybrid systems. In the modeling of a DFA, a linear state
equation representation recently proposed by the authors is used. First, this rep-
resentation is briefly explained. Next, after the notion of equilibrium points and
stabilizability of the DFA are defined, a necessary and sufficient condition for the
DFA to be stabilizable is derived. Then a characterization of all stabilizing state
feedback controllers is presented. Third, a simple example is given to show how
to follow the proposed procedure. Finally, control Lyapunov functions for hybrid
systems are introduced based on the above results, and the MPC law is proposed.
The effectiveness of this method is shown by a numerical example.

Keywords Finite automata · Hybrid systems · Model predictive control ·
Stabilization

1 Introduction

To overcome the hardness of analysis/synthesis of complex systems, recently, there
have been several works on finite-state approximations such as (bi)simulation re-
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lations (e.g., [8,18]) and qualitative models (e.g., [2,7]). In these approaches, dy-
namical systems are approximated by finite automata (directed graphs), and the
analysis/control problems of them are in general reduced to a kind of search prob-
lems on graphs. However, more theoretical approaches to the stabilization prob-
lem, which is one of the basic and important problems, will be required for further
developments of such approaches. On the other hand, the obtained approximate
models may be regarded as discrete event systems. Based on a formal language-
based approach, theoretical results for discrete event systems have been obtained
so far [6]. The stabilization problem of discrete event systems is to find a controller
such that the state transits to a given finite set of states in finite step, and has been
discussed for general finite automata [4,11,14] and deterministic finite automata
(DFA) [16,17]. To our knowledge, a linear characterization (parametrization) of
all stabilizing controllers has not been derived yet. A linear form of all stabiliz-
ing controllers is useful for not only finite automata but also hybrid systems with
discrete dynamics. In the control problem of hybrid systems, little attention to
discrete dynamics (finite automata) has been paid so far. Most recently the sig-
nificance of further works on the discrete dynamics in hybrid systems control has
been pointed out, and an efficient method of stabilizing model predictive control
(MPC) based on this viewpoint has been proposed in [5]. In this literature, the
analytical results on DFAs, e.g., a state feedback gain that can be computed in
offline, are not used, but it will be desirable that these are used for reducing the
online computation time. In addition, to apply efficient solution methods or solvers
to MPC, equality/inequality constraints must be given as a linear form, and it is
important to consider a linear characterization.

On the other hand, as for the modeling of finite automata, the authors have
recently proposed in [9,10] a new modeling method of representing a finite automa-
ton as a linear state equation including binary linear constraints with a relatively
small number of free binary variables (called here binary input variables), for re-
ducing the computation time to solve the MPC problem of hybrid systems. It has
also been shown that our method is very effective by numerical examples of the
optimal control problem of switched/PWA systems. Since the proposed represen-
tation is similar to a linear state equation in control theory, it is expected that a
new framework of analysis/control synthesis of finite automata will be developed
based on this representation.

Motivated by the above backgrounds, this paper addresses the stabilization
problem of DFAs, and its application to stabilizing MPC, based on the above lin-
ear state equation representation. First, as a natural extension of the stability for
continuous systems, the notion of stabilizability of DFAs, in other words, the state
equation expressing it, is defined based on the minimality of the state transition
trajectory, and a necessary and sufficient condition for a given DFA to be stabi-
lizable is derived. Next, by means of this condition, a linear characterization of all
stabilizing controllers for DFAs is proposed. Finally, based on the above result, the
stabilizing MPC problem is discussed. In this paper, a control Lyapunov function
(CLF) approach [12,15], which is well known in stabilization of nonlinear systems,
is applied, and two control Lyapunov functions (CLFs), i.e., a continuous CLF
and a discrete CLF, are introduced to derive a stabilizing MPC law according to
the result in [5].

This paper is organized as follows. After a state equation representation of DFA
is briefly explained in Section 2, equilibrium points and stabilizability of DFA are
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defined, and a condition for a given DFA to be stabilizable is derived in Section 3.
In Section 4, a stabilizing state feedback controller is characterized. In Section 5,
a simple example is shown. In Section 6, the obtained result on DFAs is applied
to stabilizing MPC of hybrid systems is discussed. In Section 7, we conclude this
paper.
Notation: Let R and Z+ denote the set of real numbers and the set of semi-
positive integers, respectively. Let {0, 1}m×n denote the set of m × n matrices,
which consists of elements 0 and 1. Let In, 0m×n and en denote the n×n identity
matrix, the m × n zero matrix, and the n × 1 vector whose elements are all 1s,
respectively. For simplicity of notation, we sometimes use the symbol 0 instead of
0m×n. To denote the i-th element of a vector a ∈ Rn, we use either a(i) or ai. A
function φ(s) : [0,∞) → [0,∞) belongs to class K∞ if φ(s) is continuous, strictly
increasing, and φ(0) = 0, lims→∞ φ(s) = ∞ hold.

2 State Equation of Deterministic Finite Automata

Consider the following tuple expressing a deterministic finite automaton (DFA):

A = (Q,Σ, f) (1)

where Q = {q1, q2, . . . , qm} is a finite set of the state, Σ is a finite set of the input,
and f : Q×Σ → Q is a transition function. For simplicity of notation, the initial
state and the final state are omitted. Moreover, qi ∈ Q and σ ∈ Σ are called a
node and an original input, respectively. As a simple example, consider the DFA
of Fig. 1 (a). In this example, Q, Σ and f are given by⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Q = {q1, q2, q3, q4},
Σ = {0, 1},
f(q1, 0) = q1, f(q1, 1) = q2,
f(q2, 0) = q4, f(q2, 1) = q4,
f(q3, 0) = q1, f(q3, 1) = q1,
f(q4, 0) = q3, f(q4, 1) = q4.

(2)

By means of our approach in [9,10], the DFA of (1) can be expressed by the form
of the linear state equation with linear-type inequalities. This derivation procedure
is briefly explained for the example of Fig. 1 (a) as follows. See Appendix A for
the general case.

Consider a state sequence satisfying the DFA of Fig. 1 (a). For a binary variable
δij , if the k-th state of the sequence is qi and the (k + 1)-th state is qj , then
δij(k) = 1, otherwise δij(k) = 0. In other words, a binary variable δij is assigned
to the arc from node qi to node qj such as Fig. 1 (b). Note here that k may
be regarded as discrete time in control of hybrid systems. Then we focus on the
input-output relation of arcs at each node of Fig. 1 (b). For example, from Fig. 1
(b), the input-output relation at node q1 is represented by the equation

δ11(k + 1) + δ12(k + 1) = δ11(k) + δ31(k).

By expressing the input-output relation at every node in a similar way, the DFA
of Fig. 1 (b) can be expressed as the following discrete-time implicit system model
with an equality constraint on the initial state:

Eξ(k + 1) = Fξ(k), eT6 ξ(0) = 1 (3)
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Fig. 1 Simple example of 4-node DFA. (a) Given DFA. (b) Equivalent DFA assigning a binary
variable to each arc.

where ξ = [ δ11 δ12 δ24 δ44 δ43 δ31 ]T ,

E =

⎡
⎢⎣
1 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 1 0
0 0 0 0 0 1

⎤
⎥⎦ , F =

⎡
⎢⎣
1 0 0 0 0 1
0 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 0

⎤
⎥⎦ .

Furthermore, by some coordinate transformations, the implicit model (3) can be
equivalently transformed into the following state equation:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x(k + 1) =

⎡
⎢⎣
0 0 1 0
1 0 0 0
0 0 0 1
0 1 0 0

⎤
⎥⎦x(k) +

⎡
⎢⎣

1 0
−1 0
0 −1
0 1

⎤
⎥⎦u(k),

−x(k) +

⎡
⎢⎣
1 0
0 0
0 0
0 1

⎤
⎥⎦u(k) ≤ 0,

x(k) ∈ R4, u(k) ∈ {0, 1}2,
x(0) ∈

{
ζ ∈ {0, 1}4 | eT4 ζ = 1

}
(:= X0).

(4)

As for the relation between the DFA (2) and the state equation (4), we can
show that the k-th state of the DFA is node qi if and only if xi(k) = 1, xj(k) = 0,
i �= j hold for the state x(k) of (4). Therefore, x(k) represents the k-th state in a
state sequence, and one-to-one correspondence between the state of the DFA (2)
and the state of (4) holds. The binary input variable u(k) of (4) expresses the k-th
input of the fictitious input sequence for uniquely determining the value of the
(k + 1)-th state of the DFA.

For example, consider the transition from node q1 at 0. Then the initial state
x(0) ∈ X0 is given by

x(0) =

⎡
⎢⎣
1
0
0
0

⎤
⎥⎦ .

Since −x1(0)+u1(0) ≤ 0 and −x4(0)+u2(0) ≤ 0 hold from the inequality condition
in (4), u1(0) is a free binary variable, and u2(0) = 0 holds. Suppose u1(0) = 0.
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Then from the state equation in (4)

x(1) =

⎡
⎢⎣

0
x1(0)− u1(0)

0
0

⎤
⎥⎦ =

⎡
⎢⎣
0
1
0
0

⎤
⎥⎦

holds, i.e., the state transits from q1 to q2. On the other hand, if u1(0) = 1, then

x(1) =

⎡
⎢⎣
u1(0)
0
0
0

⎤
⎥⎦ =

⎡
⎢⎣
1
0
0
0

⎤
⎥⎦

holds, i.e., the state stays q1. In both cases, x(1) ∈ X0 holds. Similar and iterative
discussion proves x(k) ∈ X0 for all k, which implies that one of elements of x(k) is
1, and the others are all 0. Thus, together with the initial state condition x(0) ∈ X0

and the binary input condition u(k) ∈ {0, 1}2, the inequality condition in (4) is
used for guaranteeing that x(k) ∈ X0 holds for all k.

In addition, consider the relation between σ(k) ∈ Σ = {0, 1} and u(k). For (2),
suppose that the initial state and the original input sequence are given as q1 and
0111. Then the state transition is derived as

q1
0→ q1

1→ q2
1→ q3

1→ q3. (5)

In the case that (4) is used, instead of (5), we can derive⎡
⎢⎣
1
0
0
0

⎤
⎥⎦ [1 0]T−→

⎡
⎢⎣
1
0
0
0

⎤
⎥⎦ [0 0]T−→

⎡
⎢⎣
0
1
0
0

⎤
⎥⎦ [0 0]T−→

⎡
⎢⎣
0
0
1
0

⎤
⎥⎦ [0 1]T−→

⎡
⎢⎣
0
0
1
0

⎤
⎥⎦ .

In this way, we see that (2) and (4) are equivalent in the sense that the state
sequence is the same under given initial state and input sequences. Noting that
the automaton studied in this paper is deterministic, we see that the implicit
system model (3) equivalently expresses a given DFA. See [10] and Appendix A for
the equivalence between the implicit system model and the linear state equation.
Since the state equation (4) has a form similar to one used in the standard control
theory, it can be expected that analysis and synthesis are relatively easy. In fact,
in this paper, a stabilizing state feedback controller will be explicitly derived for
a general form of a state equation expressing a DFA (1), given as⎧⎪⎨

⎪⎩
x(k + 1) = Ax(k) +Bu(k),
Cx(k) +Du(k) ≤ G,

x(k) ∈ Rm, u(k) ∈ {0, 1}α̂,
x(0) = x0 ∈ X0

(6)

where the input dimension α̂ is determined by the derivation procedure in Ap-
pendix A, and X0 is defined newly by replacing the dimension of the space in X0

of (4) by n.
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Remark 1 The model predictive control problem of hybrid systems is in general
reduced to a mixed integer quadratic programming (MIQP) problem. In the case
that the state equation (6) is used as a model of discrete dynamics, the state
sequence of (6) from k+1 time to k+N time are often eliminated by replacing it
by the current state x(k) and the input sequences in the MIQP problem. So it is
necessary to regard x(k) as continuous-valued variables; thus (6) is given so as to
implicitly satisfy the condition of x(k) ∈ {0, 1}m

3 Stabilizability Problem

First, equilibrium points of a state equation (6) are defined.

Definition 1 Suppose that a state equation (6) expressing a DFA is given. Then
if xe ∈ X0, ue ∈ {0, 1}α̂ satisfy x(k + 1)− x(k) = 0, i.e.,

(A− I)xe +Bue = 0, (7)

then the pair (xe, ue) is called an equilibrium point. In addition, the node corre-
sponding to (xe, ue) is called an equilibrium node.

For example, in Fig. 1, equilibrium points are derived as

(xe, ue) =

⎛
⎜⎝
⎡
⎢⎣
1
0
0
0

⎤
⎥⎦ ,

[
1
0

]⎞⎟⎠
︸ ︷︷ ︸

Node q1

,

⎛
⎜⎝
⎡
⎢⎣
0
0
0
1

⎤
⎥⎦ ,

[
0
1

]⎞⎟⎠
︸ ︷︷ ︸

Node q4

.

From Definition 1, equilibrium nodes correspond to nodes that have the self-loop.
In the case of Fig. 1, equilibrium nodes are q1 and q4. In other words, the DFA
without self-loops has no equilibrium nodes.

For fixed (xe, ue), by defining x̃(k) := x(k)− xe and ũ(k) := u(k)− ue, (6) is
equivalently rewritten as⎧⎪⎪⎨

⎪⎪⎩
x̃(k + 1) = Ax̃(k) +Bũ(k),

Cx̃(k) +Dũ(k) ≤ G̃,

x̃(k) ∈ Rm, ũ(k) ∈ Ũ ,
x̃(0) = x̃0 ∈ X̃0

(8)

where G̃ := G − Cxe − Due, X̃0 := { ζ − xe, ζ ∈ {0, 1}m | eTmζ = 1} and
Ũ := { η− ue, η ∈ {0, 1}α̂}. In the case of the equilibrium node q4 of Fig. 1, x̃0 is
given by

x̃0 ∈ X̃0 =

⎧⎪⎨
⎪⎩
⎡
⎢⎣

1
0
0

−1

⎤
⎥⎦ ,

⎡
⎢⎣

0
1
0

−1

⎤
⎥⎦ ,

⎡
⎢⎣

0
0
1

−1

⎤
⎥⎦ ,

⎡
⎢⎣
0
0
0
0

⎤
⎥⎦
⎫⎪⎬
⎪⎭ .

It is remarked here that since x(k) ∈ X0 holds for all k in (6) (see [9,10]), x̃(k) ∈ X̃0

also holds for all k.
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Next, we define the notion of stabilizability of a DFA. Hereafter, a sequence
x(0), x(1), . . . in (6) (or equivalently, a sequence q0 → q1 → · · · in (1)) are called a
state transition trajectory. The minimality of the state transition trajectory of a
DFA is defined in preparation.

Definition 2 For a given DFA, and fixed nodes q0, qf , let T (q0, qf ) denote the set
of all state transition trajectories from node q0 to node qf . Then a state transition
trajectory from node q0 to node qf is called a minimal state transition trajectory if
the number of arcs in this trajectory is minimal among all trajectories in T (q0, qf ).

For example, in Fig 1, consider the state transition trajectories from node q3
to q2. The state transition trajectory q3 → q1 → q2 is minimal, and the state
transition trajectory q3 → q1 → q1 → q2 is not minimal. It is obvious that a
minimal state transition trajectory is not always unique.

Under the above preparations, the notion of stabilizability via a state feedback
controller u(k) = Kx(k) of a DFA is defined as follows.

Definition 3 Suppose that a state equation (6) expressing a DFA is given. If
there exists a state feedback controller u(k) = Kx(k) such that the state transition
trajectory from every initial node to the target equilibrium node is minimal, then
the DFA is said to be stabilizable at the target equilibrium node. Furthermore,
the corresponding controller is called a stabilizing state feedback controller.

The notion of Definition 3 is similar to that of [5]. However, in [5], an explicit
form of stabilizing state feedback controller is not derived. Note that the stabi-
lizability property of Definition 3 depends on the target equilibrium node. See
Section 5 for examples.

Definition 3 straightforwardly provides the following fact.

Theorem 1 Suppose that a DFA with at least one equilibrium node is given. Then
it is stabilizable at the target equilibrium node if and only if every node is connected
to the target equilibrium node.

Proof First, the proof of the necessity is trivial from Definition 3. Next, the suf-
ficiency is proven. Assume that every node is connected to the target equilibrium
node. Then there exists at least one minimal trajectory from every initial node to
the target equilibrium node. Furthermore, from x(k) ∈ X0, each column of a state
feedback gain K can be independently determined for each state. Therefore, by
appropriately determining K, a given DFA is stabilizable at the target equilibrium
node. ��

From Theorem 1, we see that the stabilizability condition depends on only the
connectivity among nodes of a given DFA.

Then the following stabilizability problem is considered.

Problem 1 For a given target equilibrium node, consider a state equation (6)
that expresses a DFA satisfying the stabilizability condition of Theorem 1. Then
find all state feedback controllers of the form u(k) = Kx(k) stabilizing (6) at the
target equilibrium node, where K is some constant matrix.

In the next section, a stabilizing gain K in Problem 1 will be characterized by
the following two steps:
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(1) Derivation of a parametrization of all state feedback controllers u(k) = Kbx(k)
satisfying x(k) ∈ X0 and u(k) ∈ {0, 1}α̂.

(2) Derivation of all stabilizing state feedback controllers u(k) = Kx(k).

Remark 2 The notions of equilibrium nodes and stabilizability can be directly
defined for the DFA (1). However in this paper, based on linear systems theory
of continuous systems, we consider deriving the stabilization method of DFAs.
In the definition of stabilizability, we suppose stabilization via a state feedback
controller u(k) = Kx(k). Also, the definition of equilibrium points corresponds to
the standard definition of linear continuous systems. Thus the definitions used in
this paper accord with those of linear systems theory.

4 Derivation of All Stabilizing State Feedback Controllers

4.1 Derivation of all state feedback controllers satisfying x(k) ∈ X0 and
u(k) ∈ {0, 1}α̂

It is difficult to analytically derive all Kb satisfying x(k) ∈ X0 and u(k) ∈ {0, 1}α̂.
So we derive Kb by the following procedure. Note that from x(k) ∈ X0 and u(k) ∈
{0, 1}α̂, we have Kb ∈ {0, 1}α̂×m without loss of generality. Furthermore, we
assume without loss of generality that the target equilibrium node is given by qm,
which m denotes the number of nodes.

Derivation procedure of a parametrization of all Kb satisfying x(k) ∈ X0

and u(k) ∈ {0, 1}α̂:
Step 1: Suppose that a state equation (6) expressing a DFA that satisfies the
stabilizability condition of Theorem 1, and the target equilibrium node qm are
given. Then set C = [ C1 C2 · · · Cm ] for Ci ∈ Rm, i = 1, 2, . . . ,m, and set
Kb = [ Kb

1 Kb
2 · · · Kb

m ] for Kb
i ∈ {0, 1}α̂.

Step 2: Compute each column Ci +DKb
i of the matrix C +DKb.

Step 3: Set i = 1, and find all Kb
i satisfying

Ci +DKb
i ≤ E. (9)

Repeat this operation until i = m− 1.
Step 4: In the case of i = m, set Kb

m = ue. Thus we obtain the state feedback
gain Kb in question.

In Step 3, it is easy to check whether (9) holds by making a truth table for
all combinations of elements of Kb

i ∈ {0, 1}α̂. For example, suppose in the case
of Fig. 1 that q4 is the target equilibrium node. Then we obtain the following
parametrization of Kb:

Kb =

[
k11 0 0 0
0 0 0 1

]
(10)

where k11 is a free binary parameter. Applying the obtained state feedback u(k) =
Kbx(k) to the state equation in (4), we obtain the closed loop system:

x(k + 1) =

⎡
⎢⎣

k11 0 1 0
1− k11 0 0 0

0 0 0 0
0 1 0 1

⎤
⎥⎦x(k).
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From this closed loop system, we see that for k11 = 0 the state transits from node
q1 to q2, and for k11 = 1 the state stays node q1. Note that if the state reaches
the target equilibrium node q4, then the state stays q4.

Hereafter, let Kb express the set of all Kb obtained by the above algorithm.
The set Kb is in general characterized by binary linear equations/inequalities using
each element of Kb, kij ∈ {0, 1}. See Section 5 for further details.

4.2 Derivation of all stabilizing state feedback controllers

To characterize a stabilizing state feedback gain, we consider a necessary and
sufficient condition for the state transition trajectory to be minimal. First, the
distance from some node to the other node is defined.

Definition 4 For a given DFA, the minimal number of arcs from node qi to qj
is called a distance from node qi to qj . Then the distance from the node at k
(corresponding to k-th state) to the target equilibrium node is described by

Vd(x̃(k)) := [ Φ 0 ] x̃(k) ∈ Z+, Φ ∈ Z
1×(m−1)
+ (11)

where the i-th element of Φ denotes the distance from node qi to the target equi-
librium node.

Since the target equilibrium node is given by qm, it is remarked that the X̃0 is
given by

X̃0 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0
0
...
0
0

−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1
0
...
0
0

−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
, · · · ,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
...
0
1

−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
, · · · ,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
...
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

i.e., the first, second, . . . , (m−1)-th elements of x̃(k) ∈ X̃0 have either value of “0”
or “1” (not “−1”), while m-th element has “−1” or “0”. Thus [ Φ 0 ] x̃(k) ∈ Z+

holds. Although this distance does not satisfy an axion of a distance, it is called
here a distance for simplicity. For example, in Fig. 1, the distance from node q3
to q1 is 1, but the distance from node q1 to q3 is 3. Furthermore, in Fig. 1, the
distance from the node at k to the target equilibrium node is obtained as

[ Φ 0 ] x̃(k), Φ = [ 2 1 3 ] .

The vector Φ can be easily derived by means of the adjacency matrix of a given
DFA. Note here that the vector Φ depends on the target equilibrium node.

Exploiting (11) gives a necessary and sufficient condition for the state transition
trajectory to be minimal.

Lemma 1 Consider a state equation (6) that expresses a DFA satisfying the sta-
bilizability condition of Theorem 1. Then, the state transition trajectory from every
node to the target equilibrium node is minimal if and only if

[ Φ 0 ] x̃(k + 1)− [ Φ ε ] x̃(k) ≤ 0, ∀k ∈ Z+, ∀x̃(k) ∈ X̃0 (12)

holds, where ε is an arbitrary real number satisfying 0 < ε < 1.
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Proof We consider the nonnegative function Vd(x̃) of (11) in Definition 4. This

function satisfies that V (x̃) = 0 if and only if x̃ = 0 because Φ ∈ Z
1×(m−1)
+ and

x̃ ∈ X̃0 hold (note that by definition if x̃i = 0, i = 1, 2, . . . ,m − 1 then x̃m = 0
holds). It is also remarked that the m-th element of x̃ always takes “−1” if x̃ �= 0.

First, the necessity is proven, i.e., it is proven that (12) holds. If the state
transition trajectory from every node to the target equilibrium node is minimal,
then the distance between the current node to the target equilibrium node is
strictly decreasing with respect to k as long as it is positive. Thus if Vd(x̃(k)) �= 0,
then we have

Vd(x̃(k + 1))− Vd(x̃(k)) = −1, x̃(k) ∈ X̃0 (13)

which implies that (12) holds because of −[ 0 ε ]x̃(k) = ε. On the other hand, if
Vd(x̃(k)) = 0, then we have x̃(k) = 0 and Vd(x̃(k + 1)) = 0, which implies (12).

Next, the sufficiency is proven. Condition (12) is rewritten as

Vd(x̃(k + 1))− Vd(x̃(k)) ≤ [ 0 ε ]x̃(k), ∀x̃(k) ∈ X̃0. (14)

Thus if x̃(k) �= 0, Vd(x̃(k + 1)) − Vd(x̃(k)) ≤ −ε < 0. Otherwise, Vd(x̃(k + 1)) −
Vd(x̃(k)) ≤ 0 holds, which implies x̃(k+ 1) = 0, i.e., every transition trajectory in
question is minimal. This completes the proof. ��

For example, in Fig. 1, if the target equilibrium node is q4, the node at k is q1,
and the node at k + 1 is also q1, then the left-hand side of (12) is obtained as

[
[ 2 1 3 ] 0

] ⎡⎢⎣
1
0
0

−1

⎤
⎥⎦−

[
[ 2 1 3 ] ε

] ⎡⎢⎣
1
0
0

−1

⎤
⎥⎦ = ε > 0.

So condition (12) is not satisfied. Furthermore, if the node at k is q1 and the node
at k + 1 is q2, the left-hand side of (12) is obtained as

[
[ 2 1 3 ] 0

] ⎡⎢⎣
0
1
0

−1

⎤
⎥⎦−

[
[ 2 1 3 ] ε

] ⎡⎢⎣
1
0
0

−1

⎤
⎥⎦ = −1 + ε < 0.

In this case condition (12) is satisfied.
Based on condition (12), next, we derive a stabilizing state feedback gain K. It

is remarked here that K ∈ Kb is necessary for deriving stabilizing state feedback
gains. The closed loop system via the state feedback ũ(k) = Kx̃(k), K ∈ Kb is
given by x̃(k + 1) = (A+BK)x̃(k). By substituting this into (12), we obtain(

[ Φ 0 ] (A+BK)− [ Φ ε ]
)
x̃(k) ≤ 0, ∀k ∈ Z+, ∀x̃(k) ∈ X̃0. (15)

The equality in (15) holds if and only if x̃(k) = 0 for all k. So (15) is equivalent to(
[ Φ 0 ] (A+BK)−[ Φ ε ]

)
x̃′(k) < 0, ∀k ∈ Z+, ∀x̃′(k) ∈ X̃ ′

0 := X̃0−{0}. (16)

The following lemma will be applied to (16).
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Lemma 2 Suppose that a = [ a1 a2 ], a1 ∈ R1×(m−1), a2 ∈ R, are given. Then
the following conditions are equivalent:

(i) [ a1 a2 ] x̃′(k) < 0, ∀k ∈ Z+, ∀x̃′(k) ∈ X̃ ′
0 := X̃0 − {0},

(ii) [ a1 a2 ]

[
Im−1

−eTm−1

]
< 01×(m−1).

Proof By definition, X̃ ′
0 is given as

X̃ ′
0 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0
0
...
0
0

−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1
0
...
0
0

−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
, · · · ,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
...
0
1

−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (17)

From (17), condition (i) is equivalent to condition (ii). ��

For example, in the DFA of Fig. 1, X̃ ′
0 is given by

x̃′
0 ∈ X̃ ′

0 =

⎧⎪⎨
⎪⎩
⎡
⎢⎣

1
0
0

−1

⎤
⎥⎦ ,

⎡
⎢⎣

0
1
0

−1

⎤
⎥⎦ ,

⎡
⎢⎣

0
0
1

−1

⎤
⎥⎦
⎫⎪⎬
⎪⎭ .

Then for a1 = [ a11 a12 a13 ], where a11, a12 and a13 are appropriate real
numbers, condition (i) of Lemma 2 is given by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[ a11 a12 a13 a2 ]

⎡
⎢⎣

1
0
0

−1

⎤
⎥⎦ < 0,

[ a11 a12 a13 a2 ]

⎡
⎢⎣

0
1
0

−1

⎤
⎥⎦ < 0,

[ a11 a12 a13 a2 ]

⎡
⎢⎣

0
0
1

−1

⎤
⎥⎦ < 0,

i.e.,

[ a11 a12 a13 a2 ]

⎡
⎢⎣

1 0 0
0 1 0
0 0 1

−1 −1 −1

⎤
⎥⎦ < 01×3.

This condition is (ii) of Lemma 2. By applying Lemma 2 to (16), we arrive at the
following theorem.
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Theorem 2 Suppose that a state equation (6) that expresses a DFA satisfying
the stabilizability condition of Theorem 1, and the set Kb of all state feedback
gains satisfying x(k) ∈ X0 and u(k) ∈ {0, 1}α̂ are given. Then all stabilizing state
feedback gains are given as K ∈ Kb satisfying the following condition:

ΦB1K

[
Im−1

−eTm−1

]
< Φ(Im−1 −A11) + (ΦA12 − ε)eTm−1 (18)

where A11, A12 and B1 are given by

A =

[
A11

A21︸︷︷︸
m−1

A12

A22︸︷︷︸
1

]
} m− 1
} 1 ,

B =

[
B1

B2︸︷︷︸
α̂

]
} m− 1
} 1 .

Proof Relation (16) is rewritten as[
Φ(A11 +B1K1 − Im−1) Φ(A12 +B1K2)− ε

]
x̃′(k) < 0,

∀k ∈ Z+, ∀x̃′(k) ∈ X̃ ′
0 := X̃0 − {0}

where K = [ K1 K2 ], K1 ∈ {0, 1}α̂×(m−1) and K2 ∈ {0, 1}α̂×1. Note that
Φ(A12 + B1K2) − ε is a scalar. Then by means of Lemma 2, this inequality is
equivalently expressed by

[
ΦB1K1 ΦB1K2

] [ Im−1

−eTm−1

]
< −

[
Φ(A11 − Im−1) ΦA12 − ε

] [ Im−1

−eTm−1

]

which is equivalent to (18). ��

By the derivation procedure of Section 4.1 and Theorem 2, we can derive all
stabilizing state feedback controllers. For example, in the DFA of Fig. 1, setting
ε = 0.1 in (12), and substituting (10) and the coefficient matrices of (4) into (18),
we obtain

[ k11 + 3 3 3 ] < [ 3.9 3.9 3.9 ] .

Thus k11 = 0 holds, and we obtain the stabilizing state feedback gain

K =

[
0 0 0 0
0 0 0 1

]
.

Applying the obtained state feedback controller to the DFA of Fig. 1, we obtain
the following state transition trajectories:

the state transitions from node q1: q1 → q2 → q4,

the state transitions from node q2: q2 → q4,

the state transitions from node q3: q3 → q1 → q2 → q4
(see Fig. 2).

Comparing Fig. 2 with Fig. 1, we see that state transition trajectories are
limited. In general, a state transition trajectory from each node to the target
equilibrium node is not uniquely determined (see Section 5).
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Fig. 2 Controlled 4-node DFA

5 Example

Let us consider the 7-node DFA of Fig. 3, where for simplicity of notation the
label of each node expresses the index i of qi, and the original input on each arc
is omitted. The state equation expressing the DFA of Fig. 3 is derived at first. In
this case, m = 7 holds. From the derivation procedure of Appendix A, α̂ = 6 is
obtained, and each coefficient matrix is obtained as

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
1 1 1 1 1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

−1 −1 −1 −1 −1 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,

C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0

−1 −1 −1 −1 0 −1 −1
−1 −1 −1 −1 −1 0 −1
−1 −1 −1 −1 −1 −1 0
1 1 1 1 1 1 1

−1 −1 −1 −1 −1 −1 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, D =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 −1 −1 −1 0 0
−1 0 0 −1 −1 0
0 0 0 −1 0 0
0 0 0 0 −1 −1
1 0 1 1 1 1
1 1 0 1 1 1
1 1 1 1 1 1
0 0 0 0 0 0
0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

G =
[
0 0 0 0 0 0 0 1 −1

]T
.

Suppose that the target equilibrium node is given by node q7. Then this DFA is
stabilizable at the target equilibrium node q7 because every node is connected to
the target equilibrium node q7. Although node q1 is also an equilibrium node, this
DFA is not stabilizable at q1 because the state cannot transit from q7 to q1.

Furthermore, let us derive a stabilizing state feedback gain K. First, by using
the proposed procedure of Section 4.1, a state feedback gain Kb satisfying x(k) ∈



14 Koichi Kobayashi et al.

Fig. 3 7-node DFA

X0 and u(k) ∈ {0, 1}α̂ is obtained as

Kb =

⎡
⎢⎢⎢⎢⎢⎣

k11 k12 0 0 0 0 0
k21 0 0 0 k25 0 0
k31 0 0 0 0 k36 0
k41 k42 1 0 0 0 0
0 k52 0 k54 0 0 0
0 0 0 k64 0 0 0

⎤
⎥⎥⎥⎥⎥⎦

where k11, k21, k31, k41, k12, k42, k52, k54, k64, k25, k36 ∈ {0, 1} must satisfy
binary linear equalities

⎧⎨
⎩

k11 + k21 + k31 + k41 = 1,
k12 + k42 + k52 = 1,
k54 + k64 = 1

(19)

Next, consider the inequality condition (18) of Theorem 2. In this case, (18) is
obtained as

⎡
⎢⎢⎢⎢⎢⎣

3k11 + 2k21 + 3k31 + 2k41
3k12 + 2k42 + k52

2
k54 + k64

2k25
3k36

⎤
⎥⎥⎥⎥⎥⎦

T

<

⎡
⎢⎢⎢⎢⎢⎣

2.9
1.9
2.9
1.9
0.9
0.9

⎤
⎥⎥⎥⎥⎥⎦

T

(20)

where ε = 0.1. From (19) and (20), we obtain

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

k11 = k31 = 0, k21 + k41 = 1,
k12 = k42 = 0, k52 = 1,
k54 + k64 = 1,
k25 = 0,
k36 = 0
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Fig. 4 Controlled 7-node DFA. (a) case 1: k21 = 0, k54 = 0. (b) case 2: k21 = 0, k54 = 1. (c)
case 3: k21 = 1, k54 = 0. (d) case 4: k21 = 1, k54 = 1.

Thus all stabilizing state feedback gains of this system are obtained as follows:

K =

⎡
⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0
k21 0 0 0 0 0 0
0 0 0 0 0 0 0

1− k21 0 1 0 0 0 0
0 1 0 k54 0 0 0
0 0 0 1− k54 0 0 0

⎤
⎥⎥⎥⎥⎥⎦ (21)

where k21, k54 ∈ {0, 1} are free parameters. From (21), we obtain four stabilizing
state feedback controllers, i.e., case 1: k21 = 0, k54 = 0, case 2: k21 = 0, k54 = 1,
case 3: k21 = 1, k54 = 0 and case 4: k21 = 1, k54 = 1. Then Fig. 4 shows
all controlled DFA. From Fig. 4, we see that each node transits to the target
equilibrium node q7 with the minimal number of arcs.

By using stabilizing state feedback controllers, we can derive all minimal state
transition trajectories. Since minimal state transition trajectories are equivalent to
shortest paths to the target equilibrium node, they can be of course enumerated
by the existing graph search algorithm. However, the proposed method enables
us not only to derive such all trajectories in a systematic way, but also to com-
pactly express multiple shortest paths as a linear parametrization of state feedback
controllers. Furthermore, the linear state equation of closed-loop systems can be
embedded as a part of a mixed logical dynamical (MLD) model [3], which is one
of the standard models of hybrid systems. In the next section, the proposed stabi-
lization method of a DFA is applied to stabilizing model predictive control (MPC)
of hybrid systems with discrete dynamics.

6 Application to Stabilizing Model Predictive Control of Hybrid
Systems

According to the result in [5], we consider stabilizing model predictive control of
hybrid systems using the stabilization method of DFAs. First, after the notion of
global asymptotic stability is defined, the problem to be studied here is formulated.
Next, a construction method of control Lyapunov functions (CLFs) is proposed,
and the proposed MPC law is given. Finally, we show the effectiveness of the
proposed method by a numerical example.
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Hereafter, the symbols x, x̃, u, and m (the dimension of the state in (6)) used
in Sections 2–5 are replaced to xd, x̃d, ud, and nd, respectively.

6.1 Problem Formulation

Consider the following discrete-time piecewise affine (DT-PWA) system{
xc(k + 1) = AI(k)xc(k) +BI(k)uc(k) + aI(k),
I(k + 1) = I+ if xc(k + 1) ∈ SI+

(22)

where xc(k) ∈ Xc ⊆ Rnc and uc(k) ∈ Uc ⊆ Rmc are the state and the input,
respectively. Symbols Xc and Uc are given as closed and bounded convex sets.
Denote by I(k) ∈ M := {1, 2, . . . , nd} the mode of system, and suppose that
mode transition constraints are given by a DFA (directed graph) with nd nodes
such as Fig. 1. Furthermore, we assume that SI is the bounded convex polyhedron
satisfying

⋃
I∈M SI = Xc and SI

⋂
SJ = ∅ for all I �= J ∈ M. Without loss of

generality, we assume that Ie = nd.
To define global asymptotic stability, consider the following autonomous system

(uc(k) = 0) {
xc(k + 1) = AI(k)xc(k) + aI(k),
I(k + 1) = I+ if xc(k + 1) ∈ SI+ ,

(23)

and the equilibrium state xe ∈ SIe . In this paper, we use the following notion of
global asymptotic stability defined in [5].

Definition 5 The DT-PWA system (23) is globally asymptotically stable at the
equilibrium state xe ∈ Ie, if for any xc(0) ∈ Xc, the following conditions hold:

(i) The state xc(k) converges to the region SIe in finite time,
(ii) The region SIe is an invariant set,
(iii) The state of the system xc(k + 1) = AIexc(k) asymptotically converges to
xe in SIe .

In the region Xc − SIe , the state reaches the region SIe in finite time, and the
state stays SIe . In only the region SIe , the asymptotic convergence is required.

Next, the stabilization problem is formulated. For the system, the following
assumption is made.

Assumption 1 For any xc ∈ SIe , there exists uc ∈ Uc satisfying AIexc+BIeuc+
aIe ∈ SIe , where node Ie is an equilibrium node in the sense of Definition 1.

Assumption 1 means that SIe is an invariant set for the closed-loop system,
i.e., Assumption 1 corresponds to condition (ii) in Definition 5. Then consider the
following problem.

Problem 2 Suppose that for the DT-PWA system (22) satisfying Assumption 1,
the target equilibrium state xe ∈ SIe is given. Then find uc(k) ∈ Uc such that the
system (22) is globally asymptotically stable at xe ∈ SIe .

To solve this problem, we apply the MPC method using a CLF based approach.
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6.2 Construction of Control Lyapunov Functions

As a preparation to solve Problem 2, a sufficient condition for the system (22) to be
globally asymptotically stable at xe is introduced based on certain two nonnegative
functions [5].

Suppose that mode transition constraints are expressed by the state equation
(6) described in Section 2. Then the relation between the discrete state xd(k) in
(6) and the continuous state xc(k) in (22) is given as

[x
(i)
d (k) = 1] ↔ [xc(k) ∈ Si], i ∈ M. (24)

This relation can be expressed by a set of linear inequalities. See [3] for further
details.

Given an equilibrium state xe ∈ SIe , consider two nonnegative functions

Vd(x̃d(k)), Vc(xc(k)) (25)

where Vd(x̃d(k)) is defined by (11), and Vc(xc(k)) is a nonnegative function satis-
fying

α1(‖xc(k)‖) ≤ Vc(xc(k)) ≤ α2(‖xc(k)‖)

for some α1(·), α2(·) ∈ K∞. Then the following theorem has been obtained in [5].

Theorem 3 Suppose that for the DT-PWA system (22) satisfying Assumption 1,
the target equilibrium state xe ∈ SIe is given. Then the closed-loop system of (22)
is globally asymptotically stable at xe if there exists uc(k) satisfying the following
conditions⎧⎨

⎩
Vd(x̃d(k + 1))− Vd(x̃d(k)) < 0, ∀k ∈ Z+ \ F , if x̃d(k) �= 0,
Vd(x̃d(k + 1)) = Vd(x̃d(k)), ∀k ∈ F ⊂ Z+, if x̃d(k) �= 0,
Vd(x̃d(k + 1)) = 0, ∀k ∈ Z+, if x̃d(k) = 0

(26)

Vc(xc(k + 1)) ≤ ρVc(xc(k)) +Mc(1− x
(Ie)
d (k)), ∀k ∈ Z+ (27)

where F ⊂ Z+ is some finite set, ρ is some constant satisfying 0 ≤ ρ < 1, and Mc

is a sufficiently large scalar.

If there exists uc(k) satisfying (26) and (27), then Vd(x̃d(k)), Vc(xc(k)) in (25)
are called a discrete CLF and a continuous CLF, respectively.

6.3 Addition of Self-Loops to Stabilized DFAs

To generate the control input satisfying (26) and (27), the stabilization method
of DFAs described in Sections 3–4 is applied. However, this method cannot be
directly applied because Vd(x̃d(k+1)) = Vd(x̃d(k)) in (27) hold only for x̃d(k) = 0
(see (13) and (14)). In other words, self-loops except for the target equilibrium
node are eliminated (see Fig. 1 and Fig. 2, or see Fig. 3 and Fig. 4). So it is
necessary to add self-loops to stabilized DFAs. Adding self-loops is easy.
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As an example, consider the DFA in Fig. 1. The stabilized DFA and its state
equation are obtained as Fig. 2 and⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩
xd(k + 1) =

⎡
⎢⎣
0 0 1 0
1 0 0 0
0 0 0 1
0 1 0 0

⎤
⎥⎦xd(k),

xd(k) ∈ R4,

xd(0) = xd0 ∈ Xd :=
{
ζ ∈ {0, 1}4 | eT4 ζ = 1

}
,

(28)

respectively. Since the self-loop of node 1 is eliminated in Fig. 2, we add this self-
loop to Fig. 2. Then the state equation with the self-loop of node 1 is obtained
as ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xd(k + 1) =

⎡
⎢⎣
0 0 1 0
1 0 0 0
0 0 0 1
0 1 0 0

⎤
⎥⎦xd(k) +

⎡
⎢⎣

1
−1
0
0

⎤
⎥⎦ud(k),

−xd(k) +

⎡
⎢⎣
1
0
0
0

⎤
⎥⎦ud(k) ≤ 04×1,

xd(k) ∈ R4, ud(k) ∈ {0, 1}1,
xd(0) = xd0 ∈ Xd :=

{
ζ ∈ {0, 1}4 | eT4 ζ = 1

}
.

(29)

The inequalities in (29) guarantee ud(k) = 0 except for the case of x
(1)
d (k) = 1

and x
(i)
d (k) = 0, i �= 1. In other words, ud(k) is a free parameter only in the case

of x
(1)
d (k) = 1. If ud(k) = 1, then the mode implies node (mode) 1. If ud(k) = 0,

then the mode transits from node 1 to 2. However, in the state equation (29), the
mode may remain node 1, which is not the equilibrium.

To avoid such a phenomenon, inequality constraints are imposed. By L denote
a set of nodes that have a self-loop and are not the target equilibrium node nd

(i.e., Ie in Problem 2). That is, L ⊆ M−{nd} holds. Then consider the following
inequality:

N∑
i=0

x
(j)
d (i) ≤ pj , j ∈ L,

∑
j∈L

pj = |F| (30)

where F ⊂ Z+ is a finite set (see Theorem 3), and pj , j ∈ L are determined based
on continuous dynamics. From this inequality, (26) follows. Finally, a new DFA
obtained by adding self-loops to a stabilized DFA is called an S-DFA.

6.4 Model Predictive Control Law

We derive the MPC law to generate the input uc(k) satisfying (26) and (27). The
derived MPC law is an improved version of the MPC law proposed in [5].

First, consider the DT-PWA system (22). Assume that mode transition con-
straints are given by the S-DFA obtained from a given DFA. Then the DT-PWA
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system with the S-DFA is represented as an MLD model{
x(k + 1) = Ax(k) +Bv(k),
Cx(k) +Dv(k) ≤ G

(31)

where x(k) ∈ Rnc × {0, 1}nd is the state v(k) = [ uT (k) zT (k) δT (k) ]T , u(k) ∈
Rmc ×{0, 1}md is the input, z(k) ∈ Rm1 is the auxiliary continuous variable, and
δ(k) ∈ {0, 1}m2 is the auxiliary binary variable. See [3] for further details.

Next, we derive an MPC law. For simplicity of discussion, we assume that
xe = 0. The cost function is given by the standard quadratic function

J(x(t), v(i)) =

t+N−1∑
i=t

{
xT (i)Qx(i) + vT (i)Rv(i)

}
+ xT (t+N)Qfx(t+N)

where t is current time, and Q,Qf , R ≥ 0. Note here that the cost function is not
necessarily required in the stabilization problem.

We thus give an MPC law deriving by the following two steps:

[Offline Procedure]
Derive a S-DFA from a given DFA, and determine pj in (30).

[Online Procedure]
Step 1: Set t = 0, and give the initial state x(t) ∈ SI(t).
Step 2: If I(t) ∈ L, then set pI(t) − 1 → pI(t) in (30).
Step 3: Solve the following finite-time optimal control problem:

find v(k), k = t, t+ 1, . . . , t+N − 1,

min J(x(t), v(k)),

subject to MLD model (31),

Inequality constraints (27), (30).

Step 4: Apply only uc(t) to the plant.
Step 5: Set t+ 1 → t, measure x(t), and return to Step 2.

By simple calculations, the finite-time optimal control problem is rewritten
as an MIQP problem. In addition, since the finite-time optimal control problem
is solved repeatedly, pj in (30) must be updated. Then the following theorem is
obtained straightforwardly according to the result in [5].

Theorem 4 The closed-loop system of (22) is globally asymptotically stable at
xe = 0 if for any xc(0) ∈ Xc, the finite-time optimal control problem at each time
is feasible.

Feasibility in the state set Xc can be checked by using, e.g., the bisimulation
technique [1].

Remark 3 The MPC law described in [5] consists of only online procedure. In other
words, an S-DFA is computed online there. Our proposed method is more suitable
than this existing method from the computational viewpoint, since an S-DFA can
be computed offline.
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Fig. 5 State partition

Fig. 6 Mode transition constraints. (a) Given DFA, (b) S-DFA.

6.5 Numerical Example

As a numerical example, consider the 9-mode and 2nd-order DT-PWA system,
where

A1 =

[
0.3 0.4
0.3 0.7

]
, A2 =

[
1.2 −0.3

−0.4 1.1

]
, A3 =

[
−0.7 −0.2
0 1.2

]
,

A4 =

[
1.0 0.1
0 1.0

]
, A5 =

[
1.2 0.3

−0.5 1.4

]
, A6 =

[
−0.2 −0.4
0 0.1

]
,

A7 =

[
1.0 0.3
0 1.0

]
, A8 =

[
1.3 −0.2
0.2 1.1

]
, A9 =

[
1.0 0.2
0.2 1.0

]
,

Bi =

[
1
1

]
, ai =

[
0
0

]
,

and Xc = [ [ 0 0 ]T , [ 30 30 ]T ], Uc = [−5,+5]. Fig. 5 and Fig. 6 (a) show the state
partition and the mode transition constraints, respectively, where xc = [ x1 x2 ]T .
Furthermore, the target equilibrium state is given by xe = 0 ∈ S9 (Ie = nd = 9).

First, consider mode transition constraints. Fig. 6 (b) shows the obtained S-
DFA. Then L in (30) is given by L = {1, 2, 3, 4, 5, 6, 7, 8}. In addition, pj is given
as pj = 2 (i.e., |F| = 16). Next, consider the finite-time optimal control problem
in the online procedure. Then N = 5, Q = Qf = block-diag(10I2, 09×9), and
R = block-diag(1, 0(md+m1+m2)×(md+m1+m2)) are given. Furthermore, Vc(xc(k))

in (25) is given by Vc(xc(k)) = ‖xc(k)‖1 = |x(1)
c (k)| + |x(2)

c (k)|, and ρ, Mc are
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(a) (b)

Fig. 7 Obtained trajectories. (a) State space trajectory, (b) State trajectory.

given as ρ = 0.8, Mc = 100, respectively. In addition, the initial state is given as
xc(0) = [ 25 25 ]T .

In Fig. 7 (a) and (b) the state trajectory of the closed system is shown. From
Fig. 7 (a), we see that the state xc(k) converges to the region S9 in finite time.
Furthermore, from Fig. 7 (b), it turns out that the state xc(k) asymptotically
converges to xe = 0 in the region S9.

Finally, we discuss the computation time to solve the MPC problem. Thus
we solved the MIQP problem at each time of the time period [0, 14]. Then the
worst-case computation time was 0.2069[sec], and the mean computation time
was 0.0449[sec], where we used ILOG CPLEX 11.0 [19] as an MIQP solver on
the computer with the Intel Core 2 Duo 3.0GHz processor and the 4GB memory.
On the other hand, the stabilization method using the terminal constraint [3] is
well known as one of the existing methods. In order to compare the proposed
method with the existing method, we consider to impose the terminal constraint
xc(t+N) = 0. Note here that mode transition constraints are given as Fig. 6 (a) in
the existing method. If the main purpose is to stabilize a given system, then it is
desirable to set N to be small. However, the MIQP problem with xc(t+N) = 0 is
infeasible in N = 5. If N ≥ 8, then this problem is feasible. As previously shown in
[5] by numerical examples, a longer N is needed for feasibility, with respect to the
case with terminal constraint. This is the case also for the example discussed here.
Also, since a longer N is needed in the existing method, the computation time
in the existing method is longer than that in the proposed method. Furthermore,
even if N is the same in the proposed and the existing methods, the computation
time is different. This is because mode sequences are limited in the proposed
method. For example, in the case of N = 10, the worst-case computation time
was 1.0015[sec] (the proposed method), 1.9716[sec] (the existing method), and the
mean computation time was 0.1668[sec] (the proposed method), 0.3946[sec] (the
existing method). In the case of N = 20, the worst-case computation time was
4.3926[sec] (the proposed method), 18.8641[sec] (the existing method), and the
mean computation time was 0.6695[sec] (the proposed method), 6.4353[sec] (the
existing method). Thus reducing the computation time is achieved by applying
the proposed method.
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7 Conclusion

In this paper, based on our previously proposed state equation representation, the
design method of a stabilizing state feedback controller has been proposed for a
deterministic finite automaton (DFA). In particular, we have derived a necessary
and sufficient condition for stabilizability, and given a characterization of all the
stabilizing state feedback gains. Furthermore, this method has been applied to the
stabilization problem of hybrid systems with discrete dynamics, and the stabilizing
model predictive control (MPC) law has been proposed. From the computational
viewpoint, the proposed MPC law is effective.

Future works are as follows. The stabilization problem of DFAs is closely related
to the shortest path problem, although the former will consider the problem of
finding a shortest path for every initial state. For example, in Fig. 4, the obtained
state trajectories express all shortest paths. Thus, it may be interesting to evaluate
the computational amount of the proposed method comparing with the existing
shortest path algorithms. Furthermore, it will be one of the challenging topics to
develop the robust control theory of DFA [13] based on our framework. In control of
hybrid systems, it will be significant to consider how to efficiently check feasibility
of the finite-time optimal control problem.

A Derivation Procedure of State Equation Expressing Deterministic
Finite Automata

The procedure deriving a state equation from a given DFA is as follows. This is a more
sophisticated version of our approach derived in [10].

Procedure of deriving a state equation:
Step 1: For a given deterministic finite automata A with m nodes and n(≥ m) arcs, let Ia
denote the set of combinations of (i, j) such that the arc from node i to node j exists, and assign
a binary variable δl to the arc l. Furthermore, set ξ(k) := [ δ1(k) δ2(k) · · · δn(k) ]T ∈ {0, 1}n.
Then the input-output relation of δl(k) on each node gives the implicit system of

ΣI :

{
Eξ(k + 1) = Fξ(k),
ξ(k) ∈ {0, 1}n, ξ(0) ∈ Ξ0(δM0 ).

where E,F ∈ {0, 1}m×n,

Ξ0(δ
M
0 ) :=

{
η ∈ {0, 1}n | eTnη = 1, Eη = δM0

}
and δM0 ∈ {0, 1}m denotes a given initial mode satisfying eTmδM0 = 1.

Step 2: Derive a permutation matrix P satisfying EP = [ Im Ẽ ], where Ẽ ∈ {0, 1}m×(n−m)

is some matrix. Then by using

V̂ =

[
Im Ẽ

0(n−m)×m In−m

]
P−1,

compute EV̂ −1 = [ Im 0m×(n−m) ] and

F V̂ −1 =
[
F̃1 − F̃1Ẽ + F̃2

]
=:
[
Â B̂

]
where [ F̃1 F̃2 ] := FP . Thus letting [ xT (k) ûT (k) ]T := V̂ ξ(k), the state equation with
inequality constraints is obtained as⎧⎨

⎩
x(k + 1) = Âx(k) + B̂û(k),

−x(k) + Ẽû(k) ≤ 0,
x(k) ∈ Rm, û(k) ∈ {0, 1}n−m,
x(0) = x0 ∈ X0 := { ζ ∈ {0, 1}m | eTmζ = 1 }.

(32)
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If B̂ is full row rank, then (32) with u(k) := û(k) is the state-equation-based model to be
found. Otherwise, go to Step 3.
Step 3: Reduce the matrix B̂ to

B̂ = PB

[
Iα̂ 0

B̃ 0

]
TB (33)

where α̂ := rankB̂, PB is a permutation matrix, TB is a nonsingular matrix, and B̃ is some
matrix. Next, define [

ũ(k)
ũe(k)

]
:= TB û(k) (34)

where ũe(k) denotes redundant input variables. Then applying the input transformation

ũ(k) = Âux(k) + u(k) (35)

where Âu := −[ Iα̂ 0α̂×(m−α̂) ]P−1
B F̃1 and u(k) ∈ {0, 1}α̂ is the binary input vector, to (32)

yields ⎧⎨
⎩

x(k + 1) = Ax(k) +Bu(k),
Cx(k) +Du(k) ≤ G,
x(k) ∈ Rm, u(k) ∈ {0, 1}α̂,
x(0) = x0 ∈ X0

(36)

where

A := PB

[
0 0

−B̃ Im−α̂

]
P−1
B Â, B := PB

[
Iα̂
B̃

]
,

C :=

[
Im − ΦA
eTmA
−eTmA

]
, D :=

[ −ΦB
eTmB
−eTmB

]
, G :=

[
0α̂×1

1
−1

]
,

and Φ is the adjacency matrix of a given finite automaton.

In Step 1, noting that n ≥ m holds, for a given δM0 , ξ(0) is not uniquely determined. So

we consider the set Ξ0(δM0 ).

In Step 2, the state equation (32) includes the inequality −x(k) + Ẽû(k) ≤ 0. To explain
this inequality, we show a very simple example. Consider the linear scalar system x(k + 1) =
x(k)−u1(k)−u2(k), where x(k+1), x(k), u1(k), u2(k) ∈ {0, 1}. To satisfy the binary property
of x(k + 1), the constraint must be considered for u1(k), u2(k). If x(k) = 0, then u1(k) =
u2(k) = 0 must hold. If x(k) = 1, then we must consider only two cases: (i) u1(k) = 1,
u2(k) = 0 and (ii) u1(k) = 0, u2(k) = 1. From the above discussion, the inequality constraint

−x(k)+u1(k)+u2(k) ≤ 0 must be imposed. This inequality corresponds to −x(k)+Ẽû(k) ≤ 0
in (32). Furthermore, the state x implies a dependent variable, which can be determined from
m equations in ΣI . The input û implies an independent (free) variable.

In Step 3, by substituting (35) into (32) and replacing the inequality of (32) to the inequal-
ity using the adjacency matrix Φ, we obtain (36). The input transformation of (35) guarantees
the binary property of the input vectors because ũ itself does not always take binary values
due to some transformation (34).

In addition, although the matrices P, PB , TB in the above procedure are not unique,
P, PB , TB satisfying the conditions can be derived by elementary transformations of matri-
ces, which can be easily implemented by a suitable software such as MATLAB. Note here that
the dimension of u does not depend on selection of P, PB , TB . Note here that the computation
cost of the above procedure is very small, since there does not exist iteration in all steps of
the proposed procedure.
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