
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title

A study on restoration of bone-conducted speech

in noisy environments with LP-based model and

Gaussian mixture model

Author(s) Phung, Nghia Trung; Unoki, Masashi; Akagi, Masato

Citation Journal of Signal Processing, 16(5): 409-417

Issue Date 2012-09

Type Journal Article

Text version publisher

URL http://hdl.handle.net/10119/10825

Rights

Copyright (C) 2012 信号処理学会. Phung Nghia

Trung, Masashi Unoki and Masato Akagi, Journal of

Signal Processing, 16(5), 2012, 409-417.

Description



Journal of Signal Processing, Vol. 16, No.5, pp.409-417, September 2012 

PAPER 

A Study on Restoration of Bone-Conducted Speech in Noisy 

Environments with LP-based Model and Gaussian Mixture Model 

Phung Nghia Trung, Masashi Unoki and Masato Akagi 

School of Information Science, Japan Advanced Institute of Science and Technology 
1-1 Asahidai, N omi, Ishikawa 923-1292, Japan 

E-mail: {ptnghia.unoki.akagi}@jaist.ac.jp 

Joumalof 
Signal Processing 



" 

Journal of Signal Processing, Vol. 16, No.5, pp. 409-417, September 2012 

PAPER 

A Study on Restoration of Bone-Conducted Speech in Noisy 

Environments with LP-based Model and Gaussian Mixture Model 

Phung Nghia Trung, Masashi Unoki and Masato Akagi 

School of Information Science, Japan Advanced Institute of Science and Technology 
1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan 

E-mail: {ptnghia.unoki.akagi}@jaist.ac.jp 

Abstract The restoration of bone-conducted speech is a very important issue that enables robust 
speech communication in extremely noisy environments. We proposed a method of blind restoration in 
our previous studies based on a scheme of linear prediction with a method of training and prediction based 
on the simple recurrent neural network. However, prediction based on neural networks is not suitable 
for training with large corpora, which is necessary for real applications. The over-training problem with 
simple recurrent neural networks makes it difficult to train various kinds of bone-conducted speech in one 
session. In addition, it is difficult to adapt the neural network model to bone-conducted speech in unknown 
noisy environments to build an open dataset restoration of bone-conducted speech. Thus, a method of 
training and prediction based on the Gaussian mixture model was used in this research, instead of a neural 
network. A method of re-estimating the residual ratio in the scheme of linear prediction is also proposed. 
We also investigated how the proposed method works to restore bone-conducted speech in extremely noisy 
environments. Objective and subjective evaluations were carried out to evaluate the improvements in 
sound quality and the intelligibility of restored speech. The results revealed that our proposed method 
outperformed previous methods in both human hearing and automatic speech recognition systems even in 
extremely noisy environments. 

Keywords: bone-conducted speech, Gaussian mixture model, linear prediction, speech intelligibility 

1. Introduction 

Speech communication in noisy environments still 
remains a challenge. There have been many models 
and algorithms to reduce noise in noisy speech, but 
there is still a lack of efficient models and algorithms 
in extremely noisy environments. Bone-conducted 
(BC) speech in extremely noisy environments is sta­
ble against surrounding noise so that it is able to 
be efficiently used for communication instead of air­
conducted (AC) speech [1]. 

However, there are two main drawbacks to BC 
speech, Le., degradation due to bone conduction and 
changing speaker pronunciations due to surrounding 
noise, which is referred to as the Lombard effect. 
While the Lombard effect is a typical problem, which 
is the same as that in AC speech in noisy environ­
ments, another is its critical effect on the quality of 
speech. When signals are transmitted through bone 
conduction, they are complexly affected by a loss of 
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sound quality and intelligibility of speech. The degra­
dation varies for different pick-up points (i.e., BC mi­
crophone positions), speakers, and the way syllables 
are pronounced. This is because the characteristics of 
bone conduction vary for different measuring positions 
and the distribution of frequency components varies 
with speakers who pronounce syllables differently. 

There have been many studies on the restora­
tion of BC speech in the literature to overcome the 
degradation in BC speech caused by bone conduc­
tion. However, the results have still been limited. For 
example, a model for restoring BC speech based on 
cross spectrum has been proposed [2], and long-term 
Fourier transform (LTF) has been applied to restore 
BC speech [3]. These methods seem the simplest and 
most straightforward methods of restoring BC speech, 
but they have yielded restored signals with artifacts 
such as musical noise and echoes and only achieved 
slight improvements in voice quality [4]. In addition, 
these methods have been difficult to apply to blind 
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Fig. 1 Block diagrams of BC-speech blind restoration based on LP scheme: (a) Our previous model and (b) our 
proposed model 

restoration. 
The approach of using the modulation transfer 

function (MTF) to restore BC speech has been pro­
posed [4] to overcome the drawbacks with previous 
methods. The MTF-based model has better restora­
tion abilities and yields restored signals with better 
intelligibility than the cross-spectrum and LTF meth­
ods. However, the quality of speech is still limited and 
it is still difficult to predict the model's parameters in 
blind restoration. 

Body-transmitted speech (which is like BC speech) 
restoration based on the Gaussian mixture model 
(GMM) has been proposed [5], which has been 
adopted from a technique of voice conversion. In 
general, GMM is flexible and available for training 
with huge amounts of data. Therefore, it is easy to 
train GMM under various conditions and to adapt the 
trained models under various conditions to those of 
other unknown conditions. This is an advantage of 
the use of GMM in the voice conversion. However, 
due to the difficulty of estimating the fundamental 
frequency (FO) from these signals, this approach has 
only been efficiently applied to unvoiced speech such 
as whispered speech. 

We proposed a scheme of linear prediction (LP) 
to restore BC speech in previous studies (6]. Instead 
of long-term processing as in traditional methods, we 
used short-term frame-based processing in this model, 
which might be used in real-time practical applica­
tions. The inverse filter was built only based on line 
spectral frequency (LSF) coefficients without FO esti­
mation. We used a simple recurrent neural network 
(SRN) to blindly predict the LSF of AC speech from 
BC speech after a training process. 

The experimental results presented in our previous 
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paper revealed that our method of LSF -SRN, based on 
the LP scheme, could adequately improve the quality 
and intelligibility of BC speech, and it could also ef­
ficiently be applied to blind-restoration and real-time 
applications. However t this method also had three 
outstanding problems that needed to be solved to fur­
ther improve the quality and intelligibility of speech. 

Vu et al. [6] assumed that the residual ratio was a 
constant. However, these values changed from frame 
to frame in the time domain in our current analysis, 
and thus they should be optimized for each frame. 

The learning method we used in our previous 
restoration model was SRN but it is impractical to 
use SRN for training huge corpora. Due to the over­
training problem with SRN t it is not suitable to train 
various kinds of BC speech in one training session. 
Another problem with SRN training is that it is diffi­
cult to adapt the SRN model to BC speech in unknown 
noisy environments. This problem makes it difficult to 
build an open dataset BC speech restoration in noisy 
environments. 

We only evaluated the performance of an LP 
scheme for BC speech restoration in a clean environ­
ment in previous studies. Thus, we needed to confirm 
whether the LP scheme (both LSF-SRN and our cur­
rently proposed LSF-GMM) was useful for restoring 
BC speech in noisy environments. 

We solved all three outstanding problems to im­
prove the performance of the LP scheme in the restora­
tion of BC speech in this study. Instead of using the 
fixed residual ratio for all frames, we approximated 
these ratios as the ratios of the averaged LP residuals 
of AC /BC frame pairs. To overcome the drawbacks 
with SRN, we used GMM to train the joint vector of 
LSF and the average LP residual of Be and associ-
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ated AC speech, since the GMM-based approach can 
be used to adapt the trained models of BC speech un­
der various noisy conditions to those of other unknown 
noisy conditions and then to restore BC speech in un­
known noisy environments. The LSF and averaged 
residual of AC speech were then predicted by using 
those of BC speech and the trained parameters. 

The rest of this paper is organized as follows. The 
next section describes the restoration of BC speech 
based on the LP scheme. Section 3 explains the prob­
lems with the current LP scheme for the restoration of 
BC speech. Section 4 explains our improved method. 
Section 5 presents evaluations and Section 6 concludes 
with a summary and mentions future work. 

2. Restoration of BC Speech Based on LP 
Scheme 

2.1 Definition of LP scheme 

The flow of the LP scheme for the blind restoration 
ofBC speech [6] is outlined in Fig. 1. We compute the 
LSF parameters of BC speech and corresponding AC 
speech to train SRN in the training phase. We have 
to predict the LSF parameters of AC speech based on 
those of BC speech in the restoration phase and the 
corresponding trained SRN parameters. The residual 
ratio is fixed as a constant, k. This residual ratio and 
the LP parameters restored from LSF parameters are 
used to derive the inverse filtering function to convert 
BC speech to associated AC speech. 

Let x(t) and y(t) be AC and associated BC speech 
signals. Using LP analysis, the discrete signals, x( n) 
and y(n), can be represented as: 

p 

x(n) = -L ax(i)x(n - i) (1) 
i=l 

P 

y(n) = -L ay(i)y(n - i) (2) 
i=l 

where x(n) and y(n) are the predicted signals, P is 
the LP order, x( n - i) and y( n - i) are the previous 
observed values, and ax(i) and ay(i) are the i-th LP 
coefficients where i = 1,2,···, P. The residual is ob­
tained by using the error between the current and the 
predicted samples. 

gx(n) = x(n) - x(n) 
gy(n) = y(n) - y(n) 

(3) 
(4) 

Here, x( n) and y( n) are represented by the LP model 
in the z-domain as: 

p 

-Gx(z) = X(z) L ax(i)z-i, ax(O) = -1 (5) 
i=O 
p 

-Gy(z) = Y(z) L ay(i)z-i, ay(O) = -1 (6) 
i=O 
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where X(z) and Y(z) are the z-transforms of x(n) and 
y(n). Here, Gx(z) and Gy(z) are the z-transforms of 
the LP residuals gx(n) and 9y(n). In Vu et al. (6], 
the residual ratio of x( n) and y( n) in z domain (or 
frequency domain) was defined as gain k: 

2.2 LSF inverse filtering in LP scheme 

Let us assume that the mathematical description 
of transfer function h( n) from x( n) to y( n) is an M­
order FIR filter. It is represented in the z domain 
as: 

M 

H(z) = Y(z) = L h(i)z-i (8) 
X(z) i=O 

Vu et al. [4] demonstrated that the inverse filter could 
be represented using LSF parameters. 

H-1(z) = k Uy(z) + Vy(z) 
Ux(z) + Vx(z) 

(9) 

Here, (Uy(z), Vy(z» and (Ux(z), Vx(z» are a symmet­
ric polynomial and an anti-symmetric polynomial for 
BC and AC speech that are determined from the LSF 
coefficients. Inverse filtering therefore depends on the 
LSF coefficients of AC and BC speech and gain k. 

3. Problems with Current LP Scheme for 
Restoration of BC Speech 

The latest method using the LP scheme to restore 
BC speech is known as the method of LSF -SRN as in 
Vu et al. [6]. This approach is based on the supposi­
tion that the LP residual is related to the source infor­
mation (glottal information) of speech, and this kind 
of information may remain unchanged in both AC and 
BC speech signals. Therefore, the inverse restoration 
function is built up with a fixed value of the averaged 
LP residuals ratio of AC and BC speech. However, 
in our current analysis shown in Fig. 2, these average 
values change from frame to frame in the time domain. 

The learning method used in the previous LP 
scheme was SRN. SRN and other neural-network­
based training techniques can be used efficiently with 
small corpora, but when the size of the training cor­
pus increases, the time taken for training will greatly 
increase. This makes it impractical to use SRN for 
training huge corpora. In addition, we had to sepa­
rately train the joint LSF vectors of AC/BC speech for 
each specific condition in our previous blind restora­
tion of BC speech due to the over-training problem 
with SRN. When we extended the method of blind 
BC speech restoration to various kinds of noisy envi­
ronments, SRN did not seem to be suitable for train­
ing. Another problem with SRN training is that it 
is difficult to adapt the SRN model to Be speech in 
unknown noisy environments. This problem makes it 
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Fig. 2 (a) and (b): AC speech, (c) and (d): BC speech, and (e) and (f): Variations in k for /a/ (left panel) and 
for /nukumori/ (right panel) of a male speaker 

difficult to build an open dataset BC speech restora­
tion in noisy environments. Here, statistical models 
such as GMM might be a better solution for training 
the joint LSF vectors of AC/BC speech for various 
kinds of clean and noisy speech. 

We only evaluated the performance of the LP 
scheme to restore BC speech in clean environments 
in previous studies. The goal of BC speech commu­
nication is especially to use it in noisy speech envi­
ronments. Therefore, we should confirm whether the 
LP scheme (both LSF -SRN and our proposed LSF­
GMM) is useful for restoring BC speech in noisy en­
vironments. 

4. Improved Method 

4.1 Re-estimation of residual ratio 

Vu et ale [4] investigated change in gain k in the 
frequency domain and assumed gain k would be con­
stant in the time domain. We investigated the change 
in gain k in the time domain in this research. The 
results we obtained from analysis are given in Fig. 2, 
where we can see the change in k in the time domain, 
especially in long syllables, is considerable. 

The residuals ratio in the frequency domain can be 
fixed as an average constant factor over all frequencies 
[4]. Therefore, instead of using constant gain k for all 
frames [4], we compute the average LP residuals for 
each frame of AC/BC speech to better estimate gain 
k. Gain k is computed as: 

(10) 

where 

(11) 
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N 

Gy(eiw ) = ~ L Gy(eiWi ) (12) 
i=l 

Here, N is the number of frequency bins in FFT anal­
ysis. 

4.2 LSF -GMM training and prediction 

GMM is one of the most efficient methods of train­
ing in voice conversion [7]. GMM is suitable for train­
ing with huge amounts of data and is used to adapt 
the noise model in other unknown models in speech 
recognition [8]. Thus, GMM can be used to adapt 
the trained model of BC speech under various specific 
conditions to those of other unknown conditions. 

We used GMM for the training phase in this study 
instead of SRN, which was used in the original LP 
scheme [4]. 

This section presents the procedure for training 
and prediction in our proposed LSF -GMM BC speech 
blind restoration. 

4.2.1 Procedure for training 
The source (BC speech) and target (clean AC 

speech) vector are presented in two time sequences, 
i.e., X = [X1!X2'''',XN) and Y = {YbY2,"',YN}, 
where N is the number of frames. The Xi and Yi are 
D-dimensional feature vectors for the i-th frame. For 
each frame of AC /BC speech, we add one average LP 
residual coefficient computed with Eq. (10) to the 
LSF vectors to compute the joint AC/BC vector. The 
source and target vector of each frame are therefore 
replaced as: 

Xi [LSF:Z:b LSF:z:2,"', LSF:z:p, G:z:(eiW )],(13) 

Yi = [LSFYbLSFY2, ... ,LSFyp,Gy(ejW»]'(14) 
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Joint source-target vector Z = [Zl' Z2, ••. ,znl where 
Zq = (xT, yIlT. The distribution of Z is modeled by 
GMM, as in Eq. (15). 

M 

p{z) = L omN{z; J.Lm, Em) = p{x, y) (15) 
m=l 

where M is the number of Gaussian components. 
N{z; J.Lm, Em) denotes the 2D dimension normal dis­
tribution with the mean J.Lm and the covariance ma­
trix Em. am is the prior probability of z having 
been generated by component m-th, and this satis­
fies 0 ~ Q m S 1, E!:=l am = 1. The parameters 
(om' J.Lm' Em) for the joint density p{ x, y) can be esti­
mated using the expectation maximization algorithm 
[7}. 

4.2.2 Procedure for prediction 
The transformation function that converts source 

feature x to target feature y is given by Eq. (16). 

F{x) = E(ylx) = ! yp(Ylx)dy 

M 

= L Pm{X)(JL~ + E~(E~)-l{X - J.L~)) 

where 

m=l 

Pm (x) = 
OmN{x; J.L~, E~) 

M 

L omN{x; J.L~, E~) 
m=l 

[ 
J.L:nx J.L;;t 1 

Em = J.L¥: J.Lflt 

(16) 

(17) 

(18) 

(19) 

The Pm (x) is the probability of x belonging to the m­
th Gaussian component. We use Eq. (16) to predict 
vector Y' of clean AC speech from vector X' of BC 
speech. After that, we separate the LSF coefficients 
and the average residuals. Gain k is then computed as 
in Eq. (10) and the inverse filter to restore BC speech 
is finally computed as in Eq. (9). 

We used diagonal covariance GMM in our exper­
iments. The chosen number of Gaussian components 
M, which should be selected to be sufficiently large 
if we have sufficient data for training, was 15. The 
frame size was set to be large enough at 256 ms and 
the step was 128 ms. The use of large frames assisted 
our method in real-time applications. The order of LP 
analysis P was chosen to be 20 in all experiments. 

5. Evaluations 

5.1 Data preparation and experimental setup 

We evaluated the proposed model for BC speech 
restoration in clean environment in our previous stud-
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Table 1 Equipment and setup for recording 
Measurement site Soundproof room 
Number of pick-up points 5 
Number of speakers 10 
Recorder MARANZ, PMD671 
Coding method PCM 
Sampling frequency 48 kHz 
Sample size 16 bits 
Number of channels 2 (Left:AC, Right:BC) 
Mic. A for AC speech SONY, C536P 
Mic. power supply A SONY, AC148F 
Mic. B for BC speech TEMCO, HG-17 
Mic. C for BC speech TEMCO, SK-l 
Mic. amp. Band C Handmade 
Speakers (4 set) JBL, CM62 

Soundproof room 

I R 

I 

~ 
~ 

................. _------_.-. .... '" 

J yet) 
I 

I 
I 

Fig.3 Environment for recording AC/BC speech 

ies [4, 6]. BC speech is especially used for noisy speech 
environments. Therefore, we should confirm whether 
the LP scheme is useful for restoring BC speech in 
noisy environments. 

We investigated both our LSF -SRN method [4, 6] 
and our proposed LSF-GMM model in both clean and 
noisy environments. 

The speech data used in our evaluation is a 
familiarity-controlled Japanese speech dataset that 
was recorded from 17 speakers, including 10 males and 
7 females. All speakers were native Japanese graduate 
students. 

Figure 3 outlines the environment we used to con­
struct the database. BC speech was collected at 
five different pick-up points on the head and face (1: 
mandibular angle, 2: temple, 3: philtrum, 4: fore­
head, and 5: calvarium). Different microphones were 
used at pick-up points from 1 to 4 and at pick-up point 
5. 

In this work, we only used BC speech that was 
collected at the farthest pick-up point from the mouth, 
Le., pick-up point 5 (calvarium). 

The microphone was positioned in front of the 
mouth to record AC speech. Original speech was 
transmitted from the mouth to the microphone 
through air, which is the air-conduction process. The 
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further the distance from the mouth to the micro­
phone, the greater the effect the air-conduction pro­
cess had on observed AC speech. 

It is known that the recording environments for AC 
and BC speech always differ. To compare the quality 
of AC and BC speech, we should use AC and BC mi­
crophones that have recording environments that are 
as similar as possible. We defined the term observed 
noisy AC speech in this paper, which is noisy AC 
speech dependent on the environment, on the record­
ing quality of the AC microphone, on the position of 
this microphone in front of the mouth, and on the 
noise source. We then recorded clean AC speech to 
train BC speech, and observed noisy AC speech in 
comparative testing; both were recorded closely in 
front of the mouth, as seen in Fig. 3. 

The list of equipment and the setup are listed in 
Table 1. 

Our dataset contains 100 Japanese words and 100 
Japanese syllables from Japanese word lists in four 
different familiarity ranges (Rl, R2, R3, and R4) 
[10]. The noisy data contains three kinds of noise, 
which are factory, pink, and white noise. 

Each kind of noise has three levels, in which the 
sound pressure level (SPL), called the noise level in 
this paper, is low (35 dB), medium (55 dB), and high 
(75 dB). It is known that the widely used signal to 
noise ratio (SNR) depends on the signal being inves­
tigated while SPL, which is used to describe the noise 
source, is independent of the signal being investigated. 
We wanted to control the effects of independent noise 
sources on AC and BC speech in our experiments; 
therefore, we used SPL instead of SNR. 

Objective evaluations were carried out for all low, 
medium, and high noise levels of factory noise and 
subjective evaluations were only undertaken with the 
highest noise level, Le., the factory noise of 75 dB. 

5.2 Objective evaluations 

We used the log spectral distortion (LSD), lin­
ear prediction coefficients distance (LPCD), Mel­
frequency cepstral coefficients distance (MFCCD), 
and perceptual evaluation of speech quality (PESQ) to 
objectively and comparatively evaluate the proposed 
method. LSD was defined [4], PESQ was defined [9], 
LPCD, and MFCCD was defined similarly to those in 
Vu et al. [4]. 

p 

LPCD = L (a:x:(i) - ay(i»2 (20) 
i=l 

Q 

MFCCD L (c:x:(i) - Cy(i»2 (21) 
i=l 

where a:x:(i) & ay(i) and Cx(i) & Cy(i) are the LP coeffi­
cients and Mel-frequency cepstral coefficients (MFCC) 
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of the source and target speech for evaluation. The P 
is the LP order and Q is the cepstral order. The LSD 
and PESQ are objective evaluations of voice quality 
for hearing while LPCD and MFCCD are objective 
evaluations of the voice quality for speech recognition. 

From Fig. 4, we can see that non-blind LSF is ba­
sically the best method and non-restored BC is the 
worst. The two blind restoration methods of LSF­
SRN and LSF -GMM approximately reach the restora­
tion of LSF. This might be because we trained enough 
data and the predicted LSFs in blind restorations ap­
proximated the LSFs of clean AC speech. 

The proposed LSF-GMM outperformed LSF-SRN 
as well the LTF methods in the LSD and PESQ tests 
related to speech quality for human hearing. The pro­
posed LSF-GMM outperformed LSF-SRN as well the 
LTF methods in the LPCD and MFCCD tests re­
lated to performance in automatic speech recognition 
(ASR). Therefore, the proposed LSF-GMM outper­
formed both previous LSF-SRN and LTF methods in 
both human hearing (LSD and PESQ tests) and ASR 
systems (LPCD and MFCCD tests). Note that in our 
dataset, the AC and BC speech were recorded with 
different microphones, as in Fig. 3. The recording mi­
crophone for AC speech was a Sony C536P, which was 
directional and expensive, while the recording micro­
phone for BC speech was a Temco, which was inexpen­
sive and commercially available. The observed signals 
recorded with the Temco microphones were smeared 
due to surrounding noise while those recorded with the 
Sony C536P had much less smear due to surround­
ing noise. Thus, the quality of observed AC speech 
was much better than that of BC speech. In addi­
tion, our recording position for observed noisy AC 
speech may have been too close to the mouth and in­
sufficient to emphasize the effect of the air-conduction 
process on observed AC speech. Therefore, the qual­
ity of observed noisy AC speech was better both for 
original and restored BC speech. This finding does 
not conflict with the previous results [1], in which BC 
speech is more stable against surrounding noise than 
AC speech. It only supports a supplementary ideal 
that BC speech is only more robust against noise than 
noisy AC speech under similar recording environment 
conditions, which have to be carefully chosen and set 
up. 

5.3 Subjective evaluations 

Due to time limitations, we only conducted a sub­
jective evaluation, in which we evaluated the recogni­
tion scores for the LP-scheme-based methods in only 
high-level factory noise (75 dB). 

The subjective tests were carried out with seven 
subjects who had normal hearing. All were native 
Japanese graduate students. 

The speech signals of 96 Japanese syllables, ex­
tracted from our dataset, were played in random order 
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Fig.4 Results of objective evaluation of factory noise: (a) LSD, (b) PESQ, (c) LPC distance (LPCD), and (d) 
MFCC distance (MFCCD) 

in the tests. The subjects had not heard these sylla­
bles previously and they had not been trained before 
the experiment. They were asked to listen to each 
word only once and write down what they heard in 
Hiragana to avoid training effects in determining syl­
lables with lower familiarity. We used six types of au­
dio: AC speech, BC speech, and four types of restored 
signals using the four models (LTF, blind LSF -SRN, 
blind LSF-GMM, and non-blind LSF). Intelligibility 
could generally be evaluated using the average recog­
nition accuracy scored by all subjects. 

Figure 5(a) shows the average scores for recogni­
tion accuracy under clean conditions and Figure 5(b) 
shows those under the noisy factory conditions of 75 
dB. The non-blind LSF model was also the best for the 
subjective evaluation followed by the blind LSF -GMM 
model. The subjective evaluation confirmed that our 
improved method of restoring BC speech, LSF-GMM, 
outperformed LSF -SRN and the other previous meth­
ods of restoring BC speech. 

As mentioned in previous sub-section, we compar­
atively evaluated our proposed method and observed 
noisy AC speech rather than actual high noisy AC 
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speech. The observed noisy AC speech was recorded 
with an extremely high quality microphone that was 
too close to the mouth. Therefore, the effectiveness 
of BC speech in comparison with AC speech was not 
demonstrated in the results we obtained from our eval­
uation. The effectiveness of BC speech was main­
tained as in previous results [1], in which BC speech 
was more stable against surrounding noise than AC 
speech. If we had used actual noisy AC speech, which 
had been recorded with a general (non-directional) mi­
crophone far from the speaker, instead of the observed 
noisy AC speech in this study, the recognition rate for 
noisy AC would have been drastically reduced. 

It is easy to see that BC speech restored with 
our improved method was more intelligible than the 
original BC speech as well as BC speech restored by 
other previous methods. Consequently, our improved 
method was robust against both degradation due to 
bone conduction and changing speaker pronunciations 
due to surrounding noise, which is referred to as the 
Lombard effect. 
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Fig. 5 Results of subjective evaluation: Scores for word recognition 

6. Conclusion 

We solved all three remaining problems to improve 
the performance of the LP scheme in restoring BC 
speech. Instead of using constant residual gain for 
all frames, we estimated the average gain for each 
frame. We used GMM for training instead of neu­
ral network, which made our model easier to use for 
training under various conditions. We also conducted 
experiments under both of clean and noisy environ­
ments. The experimental results indicated that our 
improved approach outperformed the previous meth­
ods in both human hearing quality and ASR. It also 
demonstrated its robustness to both degradation due 
to bone conduction and changing speaker pronuncia­
tions due to surrounding noise, which is referred to as 
the Lombard effect. 

We intend to study how to adapt the trained GMM 
model to Be speech in various kinds of noisy envi­
ronments in the future, and therefore, our proposed 
methods should be able to be applied to restoring 
open-dataset BC speech in noisy environments. We 
also plan to rebuild the dataset for AC/BC speech, 
in which there are many kinds of observed AC speech 
from near to far from the mouth, recorded with the 
similar commercially available microphones to those 
for BC speech, to obtain a balanced evaluation of both 
BC and AC speech. 
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