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A method for large-scale first-principles molecular dynamics (MD) simulations on electrochemical
systems has been developed by combining the effective screening medium (ESM) method with O(N)
density functional theory (DFT). This implementation has been significantly simplified by the in-
troduction of neutral atom potentials, which minimizes the modifications to existing DFT code. In
order to demonstrate ability of this implementation, it has been applied to an electrochemical system
consisting of a H-Si(111) electrode, which is a candidate anode for high-capacity Li-ion secondary
batteries, and a propylene carbonate (PC) solvent to simulate how PC molecules in the vicinity of
the electrode surface respond to an imposed electric field. The large-scale MD simulation clearly
demonstrates that the combination of the ESM and O(N) DFT methods provides a useful tool for
first-principles investigation of complicated electrochemical systems such as high-capacity batteries.
© 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3698583]

I. INTRODUCTION

A first-principles method capable of giving meaningful
results under an electric bias would be of great use in the
investigation of electrochemical reactions in secondary cells
such as in the lithium-ion (Li-ion) battery. A better under-
standing of the microscopic mechanisms of the electrochemi-
cal reactions is not just of academic interest, but would aid in
the design of high-performance battery systems. A key issue
in such a simulation of an electrochemical system, where the
simulation cell is under conditions close to those in an experi-
ment, is to develop a method which allows us to apply an elec-
tric bias to the system as occurs with an electrode and an elec-
trolyte solution. Otani and Sugino have recently developed
a new first-principles computational method to have charged
or biased surface-interface systems consisting of a slab,1 and
the method has been used to simulate the hydrogen electrode
in water electrolysis and fuel cells.2, 3 In their approach, the
electric bias is controlled by doping excess charge in the tar-
get electrode with the appropriate boundary conditions guar-
anteeing the charge neutrality. Such boundary conditions are
introduced through Poisson’s equation, which is equivalent to
placing a medium having a certain dielectric constant (effec-
tive screening medium (ESM)).1 Charge separation (electrical
double layer) in an electrochemical system can be modeled
using ESMs with two semi-infinite media, vacuum (relative
permittivity ε = 1) and an ideal metal (ε = ∞), located on
either side of a unit cell, as shown in Fig. 1. Electrical dou-
ble layer was also modeled in the first-principles calculations
by Neurock et al.,4 in which a uniform background charge
is introduced as a counter charge of the doped excess one.

However, while the interaction of the background charge with
the charge on the electrode is somehow uncertain in this
scheme, electric double layer between the electrode and the
solution is more naturally modeled in the ESM scheme.

Although the ESM method provides a very useful scheme
to simulate reactions under a bias, it is still a challenge to per-
form MD simulations for electrochemical systems that have
large solvent molecules, as in Li-ion batteries, because the
systems are just too big. Since the computational effort for
most first-principles methods scales with the cube of the sys-
tem size, applying the ESM method to such large-scale sys-
tems will be hampered by the computational cost. In this
paper, we have developed a method which combines ESM
with O(N) density functional theory (DFT) based on the O(N)
Krylov subspace method5 and optimized localized atomic ba-
sis functions.6 This should extend the ESM method to large
systems and enable us to address more challenging electro-
chemical phenomena. By assuming the bandgap in an elec-
trochemical system may approach zero under a bias, the O(N)
method combined with ESM should be applicable not only to
insulators but also to metals. Among the O(N) methods de-
veloped so far, the O(N) Krylov subspace method is one of
the very few applicable to insulators and metals in a single
framework.5 Thus, the combination of O(N) Krylov subspace
with the ESM method can guarantee the method’s applicabil-
ity to a wide variety of systems regardless of the bandgap.
Implementation of the ESM method is significantly simpli-
fied by the introduction of the neutral atom potential (NAP)
method7–9 regardless of the basis functions used. A modifi-
cation to existing DFT codes using the NAP method is re-
quired only for Poisson’s equation solver in the code and no
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FIG. 1. Schematic view of a slab with ESM boundaries. In simulations of
an electrode–solvent interface, semi-infinite vacuum (ε = 1) and ideal metal
(ε = ∞) media were placed at z = zI and zII, respectively.

change is required for the calculation of forces on atoms. This
is a superior method to the original implementation presented
in Ref. 1. Since the NAP method has been widely used for
O(N) DFT codes,7–10 this simplified implementation of the
ESM method can be immediately utilized in existing DFT
codes. Recent advances in the optimization of atomic basis
functions have improved their accuracy,6, 11–13 so that inter-
actions between electrodes and ions/molecules and between
ions and molecules can be accurately treated without suffering
from a basis set superposition error (BSSE). Our implemen-
tation adopts pseudo-atomic orbitals (PAO) as basis functions
of which the radial shape has undergone variational optimiza-
tion, assuring that the BSSE has been significantly reduced.14

This paper is organized as follows: In Sec. II, the ESM
method is briefly introduced and the implementation of the
ESM method is presented for a first-principles calculation
scheme based on the NAP method and PAO basis functions. In
Sec. III, a series of benchmark calculations for simple systems
are shown to validate the accuracy of our method in compar-
ison with results by other methods. In Sec. IV, in order to
show the ability of our scheme, a large-scale first-principles
MD calculation was carried out for the interface between a
H-terminated Si(111) electrode and propylene carbonate (PC)
solvent under an electric field. Si–PC is one of the possi-
ble combinations between a Si-based anode and solvent in a
Li-ion secondary cell. A summary of the developed method,
conclusion, and future perspectives are given in Sec. V.

II. APPLICATION OF THE ESM METHOD TO PAO
AND NAP-BASED SCHEME

A. ESM method

In a simulation of an interface between an electrode and
electrolyte solution under periodic boundary conditions based

on the ESM method, a slab representing the interface is bound
between two semi-infinite media (ESMs), vacuum (relative
permittivity ε = 1) and an ideal metal (ε = ∞) as shown
in Fig. 1. Those media are located at z < zI and z > zII, re-
spectively. An electric bias can be imposed by doping excess
charge into the system, in which the electrode generally ac-
cumulates the charge. The semi-infinite metal medium has
the corresponding mirror charge to keep the charge neutral-
ity. Due to the electrostatic interaction between the doped and
the mirror charges, the charge in the electrode is accumulated
on the solution side, giving the same situation as at an actual
electrode surface, i.e., electric double layer.

The total energy Etot of the system under the boundary
conditions with respect to the electrostatic interactions is ex-
pressed using Green’s function G for Poisson’s equation as
follows:

Etot [n] = K [n] + Eex [n]

+ 1

2

∫ ∫
drdr′ntot (r) G(r, r′)ntot(r′), (1)

where n denotes the electron density and ntot is the total charge
density, the sum of n and nc, the core charge density. K and Eex

represent the kinetic and exchange-correlation energy func-
tionals of n, respectively. The third term is the electrostatic
interaction energy, expressing that charges at different points,
r and r′, interact with each other through G(r,r′). Green’s
function for the combination of the two boundaries, the vac-
uum and metal media, is obtained analytically,1, 15 and is in-
troduced into Eq. (1) to calculate the total energy of the sys-
tem. Thus, it should be noted that only the Poisson’s equation
solver has to be modified in the implementation of the ESM
method.

B. NAP method

When electronic and core charges are treated separately
in Poisson’s equation solver, in principle a separate Green’s
function should be used for each of three Poisson’s equations
for electron–electron, electron–core, and core–core interac-
tions with different formulations. For the electron–core inter-
action, it is necessary to change the long-range term associ-
ated with the interaction between electronic and effective core
charges. For the core–core interaction, the Ewald summation
should be reformulated according to which ESMs have been
introduced.1 On the other hand, when a simultaneous treat-
ment of electronic and core charges is employed in Poisson’s
equation solver, one can reduce long-range electrostatic in-
teractions to a single term. In this case, the ESM method is
simply introduced into the code by modifying only this long-
range interaction term.

The NAP method7–9 is one such scheme to deal with
electronic and core charges simultaneously16 within norm-
conserving pseudopotential schemes.17, 18 In this method, the
electronic structure is calculated from the difference electron
charge density, δn(r), defined at point r as

δn (r) = n (r) − n(a) (r) = n (r) −
∑

k

n
(a)
k (r), (2)
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where n(r) denotes the electron density, and n(a)
k(r) is an

atomic electron density associated with the kth atom. The
atomic electron density n(a)

k(r) is generated in advance by
solving atomic Kohn–Sham (KS) equations under a confine-
ment potential with a cutoff radius rc,k.7–9 In addition, n(a)(r)
is a superposition of n(a)

k(r) for all the atoms. By adopting this
treatment, the sum of the long-range Coulomb interaction en-
ergy terms, Eec + Eee + Ecc (electron–core, electron–electron,
and core–core Coulomb energies, respectively), can be trans-
formed into a more tractable form without any approximation
as follows:7–9

Eec + Eee + Ecc = Ena + Escc + Eδee (3)

with

Ena =
∫

drn (r)
∑

k

Vna,k (r − Rk), (4)

Escc = 1

2

∑
k,l

(
ZkZl

|Rk − Rl| −
∫

drn(a)
k (r − Rk) V

(a)
H,l (r − Rl)

)
,

(5)

Eδee = 1

2

∫
drδn (r) δVH (r), (6)

where Vna,k is a NAP constructed by the sum of the Hartree
potential V(a)

H,k associated with the atomic electron density
n(a)

k and the local part of the norm-conserving pseudopoten-
tial of the kth atom, Vcore,k,

Vna,k (r) = V
(a)

H,k (r) + Vcore,k (r) , (7)

and V(a)
H and δVH are the Hartree potential and its difference,

respectively, as defined by

V
(a)

H (r) =
∑

k

V
(a)

H,k (r − Rk) =
∑

k

∫
dr′ n

(a)
k (r)

|r − r′| , (8)

δVH (r) =
∫

dr′ δn (r)

|r − r′| . (9)

The NAP energy Ena and screened core–core Coulomb energy
Escc are major contributors to the short-range interactions, and
are not changed by the ESM boundaries in the calculation sys-
tem as explained below.

The NAP Vna,k is constructed from the spherical atomic
electron density n(a)

k, and is zero beyond rc,k due to Gauss’s
law. Vna,k is, therefore, a short-range spherical potential, and
is not affected by the ESM boundaries because the position of
every atom is set far from the ESMs.19

Escc is evaluated only from its neighboring atoms because
the second term in Eq. (5) is exactly equivalent to the first
term in Eq. (5) when rc,k + rc,l ≤ |Rk− Rl|, and therefore, the
long-range terms in Eq. (5) vanish. Out of the region of rc,k,
the spherical atomic electron density n(a)

k can be treated as
a point charge with the same center. Its mirror charge in an
ideal metal medium is also a point charge, and the two point
charges cancel out each other.

As a consequence, when one applies the ESM method
to a scheme based on the NAP method, there is no necessity

to change the two energy terms, Ena and Escc. The difference
electron–electron Coulomb energy Eδee, on the other hand,
contributes to the total energy constructed from a long-range
term δVH, and is the only energy term influenced by the ESM
boundaries. In this case, δVH is reformulated using the corre-
sponding Green’s function as follows:

δVH (r) =
∫

dr′G
(
r, r′) δn

(
r′). (10)

The reformulation for the Hartree potential as shown in
Eq. (10) is separated from the scheme of solving the eigen-
value problem. Therefore, if an O(N) method is adopted, the
linear scalability of the O(N) calculations combined with the
ESM method does not change.20 It should be noted that sim-
plifying the implementation of the ESM method using NAP
is not only valid for the PAO basis functions used here, but
also for any basis functions including the plane wave basis
functions.

C. PAO basis functions

In our implementation of DFT, the KS orbitals have been
expanded by a linear combination of optimized PAO basis
functions which have been generated by a variational opti-
mization method6, 11 and is non-zero within a cutoff radius rc.
Due to the locality of PAO, one may make zero matrix ele-
ments and the memory size increases linearly with the size
of a calculation model. Then it makes O(N) calculations pos-
sible with good parallel efficiency when employing an O(N)
eigenvalue solution such as the Krylov subspace method.5

It is generally known that when electronic structures are
calculated using atomic local basis sets, BSSE can be a signif-
icant concern, especially in descriptions of molecular interac-
tions. There are a number of possible ways to reduce the error:
one is to use the BSSE correction schemes such as a counter-
poise method,21, 22 and another is to use a large number of
orbitals or to use orbitals optimized in advance. In the case of
MD calculations, using the counterpoise method requires ad-
ditional calculations at every time step and the use of a large
number of orbitals can be very time consuming. In the present
study, a variational optimization method based on the force
theorem has been used.6 Variational optimization of basis
functions was performed for a set of model systems that accu-
rately represent the chemical environments under considera-
tion. Similar schemes have been successfully employed to re-
duce BSSE in the descriptions of molecular interactions.12, 13

A relatively small number of PAOs optimized with the
method can reproduce convergent results obtained from a
larger number of unoptimized PAOs. By adopting opti-
mized PAO basis sets, therefore, it is possible to realize
higher accuracy and larger scale O(N) simulations as shown
later.

D. Force calculation under ESM boundaries

In a NAP-based calculation scheme, the forces on atoms
are calculated from the derivative of each energy term with
respect to the atom positions without an Ewald summation.7–9

As mentioned in Sec. II B, the Eδee term has been modified

Downloaded 05 Nov 2012 to 150.65.7.77. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions
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with the introduction of the ESM method to the NAP-based
scheme. It follows that in the force calculation procedure with
ESM boundaries, only the derivative of the difference Hartree
energy Eδee, ∂Eδee/∂Rk, where Rk is the coordinate of the kth
atom, should be considered as presented below.

By introducing a regular mesh in real space for the dis-
cretization of the numerical integration associated with the
Hartree energy Eδee,8, 9 the derivative of the difference Hartree
energy Eδee is given by two parts including n or n(a) as

∂Eδee

∂Rk

=
∑

p

∂n(rp)

∂Rk

∂Eδee

∂n(rp)
+

∑
p

∂n(a)(rp)

∂Rk

∂Eδee

∂n(a)(rp)
,

(11)
where rp represents the pth grid point in real space. When
Green’s function expressing the boundary conditions in the
ESM method is given as G(r,r′), the difference Hartree po-
tential δVH(r) can be expressed as

δVH(r) =
∫

dr′G(r,r′)δn(r′). (12)

Equation (12) is rewritten as a real space expression as

δVH(rp) = �V
∑

q

G(rp,rq)δn(rq) (13)

with

�V = 1

N1N2N3
, (14)

where N1, N2, and N3 are the numbers of division on the a, b,
and c axes in the real space unit cell, respectively. The deriva-
tive of δVH(r) with respect to n(r) is

∂δVH(rp)

∂n(rq)
= ∂

∂n(rq)

⎧⎨
⎩�V

∑
q ′

G(rp,rq ′ )δn(rq ′ )

⎫⎬
⎭

= ∂

∂n(rq)

⎧⎨
⎩�V

∑
q ′

G(rp,rq ′ )(n(rq ′)− n(a)(rq ′ ))

⎫⎬
⎭

= �V G(rp,rq). (15)

In the same way, we can obtain the derivative of δVH(r) with
respect to n(a)(r) as

∂δVH(rp)

∂n(a)(rq)
= −�V G(rp,rq). (16)

Eδee can be written in a discretized form with a regular
mesh as

Eδee = 1

2
�V

∑
p

δn(rp)δVH(rp). (17)

Here, let us consider the Green function expression for
∂Eδee/∂n in Eq. (11),

∂Eδee

∂n(rq)
= ∂

∂n(rq)

{
1

2
�V

∑
p

δn(rp)δVH(rp)

}

= ∂

∂n(rq)

{
1

2
�V

∑
p

(n(rp) − n(a)(rp))δVH(rp)

}

= 1

2
�V

{
δVH(rq) +

∑
p

δn(rp)
∂δVH(rp)

∂n(rq)

}

= 1

2
�V δVH(rq) + �V 2

2

∑
p

G(rp,rq)δn(rp)

= 1

2
�V δVH(rq) + 1

2
�V δVH(rq) = �V δVH(rq).

(18)

For ∂Eδee/∂n(a), we can obtain the derivative in the same
way as

∂Eδee

∂n(a)(rq)
= −�V δVH(rq). (19)

As a consequence, the equations of the NAP forces with ESM
boundaries, Eq. (18) and (19), do not include G(r,r′) and are in
the exactly same forms as the equation derived for the case of
no ESM.7–9 It indicates that even when one introduces ESMs
to a NAP-based scheme, it is not necessary to change the orig-
inal force calculation, resulting in a simple implementation of
the ESM method.

III. PROOF CALCULATIONS

We have implemented the ESM method into an O(N)-
DFT code, OpenMX (Open source package for Material
eXplorer).23 In OpenMX, the O(N) computation based on the
Krylov subspace method is implemented with the PAO ba-
sis functions and the NAP scheme. Here, the precision of the
electronic structure calculations obtained with the combined
scheme of ESM, PAO, and NAP methods was demonstrated
through several simple calculations.

First of all, we checked the total energies and several en-
ergy terms of an 1 × 1 Al-terminated Si(111) slab computed
using an ordinary repeated slab (RS) and a slab between two
semi-infinite vacuum regions as ESMs (isolated slab (IS)).
For non-NAP-based schemes, the values of the Hartree, local-
part, and core–core interaction energies are affected simul-
taneously by the existence of the ESM boundaries and are
different from the original values obtained in the RS model
because of the different treatments of the diverging term, G‖
= 0. The sum of these energies is identical in both the RS
and IS cases.1 In our case, on the other hand, the only term
affected by the ESM boundaries is Eδee. It indicates that in
a NAP-based scheme, as long as ESMs are located appro-
priately in the calculation system to obtain the correct wave
functions, every energy term should be identical for the RS
and IS calculations. This proof calculation was carried out us-
ing a local density approximation24, 25 within DFT. The cutoff
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TABLE I. Comparison of energies calculated for Al-Si(111). RS: repeated
slab; IS: isolated slab with the two semi-infinite vacuum regions as ESMs.
The unit of energy is hartree.

Ekin Exc Eδee Etotal

RS 93.7071469 −22.9685531 0.0765968 −127.3568720
IS 93.7071486 −22.9685553 0.0765968 −127.3568721

energy of 150 Ry was used, and double valence plus polariza-
tion function basis sets with rc = 7.5 bohrs were used for both
kinds of atoms. The structure parameters of the Al-Si(111)
slab were the same as those used in Ref. 1. The width of
the vacuum region between the Al-termination and the cell-
edge (the position of the ESMs) was 10 Å. Table I presents
our computations and shows the agreement between the to-
tal energies for the IS and RS system within an accuracy of
10−6 hartree. The kinetic and exchange-correlation energies,
EK and Exc, have also been obtained for the two calculation
cases with an accuracy of 10−5 hartree, which means that
the electronic wave functions (electron densities) were fun-
damentally identical in both the calculations. With regard to
Eδee, the accuracy was on the order of 10−7 hartree.

Next, to examine the accuracy of the electronic structure
of a charged slab with ESM boundaries, the calculation results
for such a slab were compared with those reported in Ref. 1.
In this test, the same slab model as above was located between
vacuum and ideal metal boundaries. The bias induced differ-
ences in the planar average of the valence charge density �ρ

and the electrostatic potential �V obtained with our scheme
are in good agreement with Fig. 3(b) of Ref. 1.

As the last test, the reliability of the implementation of
force calculations with ESM boundaries has been checked
by comparing the values of analytic and numerical forces.
These check calculations were carried out on the same Al-
Si(111) slab model as used above. The numerical force val-
ues were obtained by shifting the atom positions by 10−4

bohrs. The difference between the analytic and numerical
forces was calculated to be less than 10−4 hartree/bohr,
which shows the reliability of the force calculation with ESM
boundaries.

IV. APPLICATION TO MD SIMULATION

As a demonstration of a large-scale O(N) calculation us-
ing the ESM method, MD simulations were performed on
the interface of a H-terminated Si(111) electrode and propy-
lene carbonate (C4H6O3; PC) solvent. Silicon-based materi-
als have attracted much attention and been intensively inves-
tigated as an attractive candidate for an anode in high-capacity
Li-ion secondary batteries (LIBs) because of its tremendously
high Li-storage capacity,26 while PC is a solvent thought to
have used in such a Si-based anode in LIBs.27

In the model, a hydrogen-terminated 4 × 4 Si(111) slab
consisting of 96 Si and 32 H atoms, and 20 PC molecules were
included (388 atoms) in the unit cell under periodic boundary
conditions. The cell was 13.30, 15.36, and 38.0 Å in size as
shown in Fig. 2.

z (Å)

16.0

zI (= 0.0)

zII (= 38.0)

32.0

FIG. 2. Unit cell of the demonstration simulation model for a H-Si(111) an-
ode and propylene carbonate solvent interface (solid outer rectangle). ESMs,
semi-infinite vacuum and ideal metal, were placed at z ≤ zI ( = 0.0 Å) and
z ≥ zII ( = 38.0 Å), respectively. An artificial potential wall (dashed line) was
set at z = 32.0 Å. The average z-coordinate of the H-layer contacting the PC
solvent was 16.0 Å.

As ESMs, a semi-infinite continuum with an infinite di-
electric constant (ideal metal) was located beyond the upper
edge of the cell (z ≥ 38.0 Å), while a semi-infinite vacuum
was located at z ≤ 0 (see Fig. 2). To simulate H-Si(111) as an
LIB-anode, the electric bias was imposed by introducing ex-
cess electrons to the system with the opposite image charge in
the ideal-metal ESM. During the MD simulation, the excess
charge, Nex, was increased with time as indicated in Table II.
The value of imposed bias between the semi-infinite vacuum
and center of the solvent was estimated to be about 0.7 V for
Nex = 0.55 electron.28

DFT calculations were performed using a generalized
gradient approximation.29 The energy cutoff of 170 Ry was
used for the numerical integrations, and the � point in k-space
was employed for the Brillouin zone sampling. The molecu-
lar dynamics calculations were carried out in a NVT ensemble
at 600 K. Velocities of atoms were scaled every 50 MD steps
to keep the temperature constant.30 The time-step width was
1.2 fs with substitution of the deuterium mass for hydrogen
atoms. The positions of the bottom H and the lowest Si atoms
were fixed during the MD calculations.

TABLE II. Number of excess electrons doped into the H-Si(111)-PC
interface model (Nex) at MD times.

MD time (fs) 0.0–240 241.2–595.2 596.4–1495.2 1496.4–1600.8

Nex 0.25 0.35 0.45 0.55
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FIG. 3. (a)–(d) Mulliken populations of the valence electrons in the surface layers of a H-Si(111) slab. Red line: charged surface; blue line: uncharged surface.
The population value has been averaged over all the atoms in each layer, every 18 fs.

The basis sets adopted on moving atoms during the MD
runs were double valence plus single-polarization types, s2p1
and s2p2d1, for H and the other atoms, respectively. For fixed
atoms, double valence basis sets were used. The cutoff radii
of the basis sets were 8.0 and 7.0 bohrs for Si and the other
atoms, respectively. All basis sets and pseudopotentials were
adopted from the OpenMX Database version 2011.14 With re-
gard to the basis sets placed on the PC molecules, the opti-
mizations of the PAO basis functions6 were carried out in or-
der to reduce BSSE between the PC molecules.31 The interac-
tion energy between two PC molecules through C–H· · · O=C
as calculated using the optimized basis sets explained above
was 4.15 kcal/mol, which is comparable to the value obtained
with a plane-wave-based calculation (4.04 kcal/mol).32 The
BSSE between two PC molecules estimated with the coun-
terpoise method was 1.06 kcal/mol, which improved with or-
bital optimization to be 0.69 kcal/mol. This was then within
the chemical accuracy of 1.0 kcal/mol.

The O(N) calculations were carried out using the Krylov
subspace method.5 The Krylov-method parameters used in
the O(N) calculations were determined so as to guarantee a
precision of about 10−5 and 10−4 hartree/atom in the total en-
ergy compared to the results by the exact diagonalization for
the PC-bulk and Si-slab parts, respectively.

The charge distribution in the electrode induced by ex-
cess negative charge was then investigated to confirm our
O(N) scheme with ESM works well. Figure 3 shows the de-
crease in the Mulliken populations of the valence electrons
in the H and Si(1) layers on the solvent side of the slab af-
ter doping with excess electrons. The Mulliken populations
of the valence electrons on the electrode inside, Si(2)- and
Si(3) layers, on the other hand, seem to undergo no change.
These results show that the segregation of excess electrons at
the electrode surface was realized successfully with the ESM
method, as already observed.3, 4

Next, the bias-induced changes of the interface structure
of the PC solvent will be discussed. Figure 4 shows the PC
molecule distribution functions gγ (z) with and without the
introduced excess charge. The centroid of the ring of each
PC molecule was used as a representative position of the
molecule. In both the cases, two peaks in gγ (z) are found to be
around 3.5–4.5 and 8.0–9.5 Å from the surface (z = 19.5–20.5
and 24.0–25.5 Å, respectively). Hereafter the former region
shall be referred to as the “contact” region and the latter as the
“bulk” region. The two regions are separated at the minimal
point between two peaks, at z = 22.0 Å. The PC molecules are
structured near the surface as is generally observed in solid–
liquid interfaces. The similar molecule orientation has been
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FIG. 4. Propylene carbonate distribution functions gγ (z) for uncharged and
charged surfaces. Red line: charged surface; blue line: uncharged surface. The
representative point for the PC molecules is the centroid of the five-membered
ring. The average z-coordinate of the H-layer contacting the PC solvent is at
16.0 Å.

observed on Pt and water interface with an electric bias.33 By
adding the bias, the two peaks nearest to the electrode surface
(z = 19.5 and 24.0 Å) shifted in the +z direction.

Figures 5 and 6 show the distribution functions of methyl
group (hydrogen and carbon atoms) and carbonyl group (oxy-
gen and carbon atoms), respectively. Figure 5 indicates that
the distribution of C atoms in CH3 overlaps with the wider
distribution of H in CH3. This suggests a random orientation
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FIG. 5. Distribution functions gγ (z) of contacts between the H-Si(111) sur-
face and the methyl group of PC molecule. (a) Hydrogen atom and (b) carbon
atom. Red line: charged surface; blue line: uncharged surface. The average z-
coordinate of the H-layer contacting the PC solvent is at 16.0 Å.
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FIG. 6. Distribution functions gγ (z) of contacts between the H-Si(111)
surface and the carbonyl group of the PC molecule. (a) oxygen atom and
(b) carbon atom. Red line: charged surface; blue line: uncharged surface.
The average z-coordinate of the H-layer contacting the PC solvent is at
16.0 Å.

of CH3 with no ordered structure. The imposed electric field
induces a small first-peak position shift in the contact region
for both atoms. This may be caused by the attractive inter-
actions between the negatively charged surface and positive
methyl groups,2 although the shifts are very small.

According to Fig. 6, the probability of a carbonyl group
being near the surface (z < 19 Å) is reduced by the imposed
electric field. This may be due to the repulsive interaction be-
tween the negatively charged surface and the negative charge
of the carbonyl group. The distribution of the carbonyl oxygen
has two peaks at z = 22.5 and 27.0 Å both with and without
the electric field. By imposing an electric field, the distribu-
tion of carbonyl carbons has a distinct interface structure: two
peaks at z = 18.0–22.0 Å and a sharp peak at z = 26.0 Å.
By adding a bias, all the atom peaks of the carbonyl group
become sharp. This implies that the electric bias makes the
interface region more structured.

To elucidate effect of the electric field on the interface
structure, focusing on the orientation of the PC molecules, we
calculated the distribution functions of both the PC position
and orientation g(z, θ ).33 Here z is the centroid of the C=O
bond and θ is the angle between the surface normal vector
(outgoing) and the dipole moment (from O to C) of a carbonyl
bond (see Fig. 7). Figure 8 shows that the imposed electric
field induces a high probability around (z, θ ) = (22.0 Å, 130◦)
and (20.0 Å, 120◦), where the carbonyl groups in the contact
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FIG. 7. Definitions of z and θ for the position and orientation of a PC
molecule. The position z is the z-coordinate of the centroid of the carbonyl
bond. θ is the angle between normal vector of the slab surface and dipole
vector of the carbonyl bond.

region are aligned with the oxygen atoms pointing away from
the surface to gain electric stabilization.

To summarize the MD calculations for the H-Si(111) an-
ode and PC solvent interface, PC molecules screen the seg-
regated excess charge on the electrode surface by altering
the positions and orientations of carbonyl groups (the most
strongly polarized functional group in PC molecule). Since
the similar change of molecule orientation has been observed
on Pt and water interface with an electric bias,33 the present
scheme may be considered to be useful for simulation of the
electrochemical systems. Further experimental observations
for such a complex interface would be of interest.

FIG. 8. (a) and (b) Probability distribution functions of PC position and the
orientation g(z,θ ). Arrows in (b) indicate peaks appearing due to an imposed
electric field.

V. CONCLUSIONS AND PERSPECTIVES

To achieve large-scale first-principles MD calculations
on electrochemical systems, the ESM method has been intro-
duced to an O(N) DFT-calculation scheme based on the NAP
scheme and the Krylov subspace method. Using this method,
it is unnecessary to modify the force calculation procedure
from the known NAP scheme. The precision of this imple-
mentation has been confirmed by test calculations for energy
and force. To demonstrate the applicability of our method to
large-scale calculations, MD simulations on an interface be-
tween a negatively charged H-Si(111) anode and PC solvent
have been presented. The segregation of excess charge on the
electrode surface and the change in the structure of the PC
solvent in the interface has been observed. In order to carry
out higher precision simulations of structure at the interface
including large solvent molecules such as PC, further MD
calculations should be performed with the larger models and
longer time scales than the present calculations. Our demon-
strative calculations have shown the applicability of the ESM
method combined with the O(N) method for large-scale simu-
lations of electrochemical systems with bandgaps varying ac-
cording to the imposed bias. Several thousand atom MD sim-
ulations with highly parallel processing will be possible for
either, metal or semi-conductor electrodes.
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