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An efficient low-order scaling method is presented for large-scale electronic structure calculations based on
the density-functional theory using localized basis functions, which directly computes selected elements of the
density matrix by a contour integration of the Green’s function evaluated with a nested dissection approach for
resultant sparse matrices. The computational effort of the method scales as O�N�log2 N�2�, O�N2�, and O�N7/3�
for one-, two-, and three-dimensional systems, respectively, where N is the number of basis functions. Unlike
O�N� methods developed so far the approach is a numerically exact alternative to conventional O�N3� diago-
nalization schemes in spite of the low-order scaling, and can be applicable to not only insulating but also
metallic systems in a single framework. It is also demonstrated that the well separated data structure is suitable
for the massively parallel computation, which enables us to extend the applicability of density-functional
calculations for large-scale systems together with the low-order scaling.
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I. INTRODUCTION

During the last three decades continuous efforts1–29 have
been devoted to extend applicability of the density-functional
theory �DFT� �Refs. 30 and 31� to large-scale systems, which
leads to realization of more realistic simulations being close
to experimental conditions. In fact, lots of large-scale DFT
calculations have already contributed for comprehensive un-
derstanding of a vast range of materials,32–37 although widely
used functionals such as local-density approximation �LDA�
�Ref. 38� and generalized gradient approximation �GGA�
�Ref. 39� have limitation in describing strong correlation in
transition-metal oxides and van der Waals interaction in
biological systems.

The efficient methods developed so far within the conven-
tional DFT can be classified into two categories in terms of
computational complexity1–26 while the other methods,
which deviate from the classification, have been also
proposed.27–29 The first category consists of O�N3�
methods,1–10 where N is the number of basis functions, as
typified by the Householder-QR method,9,10 the conjugate
gradient method,2,6,7 and the Pulay method,4,5 which have
currently become standard methods. The methods can be re-
garded as numerically exact methods, and the computational
cost scales as O�N3� even if only valence states are calcu-
lated because of the orthonormalization process. On the other
hand, the second category involves approximate O�N� meth-
ods such as the density-matrix methods,19–21 the orbital
minimization methods,18,23 and the Krylov subspace
methods14–17,25 of which computational cost is proportional
to the number of basis functions N. The linear scaling of the
computational effort in the O�N� methods can be achieved by
introducing various approximations like the truncation of the
density matrix19 or Wannier functions18,23 in real space. Al-
though the O�N� methods have been proven to be very effi-
cient, the applications must be performed with careful con-
sideration due to the introduction of the approximations,
which might be one of reasons that the O�N� methods have

not been widely used compared to the O�N3� methods. From
the above reason one may think of whether a numerically
exact but low-order scaling method can be developed by
utilizing the resultant sparse structure of the Hamiltonian and
overlap matrices expressed by localized basis functions. Re-
cently, a direction toward the development of O�N2�� meth-
ods has been suggested by Lin et al.40 in which diagonal
elements of the density matrix is computed by a contour
integration of the Green’s function calculated by making full
use of the sparse structure of the matrix. Also, efficient
schemes have been developed to calculate certain elements
of the Green’s function for electronic transport
calculations,41,42 which are based on the algorithm by Taka-
hashi et al.43 and Erisman and Tinney.44 However, except for
the methods mentioned above the development of numeri-
cally exact O�N2�� methods, which are positioned in be-
tween the O�N� and O�N3� methods, has been rarely
explored yet for large-scale DFT calculations.45

In this paper we present a numerically exact but low-order
scaling method for large-scale DFT calculations of insulators
and metals using localized basis functions such as pseudo-
atomic orbital �PAO�,46 finite element �FE�,47 and wavelet
basis functions.48 The computational effort of the method
scales as O�N�log2 N�2�, O�N2�, and O�N7/3� for one-, two-,
and three-dimensional �1D, 2D, and 3D� systems, respec-
tively. In spite of the low-order scaling, the method is a nu-
merically exact alternative to the conventional O�N3� meth-
ods. The key idea of the method is to directly compute
selected elements of the density matrix by a contour integra-
tion of the Green’s function evaluated with a set of recur-
rence formulas. It is shown that a contour integration method
based on a continued fraction representation of the Fermi-
Dirac function49 can be successfully employed for the pur-
pose, and that the number of poles used in the contour inte-
gration does not depend on the size of the system. We also
derive a set of recurrence formulas based on the nested
dissection50 of the sparse matrix and a block LDLT factoriza-
tion using the Schur complement10 to calculate selected ele-
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ments of the Green’s function. The computational complex-
ity is governed by the calculation of the Green’s function. In
addition to the low-order scaling, the method can be particu-
larly advantageous to the massively parallel computation be-
cause of the well separated data structure.

This paper is organized as follows: in Sec. II the theory of
the proposed method is presented together with detailed
analysis of the computational complexity. In Sec. III several
numerical calculations are shown to illustrate practical as-
pects of the method within a model Hamiltonian and DFT
calculations using the PAO basis functions. In Sec. IV we
summarize the theory and applicability of the numerically
exact but low-order scaling method.

II. THEORY

A. Density-matrix approach

Let us assume that the Kohn-Sham �KS� orbital �� is
expressed by a linear combination of localized basis func-
tions ��� such as PAO,46 FE,47 and wavelet basis functions48

as

���r� = �
i=1

N

c�i�i�r� , �1�

where N is the number of basis functions. Throughout the
paper, we consider the spin restricted and k-independent KS
orbitals for simplicity of notation. However, the generaliza-
tion of our discussion for these cases is straightforward. By
introducing LDA or GGA for the exchange-correlation func-
tional, the KS equation is written in a sparse matrix form

Hc� = ��Sc�, �2�

where �� is the eigenvalue of state �, c� a vector consisting
of coefficients �c�i�, and H and S are the Hamiltonian and
overlap matrices, respectively. Due to both the locality of
basis functions and LDA or GGA for the exchange-
correlation functional, both the matrices possess the same
sparse structure. It is also noted that the charge density n�r�
can be calculated by the density matrix �,

n�r� = �
i,j

�ij� j�r��i�r� . �3�

By remembering that � is localized in real space, one may
notice that the product �i� j is nonzero only if they are
closely located each other. Thus, the number of elements in
the density matrix required to calculate the charge-density
scales as O�N�. As well as the calculation of the charge den-
sity, the total energy is computed by only the corresponding
elements of the density matrix within the conventional DFT
as

Etot�n,�� = Tr��Hkin� +	 drn�r�vext�r�

+	 	 drdr�
n�r�n�r��

r − r�


+ Exc�n� , �4�

where Hkin is the matrix for the kinetic operator, vext an ex-

ternal potential, and Exc an exchange-correlation functional.
Since the matrix Hkin possesses the same sparse structure as
that of S, one may find an alternative way that the selected
elements of the density matrix, corresponding to the nonzero
products �i� j, are directly computed without evaluating the
KS orbitals. The alternative way enables us to avoid an or-
thogonalization process such as Gram-Schmidt method for
the KS orbitals, of which computational effort scales as
O�N3� even if only the occupied states are taken into ac-
count. The direct evaluation of the selected elements in the
density matrix is the starting point of the method proposed in
the paper. In this sense, the low-order scaling method is simi-
lar to O�N� Green’s-function methods such as recursion and
bond-order potential methods14–16 while the Green’s function
is approximately evaluated in these O�N� methods. The den-
sity matrix � can be calculated through the Green’s function
G as follows:

� = −
2

�
Im	

−�

�

dEG�E + i0+�f�E − �

kBT
� , �5�

where the factor 2 is due to the spin degeneracy, f the Fermi-
Dirac function, � chemical potential, T electronic tempera-
ture, kB the Boltzmann factor, and 0+ a positive infinitesimal.
Also the matrix expression of the Green’s function is given
by

G�Z� = �ZS − H�−1, �6�

where Z is a complex number. Therefore, from Eqs. �5� and
�6�, our problem is cast to two issues: �i� how the integration
of the Green’s function can be efficiently performed and �ii�
how the selected elements of the Green’s function in the
matrix form can be efficiently evaluated. In the subsequent
sections we discuss the two issues in detail.

B. Contour integration of the Green’s function

We perform the integration of the Green’s function, Eq.
�5�, by a contour integration method using a continued frac-
tion representation of the Fermi-Dirac function.49 In the con-
tour integration the Fermi-Dirac function is expressed by

1

1 + exp�x�
=

1

2
−

x

4

1 +
� x

2
�2

3 +
� x

2
�2

5 +
� x

2
�2

¯

�2M − 1�+
�

=
1

2
+ �

p=1

�
Rp

x − izp
+ �

p=1

�
Rp

x + izp
, �7�

where x=	�Z−�� with 	= 1
kBT , zp, and Rp are poles of the

continued fraction representation and the associated residues,
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respectively. The representation of the Fermi-Dirac function
is derived from a hypergeometric function and can be re-
garded as a Padé approximant when terminated at the finite
continued fraction. The poles zp and residues Rp can be eas-
ily obtained by solving an eigenvalue problem as shown in
Ref. 49. By making use of the expression of Eq. �7� for Eq.
�5� and considering the contour integration, one obtain the
following expression for the integration of Eq. �5�:

� = M�0� + Im−
4i

	
�
p=1

�

G�
p�Rp� , �8�

where 
p=�+ i
zp

	 and M�0� is the zeroth-order moment of the
Green’s function which can be computed by iRdG�iRd� with
a large real number Rd of 1010 hartree. The structure of the
poles distribution, that all the poles are located on the imagi-
nary axis like the Matsubara pole but the density of the poles
becomes smaller as the poles go away from the real axis, has
been found to be very effective for the efficient integration of
Eq. �5�. It has been shown that only the use of the 100 poles
at 600 K gives numerically exact results within double
precision.49 Thus, the contour integration method can be re-
garded as a numerically exact method even if the summation
is terminated at a practically modest number of poles.

Moreover, it should be noted that the number of poles to
achieve convergence is independent of the size of system.
Giving the Green’s function in the Lehmann representation,
Eq. �8� can be rewritten by

� = M�0� + Im�−
4i

	
�
p=1

�

�
�


������


p − ��

Rp�
=M�0� + �

�

Im�−
4i

	
�
p=1

� 
������


p − ��

Rp� . �9�

Although the expression in the second line is obtained by
just exchanging the order of the two summations, the expres-
sion clearly shows that the number of poles for convergence
does not depend on the size of system if the spectrum radius
is independent of the size of system. Since the independence
of the spectrum radius can be found in general cases, it can
be concluded that the computational effort is determined by
that for the calculation of the Green’s function.

The energy density matrix e, which is needed to calculate
forces on atoms within nonorthogonal localized basis func-
tions, can also be calculated by the contour integration
method49 as follows:

e = −
2

�
Im	

−�

�

dEEG�E + i0+�f�E − �

kBT
� ,

=M�1� + �M�0� + Im−
4i

	
�
p=1

�

G�
p�Rp
p� �10�

with � defined by

� =
4

	
�
p=1

�

Rp, �11�

where M�0� and M�1� are the zeroth- and first-order moments
of the Green’s function, and can be computed by solving the
following simultaneous linear equation:

�1 z0
−1

1 z1
−1 ��M�0�

M�1� � = �z0G�z0�
z1G�z1� � . �12�

The equation is derived by terminating the summation over
the order of the moments in the moment representation of the
Green’s function. By letting z0 and z1 be iRe

2 and iRe,
51 re-

spectively, M�0� and M�1� are explicitly given by

M�0� =
iRe

Re − 1
�Re

2G�iRe
2� − G�iRe�� , �13�

M�1� =
Re

3

Re − 1
�ReG�iRe

2� − G�iRe�� , �14�

where Re should be a large real number and 107 hartree is
used in this study so that the higher order terms can be neg-
ligible in terminating the summation in the moment repre-
sentation of the Green’s function. Inserting Eqs. �13� and
�14� into Eq. �10�, we obtain the following expression which
is suitable for the efficient implementation in terms of
memory consumption:

e = �G�iRe
2� + G�iRe� + Im−

4i

	
�
p=1

�

G�
p�Rp
p�
�15�

with � and  defined by

� =
Re

3

Re − 1
�Re + i�� , �16�

 = −
Re

Re − 1
�Re

2 + i�� . �17�

One may notice that the number of poles for convergence
does not depend on the size of system even for the calcula-
tion of the energy density matrix because of the same reason
as for the density matrix.

C. Calculation of the Green’s function

It is found from the above discussion that the computa-
tional effort to compute the density matrix is governed by
that for the calculation of the Green’s function, consisting of
an inversion of the sparse matrix of which computational
effort by conventional schemes such as the Gauss elimina-
tion or LU factorization-based methods scales as O�N3�.
Thus, the development of an efficient method of inverting a
sparse matrix is crucial for efficiency of the proposed
method.

Here we present an efficient low-order scaling method,
based on a nested dissection approach,50 of computing only
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selected elements in the inverse of a sparse matrix. The low-
order scaling method proposed here consists of two steps: �1�
nested dissection: by noting that a matrix X��ZS−H� is
sparse, a structured matrix is constructed by a nested dissec-
tion approach. In practice, just reordering the column and
row indices of the matrix X yields the structured matrix. �2�
Inverse by recurrence formulas: by recursively applying a
block LDLT factorization10 to the structured matrix, a set of
recurrence formulas is derived. Using the recurrence formu-
las, only the selected elements of the inverse matrix X−1

�G�Z� are directly computed. The computational effort to
calculate the selected elements in the inverse matrix using
the steps �i� and �ii� scales as O�N�log2 N�2�, O�N2�, and
O�N7/3� for 1D, 2D, and 3D systems, respectively, as shown
later. First, we discuss the nested dissection of a sparse ma-
trix, and then derive a set of recurrence formulas of calculat-
ing the selected elements of the inverse matrix.

1. Nested dissection

As an example the right panel of Fig. 1�c� shows a struc-
tured matrix obtained by the nested dissection approach for a
finite chain model consisting of ten atoms, where we con-
sider a s-valent nearest-neighbor tight-binding �NNTB�
model. When one assigns the number to the ten atoms as
shown in the left panel of Fig. 1�a�, then X is a tridiagonal
matrix, of which diagonal and off-diagonal terms are as-
sumed to be a and b, respectively, as shown in the right panel
of Fig. 1�a�. As the first step to generate the structured matrix
shown in the right panel of Fig. 1�c�, we make a dissection of
the system into the left and right domains52 by renumbering
for the ten atoms, and obtain a dissected matrix shown in the
right panel of Fig. 1�b�. The left and right domains interact
with each other through only a separator consisting of an
atom 10. As the second step we apply a similar dissection for
each domain generated by the first step, and arrive at a
nested-dissected matrix given by the right panel of Fig. 1�c�.
The subdomains, which consist of atoms 1 and 2 and atoms
3 and 4, respectively, in the left domain interact with each
other through only a separator consisting of an atom 5. The
similar structure is also found in the right domain consisting
of atoms 6, 7, 9, and 8. It is worth mentioning that the re-
sultant nested structure of the sparse matrix can be mapped
to a binary tree structure which indicates hierarchical inter-
actions between �sub�domains as shown in Fig. 1�d�. By ap-
plying the above procedure to a sparse matrix, one can con-
vert any sparse matrix into a nested and dissected matrix in
general. However in practice there is no obvious way to per-
form the nested dissection for general sparse matrices while
a lot of efficient and effective methods have been already
developed for the purpose.53,54 Here we propose a rather
simple but effective way for the nested dissection by taking
account of a fact that the basis function we are interested in
is localized in real space, and that the sparse structure of the
resultant matrix is very closely related to the position of
basis functions in real space. The method bisects a system
into two domains interacting through only a separator, and
recursively applies to the resultant subdomains, leading to a
binary tree structure for the interaction. Our algorithm for the

nested dissection of a general sparse matrix is summarized as
follows.

�i� Ordering. Let us assume that there are Nd basis func-
tions in a domain we are interested in. We order the basis
functions in the domain by using the fractional coordinate for
the central position of localized basis functions along ai axis,
where i=1, 2, and 3. As a result of the ordering, each basis
function can be specified by the ordering number, which
runs from 1 to Nd in the domain of the central unit cell. The
ordering number in the periodic cells specified by lai, where
l=0, �1, �2, . . ., is given by lNd+q, where q is the corre-
sponding ordering number in the central cell. In isolated sys-
tems, one can use the Cartesian coordinate instead of the
fractional coordinate without losing any generality.

�ii� Screening of basis functions with a long tail. The basis
functions with a long tail tend to make an efficient dissection
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FIG. 1. �Color online� �a� The initial numbering for atoms in a
linear-chain molecule consisting of ten atoms described by the
s-valent NNTB and its corresponding matrix, �b� the renumbering
for atoms by the first step in the nested dissection and its corre-
sponding matrix, �c� the renumbering for atoms by the second step
in the nested dissection and its corresponding matrix, and �d� the
binary tree structure representing hierarchical interactions between
domains in the structured matrix by the numbering shown in �c�.
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difficult. The sparse structure formed by the other basis func-
tions with a short tail hides behind the dense structure caused
by the basis functions with a long tail. Thus, we classify the
basis functions with a long tail in the domain as members in
the separator before performing the dissection process. By
the screening of the basis functions with a long tail, it is
possible to expose concealed sparse structure when atomic
basis functions with a variety of tails are used while a sys-
tematic basis set such as the FE basis functions may not
require the screening.

�iii� Finding of a starting nucleus. Among the localized
basis functions in the domain, we search a basis function
which has the smallest number of nonzero overlap with the
other basis functions. Once the basis function is found, we
set it as a starting nucleus of a subdomain.

�iv� Growth of the nucleus. Staring from a subdomain
�nucleus� given by the procedure �iii�, we grow the subdo-
main by increasing the size of nucleus step by step. The
growth of the nucleus can be easily performed by managing
the minimum and maximum ordering numbers, mmin and
mmax, which ranges from 1 to Nd, and the grown subdomain
is defined by basis functions with the successive ordering
numbers between the minimum and maximum ordering
numbers mmin and mmax. At each step in the growth of the
subdomain, we search two basis functions which have the
minimum ordering number nmin and maximum ordering
number nmax among basis functions overlapping with the
subdomain defined at the growth step. In the periodic bound-
ary condition, nmin can be smaller than zero and nmax can be
larger than the number of basis functions Nd. Then, the num-
ber of basis functions in the subdomain, the separator, and
the other subdomain can be calculated by N0�mmax−mmin
+1, Ns�nmax−nmin+1−N0, and N1�Nd−N0−Ns, respec-
tively, at each growth step. By the growth process one can
minimize �
N0−N1
+Ns� being a measure for quality of the
dissection, where the measure �
N0−N1
+Ns� takes equal bi-
section size of the subdomains and minimization of the size
of the separator into account. Also if �nmax−nmin+1� is larger
than Nd, then this situation implies that the proper dissection
can be difficult along the axis.

�v� Dissection. By applying the above procedures �i�–�iv�
to each ai axis, where i=1, 2, and 3, and we can find an axis
which gives the minimum �
N0−N1
+Ns�. Then, the dissec-
tion along the axis is performed by renumbering for basis
functions in the domain, and two subdomains and one sepa-
rator are obtained. Evidently, the same procedures can be
applied to each subdomain, and recursively continued until
the size of domain reaches a threshold. As a result of the
recursive dissection, a structured matrix specified by a binary
tree is obtained.

As an illustration we apply the method for the nested
dissection to the finite chain molecule shown in Fig. 1. We
first set all the system as domain and start to apply the series
of procedures to the domain. The procedure �i� is trivial for
the case, and we obtain the numbering of atoms and the
corresponding matrix shown in Fig. 1�a�. Also it is noted that
the screening of the basis functions with a long tail is unnec-
essary and that we only have to search the chain direction. In
the procedure �iii�, atoms 1 and 10 in Fig. 1�a� satisfy the
condition. Choosing the atom 1 as a starting nucleus of the

domain, and we gradually increase the size of the domain
according to the procedure �iv�. Then, it is found that the
division shown in Fig. 1�b� gives the minimum �
N0−N1

+Ns�. Renumbering for the basis functions based on the
analysis yields the dissected matrix shown in the right panel
of Fig. 1�b�. By applying the similar procedures to the left
and right subdomains, one will immediately find the result of
Fig. 1�c�. In addition to the finite chain molecule, as an ex-
ample of more general cases, the above algorithm for the
nested dissection is applied to a s-valent NNTB square lattice
model of which unit cell contains 1024 atoms with periodic
boundary condition. At the first step in the nested dissection,
the separator is found to be red atoms as shown in Fig. 2�a�.
Due to the periodic boundary condition, the separator con-
sists of two lines. At the final step, the system is dissected by
the recursive algorithm as shown in Fig. 2�b�. The separator
at the innermost and the outermost levels are labeled as sepa-
rators 0 and 5, respectively, and each subdomain at the in-
nermost level includes nine atoms. As demonstrated for the
square lattice model, the algorithm can be applied for sys-
tems with any dimensionality, and provides a well structured
matrix for our purpose in a single framework.

2. Inverse by recurrence formulas

We directly compute the selected elements of the inverse
matrix using a set of recurrence formulas which can be de-
rived by recursively applying a block LDLT factorization to
the structured matrix obtained by the nested dissection
method as shown below. To derive the recurrence formulas,
we first introduce the block LDLT factorization10 for a sym-
metric square matrix X,

X = �A BT

B C
�

(a) (b)

5 5 5 5

4

4

3 3

2

2

1 1 1 1

0

0

0

0

FIG. 2. �Color online� �a� The square lattice model, described by
the s-valent NNTB, of which unit cell contains 1024 atoms with
periodic boundary condition. The right blue and red circles corre-
spond to atoms in two domains and a separator, respectively, at the
first step in the nested dissection. �b� The square lattice model at the
final step in the nested dissection. The separator at the innermost
and the outermost levels are labeled as separators 0 and 5, respec-
tively, and the separators at each level are constructed by atoms
with a same color.
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=� I 0

L I
��A 0

0 S
�� I LT

0 I
� , �18�

where A and C are diagonal block matrices, and B and BT an
off-diagonal block matrix and its transposition, and L is
given by

L = BA−1. �19�

Also the Schur complement S of the block element C is
defined by

S � C − BA−1BT = C − BLT. �20�

Then, it is verified that the inverse matrix of X is given by

X−1 = �A−1 + LTS−1L − LTS−1

− S−1L S−1 � . �21�

We now consider calculating the selected elements of the
inverse of the structured matrix given in Fig. 1�c� using Eq.
�21�, and rewrite the matrix in Fig. 1�c� in a block form as
follows:

X =�
A0,0 B0,0

T

A0,1 B0,1
T B1,0

T

B0,0 B0,1 C0,0

A0,2 B0,2
T

A0,3 B0,3
T B1,1

T

B0,2 B0,3 C0,1

B1,0 B1,1 C1,0

� , �22�

where A0,0 and B0,0 correspond to � a b
b a � and �0,b�, respec-

tively, and the other block elements can be deduced. Also the
blank indicates a block zero element. Using Eq. �20� the
Schur complement of C1,0 is given by

S1,0 = C1,0 − B1,0L1,0
T − B1,1L1,1

T , �23�

where L1,0
T is calculated by Eq. �19� and can be transformed

using Eq. �21� to a recurrence formula as follows:

L1,0
T = �A0,0 B0,0

T

A0,1 B0,1
T

B0,0 B0,1 C0,0
�

−1

B1,0
T

=�A0,0
−1

A0,1
−1

0
�B1,0

T

+ �L0,0
T S0,0

−1 L0,0 L0,0
T S0,0

−1 L0,1 − L0,0
T S0,0

−1

L0,1
T S0,0

−1 L0,0 L0,1
T S0,0

−1 L0,1 − L0,1
T S0,0

−1

− S0,0
−1 L0,0 − S0,0

−1 L0,1 S0,0
−1 �B1,0

T

=�V1,0,0
T

V1,0,1
T

0
� + �L0,0

T

L0,1
T

− I
�Q1,1,0

T � V1,1,0
T �24�

with the definitions,

V1,0,0
T = A0,0

−1 �B1,0�B0,0��T, �25�

V1,0,1
T = A0,1

−1 �B1,0�B0,1��T, �26�

and

Q1,1,0
T = S0,0

−1 �B0,0V1,0,0
T + B0,1V1,0,1

T − �B1,0�C0,0��T� . �27�

In Eqs. �25�–�27�, we used a bra-ket notation � � which
stands for a part of the block element. For example,
B1,0�B0,0� means a part of B1,0 which has the same columns
as those of B0,0. It is noted that one can obtain a similar
expression for L1,1

T as well as Eq. �24� for L1,0
T .

To address a more general case where the dissection for
the sparse matrix is further nested, we suppose that the ma-
trix A0,0 has the same inner structure as

�A0,0 B0,0
T

A0,1 B0,1
T

B0,0 B0,1 C0,0
� ,

then one may notice the recursive structure in Eq. �24� and
can derive the following set of recurrence relations for gen-
eral cases:

Qp,m+1,n
T = Sm,n

−1 � �Bm,2nVp,m,2n
T + Bm,2n+1Vp,m,2n+1

T

− �Bp,q�Cm,n��T� , �28�

Vp,m+1,n
T = � Vp,m,2n

T

Vp,m,2n+1
T

0
� + � Lm,2n

T

Lm,2n+1
T

− I
�Qp,m+1,n

T . �29�

Equation �29� is the central recurrence formula coupled with
Eq. �28�, where the initial block elements are given by

Vp,0,n
T = �A0,n�−1�Bp,q�B0,n��T. �30�

Also Lp,n and Sp,n can be calculated by

Lp,n = Vp,p,n, �31�

Sp,n = Cp,n − �Bp,2n,Bp,2n+1�� Lp,2n
T

Lp,2n+1
T � . �32�

A set of Eqs. �28�–�32� enables us to calculate all the in-
verses of the Schur complements S and L. In the recurrence
formulas Eqs. �28� and �29�, three indices of p, m, and n are
involved, and they run as follows:

p = 0, . . . ,P , �33�

m = 0, . . . ,p − 1, �34�

n = 0, . . . ,2P−m − 1. �35�

The index p denotes the level of hierarchy in the nested
dissection and the innermost and outermost levels are set to 0
and P, respectively. Then, it is noted that the total system is
divided into 2P+1 domains at the innermost level. As well as
p the index m is also related to the level of hierarchy in the
nested dissection and runs from 0 to p−1. The index n is a
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rather intermediate one, being dependent on m. The indices n
in Eq. �30� is dependent on p and q and they run as follows:

n = q�2p�, . . . ,�q + 1��2p� − 1, �36�

q = 0, . . . ,2P+1−p − 1. �37�

Since the set of the recurrence formulas Eqs. �28�–�32� pro-
ceed according to Eqs. �33�–�35�, the development of recur-
rence can be illustrated as in Fig. 3. The recurrence starts
from Eq. �30� with p=0, and Eqs. �31� and �32� follow.
Then, p is incremented by one, and m+1 climbs up to 1. The
increment of p and the climbing of m+1 are repeated until
p= P and m+1= P. At m+1= p for each p, L and S are evalu-
ated by Eqs. �31� and �32�, and the inverse of S is calculated
by a conventional method such as LU factorization, which
are used in the next recurrence for the higher level of hier-
archy. The numbers on the right-hand side of Fig. 3 give the
multiplicity for similar calculations by Eq. �29� coming from
the index n at each m+1 since n runs from 0 to 2P−m−1 as
given in Eq. �35�. The computational complexity can be es-
timated by Fig. 3, and we will discuss its details later.

We are now ready to calculate the selected elements of the
Green’s function using the inverses of the Schur comple-
ments S and L calculated by the recurrence formulas of Eqs.
�28�–�32�. By noting that Eq. �21� has a recursive structure
and the matrix X is structured by the nested dissection, one
can derive the following recurrence formula:

Xp+1,n
−1 = �Xp,2n

−1

Xp,2n+1
−1

0
�

+ �Yp,2n
T Lp,2n − Yp,2n

T

Yp,2n+1
T Lp,2n+1 − Yp,2n+1

T

− Yp,2n − Yp,2n+1 Sp,n
−1 � , �38�

where

Yp,2n
T = Lp,2n

T Sp,n
−1 ,

Yp,2n+1
T = Lp,2n+1

T Sp,n
−1 . �39�

The recurrence formula, Eq. �38�, starts with X0,n
−1 = �A0,n�−1,

adds contributions at m+1= p for every p, and at last yields
the inverse of the matrix X as X−1=G�Z�=XP+1,0

−1 . Since the
calculation of each element for the inverse of X can be inde-
pendently performed, only the selected elements can be com-
puted without calculating all the elements. The selected ele-
ments to be calculated are elements in the block matrices A,
B, and C, each of which corresponds to a nonzero overlap
matrix as discussed before. Thus, we can easily compute
only the selected elements using a table function which
stores the position for the nonzero elements in the block
matrices A, B, and C.

A simple but nontrivial example is given in Appendix A
to illustrate how the inverse of matrix is computed by the
recurrence formulas, and also a similar way is presented to
calculate a few eigenstates around a selected energy in Ap-
pendix B while the proposed method can calculate the total
energy of system without calculating the eigenstates.

3. Finding chemical potential

As well as the conventional DFT calculations, in the pro-
posed method the chemical potential has to be adjusted so
that the number of electrons can be conserved. However,
there is no simpler way to know the number of electrons
under a certain chemical potential before the contour integra-
tion by Eq. �8� with the chemical potential. Thus, we search
the chemical potential by iterative methods for the charge
conservation. Since the contour integration is the time-
consuming step in the method, a smaller number of the itera-
tive step directly leads to the faster calculation. Therefore,
we develop a careful combination of several iterative meth-
ods to minimize the number of the iterative step for sufficient
convergence. In general, the procedure for searching the
chemical potential can be performed by a sequence �1�-�2� or
�5�-�1�-�3�-�1�-�4�-�1�-�4�-�1�… in terms of the following
procedures. As shown later, the procedure enables us to ob-
tain the chemical potential conserving the number of elec-
trons within 10−8 electron/system by less than five iterations
on an average.

�1� Calculation of the difference �Ni in the total number
of electrons. The difference �Ni in the total number of elec-
trons is defined with ���i� calculated using Eq. �8� at a
chemical potential �i by

p

m+1
3

4

P

0 1 2 3 4 P

1

2

P2

P-22

P-32

2

P-12

FIG. 3. �Color online� The development of recurrence formulas,
Eqs. �28�–�32�, which implies that the recurrence starts from p
=m+1=0 and ends at p=m+1= P. The number on the right-hand
side is the multiplicity for similar calculations by Eq. �29� due to
the index n at each m+1.
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�Ni = Tr����i�S� − Nideal, �40�

where Nideal is the number of electrons that the system should
possess for the charge conservation. If �Ni is zero, the
chemical potential �i is the desired one of the system.

�2� Using the retarded Green’s function. If the difference
�Ni is large enough so that the interpolation schemes �3� and
�4� can fail to guess a good chemical potential, the next trial
chemical potential is estimated by using the retarded Green’s
function. When the chemical potential of �tri is considered,
the correction �Ntri estimated by the retarded Green’s func-
tion to �Ni is given by

�Ntri = 	
Emin

Emax

dE���E��f�E,�tri� , �41�

where ���E� and �f�E ,�tri� are defined by

���E� = −
2

�
Im Tr�G�E + i��S� �42�

with a small number � �0.01 eV in this study� and

�f�E,�tri� = f�E − �tri

kBT
� − f�E − �i

kBT
� . �43�

The integration in Eq. �41� is numerically evaluated by a
simple quadrature scheme such as trapezoidal rule with a
similar number of points as for that of poles in Eq. �8�, and
the integration range can be determined by considering the
surviving range of �f�E ,�tri�. The search of �tri is performed
by a bisection method until �Ncri� ��Ni+�Ntri�, where �Ncri
is a criterion for the convergence and 10−8 electron/system is
used in this study. It should be noted that the evaluation of
Green’s function being the time-consuming part can be per-
formed before the bisection method and a set of ���E� is
stored for computational efficiency.

�3� Linear interpolation/extrapolation. In searching the
chemical potential �, if two previous results ��i ,�Ni� and
�� j ,�Nj� are available, a trial chemical potential �tri is esti-
mated by a linear interpolation/extrapolation method as

�tri =
� j�Ni − �i�Nj

�i − � j
. �44�

�4� Muller method.55,56 In searching the chemical potential
�, if tree previous results ��i ,�Ni�, �� j ,�Nj�, and ��k ,�Nk�
are available, they can be fitted to a quadratic equation,

�N = a�2 + b� + c , �45�

where a, b, and c are found by solving a simultaneous linear
equation of 3�3 in size.57 Then, �tri giving �N=0 is a so-
lution of Eq. �45� and given by

�tri =�
− 2c

b + �b2 − 4ac
b � 0,

− b + �b2 − 4ac

2a
b � 0.� �46�

The selection of sign is unique because of the condition that
the gradient at the solution must be positive, and the branch-

ing is taken into account to avoid the round-off error. As the
iteration proceeds in search of the chemical potential, we
have a situation that the number of available previous results
is more than three. For the case, it is important to select three
chemical potentials having smaller �N and the different sign
of �N among three chemical potentials since the guess of �tri
can be performed as the interpolation rather than the
extrapolation.

�5� Extrapolation of chemical potential for the second
step. During the self-consistent field �SCF� iteration, the
chemical potential obtained at the last SCF step is used as the
initial guess �1 in the current SCF step. In addition, we es-
timate the second trial chemical potential by fitting a set of
results ��1

�i� ,�N1
�i� ,�2

�i� ,�N2
�i��, ��1

�j� ,�N1
�j� ,�2

�j� ,�N2
�j��, and

��1
�k� ,�N1

�k� ,�2
�k� ,�N2

�k��, where the subscript and the super-
script in �0

�i� and �N0
�i� mean the iteration step in search of

the chemical potential and the SCF step, respectively, at
three previous SCF steps to the following equation:

�N2 = a1�N1 + a2��2 − �1� + a3�N1��2 − �1� , �47�

where a1, a2, and a3 are found by solving a simultaneous
linear equation of 3�3 in size. Then, the chemical potential
�2 giving �N2=0 can be estimated by solving Eq. �47� with
respect to �2 as follows:

�tri � �2 = �1 −
a1�N1

a2 + a3�N1
. �48�

It is found from numerical calculations that Eq. �48� provides
a very accurate guess in most cases as the SCF calculation
converges.

D. Computational complexity

We analyze the computational complexity of the proposed
method. As discussed in Sec. II B, the number of poles for
the contour integration is independent of the size of system.
Thus, we focus on the computational complexity of the cal-
culation of the Green’s function. For simplicity of the analy-
sis we consider a finite chain, a finite square lattice, and a
finite cubic lattice as representatives of 1D, 2D, and 3D sys-
tems, respectively, which are described by the s-valent
NNTB models as in the explanation of the nested dissection.
Note that the results in the analysis might be valid for more
general cases with periodic boundary conditions. Since the
computational cost is governed by Eq. �29�, let us first ana-
lyze the computational cost of Eq. �29� while those of the
other equations will be discussed later. Considering that the
recurrence formula of Eq. �29� develops as shown in Fig. 3,
and that the calculation of Eq. �29� corresponds to the open
circle in the figure, the computational cost t can be estimated
by

t � �
p=1

P

�
m=0

p−1

�
n=0

2P−m−1

Nm
�1�Nm

�2�Np
�3�, �49�

where Nm
�1� and Nm

�2� are the dimension of row and column in
the matrix,
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� Lm,2n
T

Lm,2n+1
T

− I
�

and Np
�3� is the dimension of column in the matrix Qp,m+1,n

T .
Since Eq. �29� consists of a matrix product, the computa-
tional cost is simply given by Nm

�1�Nm
�2�Np

�3�. Also it is noted
that Nm

�1� and Nm
�2� depend on only m, and Np

�3� has dependency
on only p because of the simplicity of the systems we
consider.

For the finite 1D chain system, we see that Nm
�1�

=N / �2P−m� and Nm
�2�=Np

�2�=1 as listed in Table I. Thus, the
computational cost t1D for the 1D system is estimated as

t1D � �
p=1

P

�
m=0

p−1

�
n=0

2P−m−1
N

2P−m

=
1

2
NP�P + 1� . �50�

Noting N�2P, we see that the computational cost for the 1D
system scales as O�N�log2�N��2�.

For the finite 2D square lattice system, we see Nm
�1�

=N / �2P−m�, and Nm
�2� and Np

�3� depend on m and p, respec-
tively as shown in Table I. To estimate the order of the com-
putational cost we approximate Nm

�2� and Np
�3� as Nm

�2�

�N1/2 /21/2�P−m−1� and Np
�3��N1/2 /2�1/2��P−p� which are equal

to or more than the corresponding exact number. Then, the
computational cost t2D for the 2D system can be estimated as
follows:

t2D � �
p=1

P

�
m=0

p−1

�
n=0

2P−m−1
N

2P−mNp,m,n
�2� Np,m,n

�3�

��
p=1

P

�
m=0

p−1

�
n=0

2P−m−1
N

2P−m

N1/2

2�1/2��P−m−1�
N1/2

2�1/2��P−p�

=
2N2

��2 − 1�2�2 − �2 +
�2

2P −
1

2P −
1

2P/2� . �51�

Since the first two terms in parenthesis of the last line are the
leading term, we see that the computational cost for the 2D
system scales as O�N2�.

For the finite 3D cubic lattice system we have Nm
�1�

=N / �2P−m� as well as the 1D and 2D systems. As shown in
the analysis of the 2D systems, by approximating Nm

�2� and

Np
�3� as Nm

�2��N2/3 /2�2/3��P−m−1� and Np
�3��N2/3 /2�2/3��P−p�,

which are equal to or more than the corresponding exact
number, we can estimate the computational cost t3D for the
3D system as follows:

t3D � �
p=1

P

�
m=0

p−1

�
n=0

2P−m−1
N

2P−mNp,m,n
�2� Np,m,n

�3�

��
p=1

P

�
m=0

p−1

�
n=0

2P−m−1
N

2P−m

N2/3

2�2/3��P−m−1�
N2/3

2�2/3��P−p�

=
4N7/3

22/36 – 9
�− 1 + 22/3 −

1

22/324P/3

+
1

22/322P/3 −
22/3

22P/3 +
1

24P/3� . �52�

Since we see that the first two terms in parenthesis of the last
line are the leading term, it is concluded that the computa-
tional cost for the 3D system scales as O�N7/3�.

We further analyze the computational cost of the other
Eqs. �28�, �30�, �32�, �38�, and �39� which are the primary
equations for the calculation of the Green’s function. Al-
though the detailed derivations are not shown here, they can
be derived in the same way as for Eq. �29�. Table II shows
the order of the computational cost for each equation. It is
found that the computational cost is governed by Eq. �29�
while the computational cost of Eq. �39� is similar to that of
Eq. �29�.

In addition to the analysis of the computational cost for
the inverse calculations by Eq. �28�–�32�, �38�, and �39�, we

TABLE I. Some of Nm
�2� and Np

�3� in Eq. �49� for a finite 1D chain, a finite 2D square lattice, and a finite 3D cubic lattice described by the
s-valent NNTB model. They depends on m or p for the 2D and 3D systems in a rather complicated way, while Np,m,n

�1� = N

2P−m for all the cases.
The unit for each case is given in parenthesis.

m+1 or p P P−1 P−2 P−3 P−4 P−5 P−6 P−7 P−8 P−9 P−10

1D �1� 1 1 1 1 1 1 1 1 1 1 1

2D �N1/2� 1 1
2

1
2

1
4

1
4

1
8

1
8

1
16

1
16

1
32

1
32

3D �N2/3� 1 1
2

1
4

1
4

1
8

1
16

1
16

1
32

1
64

1
64

1
128

TABLE II. Computational order of Eqs. �28�–�30�, �32�, �38�,
and �39�, where the calculation of the inverse of the matrix S is also
included in estimating the computational cost of Eq. �32�, and the
sparse structure in the matrix B is taken into account for Eqs. �28�
and �32�.

1D 2D 3D

Equation �28� �log2 N�2 N3/2 log2 N N2

Equation �29� N�log2 N�2 N2 N7/3

Equation �30� N log2 N N3/2 N5/3

Equation �32� log2 N N N4/3

Equation �38� N N3/2 N5/3

Equation �39� N log2 N N2 N7/3
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examine that for the nested dissection. The step �i� in the
nested dissection involves a sorting procedure by the quick-
sort algorithm of which computational cost scales as N

2p log2
N

2p

for a sequence with length of N

2p , and thereby the computa-
tional cost for d-dimensional system can be estimated by

d�
p=0

P � N

2p log2
N

2p�2p =
d

2
N�log2 N�2. �53�

Also, considering that the steps �iii� and �iv� consist of search
for the sequence with length of N

2p , the computational cost is
found to be

d�
p=0

P
N

2p2p = dN log2 N . �54�

The analysis indicates that the computational cost for the
nested dissection scales as O�N�log2 N�2� for systems with
any dimensionality. Thus, it is concluded that as a whole the
proposed method scales as O�N�log2 N�2�, O�N2�, and
O�N7/3� for 1D, 2D, and 3D systems, respectively.58

III. NUMERICAL RESULTS

In this section several numerical calculations for the
s-valent NNTB model and DFT are presented to illustrate
practical aspects of the low-order scaling method. All the
DFT calculations in this study were performed by the DFT
code OPENMX.59 The PAO basis functions46 used in the DFT
calculations are specified by H4.5-s1, C5.0-s1p1,
N4.5-s1p1, O4.5-s1p1, and P6.0-s1p1d1 for deoxyribo-
nucleic acid �DNA�, C4.0-s1p1 for a single C60 molecule,
and Pt7.0-s2p2d1 for a single Pt63 cluster, respectively,
where the abbreviation of basis function such as C5.0-s1p1
represents that C stands for the atomic symbol, 5.0 the cutoff
radius �bohr� in the generation by the confinement scheme,
s1p1 means the employment of one primitive orbitals for
each of s and p orbitals.46 Since the PAO basis functions are
pseudoatomic orbitals with different cutoff radii depending
on atomic species, the resultant Hamiltonian and overlap ma-
trices have a disordered sparse structure, reflecting the geo-
metrical structure of the system. Norm-conserving pseudopo-
tentials are used in a separable form with multiple projectors
to replace the deep core potential into a shallow potential.60

Also a LDA to the exchange-correlation potential is
employed.38

A. Scaling

As shown in the previous section, it is possible to reduce
the computational cost from O�N3� to the low-order scaling
without losing numerical accuracy. Here we validate the the-
oretical scaling property of the computational effort by nu-
merical calculations. Figure 4 shows the elapsed time re-
quired for the calculation of inverse of a 1D linear chain, a
2D square lattice, and a 3D cubic lattice systems as a func-
tion of number of atoms in the unit cell under periodic
boundary condition, which are described by the s-valent
NNTB models. The last three points for each system are

fitted to a function by a least square method, and the ob-
tained scalings of the elapsed time are found to be
O�N0.90�log2 N�2�, O�N1.90�, and O�N2.35� for the 1D, 2D, and
3D systems, respectively. Thus, it is confirmed that the scal-
ing of the computational cost is nearly the same as that of the
theoretical estimation.

B. SCF calculation

To demonstrate that the proposed method is a numerically
exact method even if the summation in Eq. �8� is terminated
at a modest number of poles, we show the convergence in the
SCF calculations calculated by the conventional diagonaliza-
tion and the proposed methods for DNA in Fig. 5, where 80
poles is used for the summation, and the electronic tempera-
ture is 700 K. It is clearly seen that the convergence property
and the total energy are almost equivalent to those by the
conventional method with only 80 poles. Table III also pre-
sents the rapid convergence of the total energy and forces in
the SCF calculation as a function of the number of poles. In
the case, the use of only 40 poles is enough to achieve the
numerically exact results for not only the total energy but
also the forces on atoms within numerical precision. Since
the density matrix, total energy, and forces on atoms can be
very accurately evaluated within numerical precision as
shown above, the low-order scaling method can be regarded
as a variational method in practice.

C. Iterative search of chemical potential

Although the computational cost of the proposed method
can be reduced from the cubic to low-order scalings, the
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FIG. 4. �Color online� The elapsed time of the inverse calcula-
tion by Eqs. �28�–�32� for a 1D linear chain, a 2D square lattice, and
a 3D cubic lattice systems as a function of number of atoms in the
unit cell under periodic boundary condition. The Hamiltonian of the
systems is described by the s-valent NNTB models. The line for
each system is obtained by a least-square method, and the compu-
tational orders obtained from the fitted curves are O�N0.90�log2 N�2�,
O�N1.90�, and O�N2.35� for the 1D, 2D, and 3D systems, respec-
tively. The size of domains at the innermost level is set to 20 for all
the cases.
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prefactor directly depends on the number of iterations in the
iterative search of the chemical potential. To address how the
combination of interpolation and extrapolation methods dis-
cussed before works to search a chemical potential which
conserves the total number of electrons within a criterion, we
show in Fig. 6 the number of iterations for finding the chemi-
cal potential, conserving the total number of electrons with a
criterion of 10−8 electron/system, as a function of the SCF
step for a C60 molecule, DNA, and a Pt63 cluster. Only few
iterations are enough to achieve a sufficient convergence of
the chemical potential as the SCF calculation converges
while a larger number of iterations are required at the initial
stage of the SCF step. It turns out that the proper chemical
potential can be searched by the mean iterations of 2.1, 2.4,
and 4.0 for a C60 molecule, DNA, and a Pt63 cluster, respec-
tively. The property of the iterative search is closely related
to the energy gap of systems. The energy gap between the

highest occupied and lowest unoccupied states of the C60
molecule, DNA, and Pt63 cluster are 1.95, 0.67, and 0.02 eV,
respectively. For the C60 molecule and DNA with wide gaps
the number of iterations for finding the chemical potential
tends be large up to 10 SCF iterations since the interpolation
or extrapolation scheme may not work well due to the exis-
tence of the wide gap.

However, once the charge density nearly converges, the
approximate chemical potential in between the gap, which is
the correct chemical potential at the previous SCF step, can
satisfy the criterion of 10−8 electron/system. The situation
does correspond to a small number of iterations after ten
SCF iterations. Even the trial chemical potential at the first
step is the correct one within the criterion after 26 SCF it-
erations in these cases. For the Pt63 cluster with the narrow
gap the number of iterations for finding the chemical poten-
tial is slightly lower than those of the a C60 molecule and
DNA with the wide gaps at the initial stage of SCF iterations,
which implies that the interpolation and extrapolation
schemes by the procedures �3�–�5� can give a good estima-
tion of the chemical potential for the nearly continuous ei-
genvalue spectrum. In addition to this, one may find that in
contrast to the cases with the wide gap, the correct chemical
potential is found by two iterations as the charge density
converges since a little change in the chemical potential af-
fects the distribution of charge density due to the narrow gap.
However, the fact that only two iterations are sufficient even
for the system with a narrow gap at the final stage of the SCF
step suggests that the extrapolation by Eq. �48� works very
well. Thus, we see from the numerical calculations that the
correct chemical potential can be searched by only few itera-
tions on an average with the combination of interpolation
and extrapolation methods for systems with a wide variety of
gap.
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FIG. 5. �Color online� The norm of residual in the SCF calcu-
lation of DNA, with a periodic double helix structure �650 atoms/
unit� consisting of cytosines and guanines, calculated by the con-
ventional and proposed methods, where the residual is defined as
the difference between the input and output charge densities in mo-
mentum space. The electric temperature of 700 K and 80 poles for
the contour integration are used. The number in parenthesis is the
total energy �hartree� of the system calculated by each method.

TABLE III. The absolute error of total energy 
E−Eref
 �hartree�
and the mean absolute error �MAE� of forces on atoms �hartree/
bohr� in the SCF calculation of the same DNA system as for Fig. 5
as a function of the number of poles. The reference energy Eref and
forces are calculated by the conventional diagonalization method.
The computational conditions are the same as for the calculations of
Fig. 5.

Poles 
E−Eref
 MAE of forces

10 80.698617103348 0.040703500227

20 0.122135859603 0.000111580338

40 0.000000000162 0.000000000148

60 0.000000000264 0.000000000148

80 0.000000000255 0.000000000148

100 0.000000000251 0.000000000148
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FIG. 6. �Color online� The number of iterations for searching
the chemical potential which conserves the total number of elec-
trons within a criterion of 10−8 electron/system for a C60 molecule,
DNA, and a Pt63 cluster, where the electric temperature of 600, 700,
and 1000 K, and 80, 80, and 90 poles for the contour integration are
used for the C60 molecule, DNA, and the Pt63 cluster.
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D. Parallel calculation

We demonstrate that the proposed method is suitable for
the parallel computation because of the well separated data
structure. It is apparent that the calculation of the Green’s
function at each 
p in Eq. �8� can be independently per-
formed without data communication among processors.
Thus, we parallelize the summation in Eq. �8� by using the
message passing interface �MPI� in which a nearly same
number of poles are distributed to each process. The summa-
tion in Eq. �8� can be partly performed in each process, and
the global summation is completed after all the calculations
allocated to each process finish. In most cases the global
summation can be a very small fraction of the computational
time even including the MPI communication since the
amount of the data to be communicated is O�N� due to the
use of localized basis functions. In addition to the parallel-
ization of the summation in Eq. �8�, the calculation of the
Green’s function can be parallelized in two respects. In the
recursive calculations of Eqs. �28�–�32�, one may notice that
the calculation for different n is independently performed,
and also the calculations involving VT and LT in Eqs.
�28�–�32� can be parallelized with respect to the column of
VT and LT without communication until the recurrence cal-
culations reach at m+1= p. For each p the MPI communica-
tion only has to be performed at m+1= p. In our implemen-
tation only the latter part as for the calculation of the Green’s
function is parallelized by a hybrid parallelization using MPI
and OPENMP, which are used for internodes and intranode
parallelization. As a whole, we parallelize the summation in
Eq. �8� using MPI and the calculations involving VT and LT

in Eqs. �28�–�32� using the hybrid scheme.
Figure 7 shows the speed-up ratio by the parallel calcula-

tion in the elapsed time of one SCF iteration. The speed-up
ratio reaches about 350 and the elapsed time obtained is 3.76
s using 162 processes and 4 threads, which demonstrates the
good scalability of the proposed method. On the other hand,
the conventional diagonalization using Householder and QR
methods scales up to only 21 processes, which leads to the
speed-up ratio of about 10 and the elapsed time of 7.09 s.
Thus, we see that the proposed method is of great advantage
to the parallel computation unlike the conventional method
while the comparison of the elapsed time suggests that the
prefactor in the computational effort for the proposed method
is larger than that of the conventional method.

IV. CONCLUSIONS

An efficient low-order scaling method has been developed
for large-scale DFT calculations using localized basis func-
tions such as the PAO, FE, and wavelet basis functions,
which can be applied to not only insulating but also metallic
systems. The computational effort of the method scales as
O�N�log2 N�2�, O�N2�, and O�N7/3� for 1D, 2D, and 3D sys-
tems, respectively. The method directly evaluates, based on
two ideas, only selected elements in the density matrix which
are required for the total-energy calculation. The first idea is
to introduce a contour integration method for the integration
of the Green’s function in which the Fermi-Dirac function is
expressed by a continued fraction. The contour integration

enables us to obtain the numerically exact result for the in-
tegration within double precision at a modest number of
poles, which allows us to regard the method as a numerically
exact alternative to conventional O�N3� diagonalization
methods. It is also shown that the number of poles needed
for the convergence does not depend on the size of the sys-
tem, but the spectrum radius of the system, which implies
that the number of poles in the contour integration is uncon-
cerned with the scaling property of the computation cost. The
second idea is to employ a set of recurrence formulas for the
calculation of the Green’s function. The set of recurrence
formulas is derived from a recursive application of a block
LDLT factorization using the Schur complement to a struc-
tured matrix obtained by a nested dissection for the sparse
matrix �ZS−H�. The primary calculation in the recurrence
formulas consists of matrix multiplications, and the compu-
tational scaling property is derived by the detailed analysis
for the calculations. The chemical potential, conserving the
total number of electrons, is determined by an iterative
search which combines several interpolation and extrapola-
tion methods. The iterative search permits to find the chemi-
cal potential by less than five iterations on an average for
systems with a wide variety of gap. The good scalability in
the parallel computation implies that the method is suitable
for the massively parallel computation, and could extend the
applicability of DFT calculations for large-scale systems to-
gether with the low-order scaling. It is also anticipated that
the numerically exact method provides a platform in devel-
oping novel approximate efficient methods.
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FIG. 7. �Color online� Speed-up ratio in the parallel computa-
tion of the diagonalization in the SCF calculation for DNA by a
hybrid scheme using MPI and OPENMP. The speed-up ratio is de-
fined by 2T2 /Tp, where T2 and Tp are the elapsed times obtained by
two MPI processes and by the corresponding number of processes
and threads. The structure of DNA is the same as in Fig. 5. The
parallel calculations were performed on a Cray XT5 machine con-
sisting of AMD opteron quad core processors �2.3 GHz�. The elec-
tric temperature of 700 K and 80 poles for the contour integration
are used. For comparison, the speed-up ratio for the parallel com-
putation of the conventional scheme using Householder and QR
methods is also shown for the case with a single thread.
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APPENDIX A: AN EXAMPLE OF THE INVERSE
CALCULATION

Since the proposed method to calculate the inverse of ma-
trix is largely different from conventional methods, we show
a simple but nontrivial example to illustrate the calculation
of the inverse by using the set of recurrence formulas, Eq.
�28�–�32�, �38�, and �39�, which may be useful to understand
how the calculation proceeds. We consider a finite chain
molecule consisting of seven atoms described by the same
s-valent NNTB model as in Sec. II C 1, where all the on-site
energies and hopping integrals are assumed to be 1. After
performing the nested dissection, we obtain the following
structured matrix:

X =�
1 1

1 1 1

1 1 1

1 1

1 1 1

1 1 1

1 1 1

� , �A1�

where the blank means a zero element. It can be seen that the
structure is same as in Eq. �22�, and the system is divided
into four domains with P=1. Then, we start from Eqs. �30�
with p=0,

V0,0,0
T = �A0,0�−1�B0,0�B0,0��T

=1 � 1 = 1 � L0,0
T , �A2�

V0,0,1
T = �A0,1�−1�B0,1�B0,1��T=1 � 1 = 1 � L0,1

T , �A3�

V0,0,2
T = �A0,2�−1�B0,2�B0,2��T=1 � 1 = 1 � L0,2

T , �A4�

V0,0,3
T = �A0,3�−1�B0,3�B0,3��T=1 � 1 = 1 � L0,3

T , �A5�

and proceed to calculate Eq. �32�,

S0,0 = C0,0 − B0,0L0,0
T − B0,1L0,1

T

=1 − 1 � 1 − 1 � 1 = − 1, �A6�

S0,1 = C0,1 − B0,2L0,2
T − B0,3L0,3

T

=1 − 1 � 1 − 1 � 1 = − 1. �A7�

X1,0
−1 and X1,1

−1 which are precursors of the inverse of X can be
calculated by Eq. �38� and �39� as

X1,0
−1 = �A0,0

−1 � �

� A0,1
−1 �

� � 0
� + �Y0,0

T L0,0 � − Y0,0
T

� Y0,1
T L0,1 − Y0,1

T

− Y0,0 − Y0,1 S0,0
−1 �

=�1 � �

� 1 �

� � 0
� + � �− 1� � − �− 1�

� �− 1� − �− 1�
− �− 1� − �− 1� − 1

�
=�0 � 1

� 0 1

1 1 − 1
� = X1,1

−1 , �A8�

where � means that the corresponding element is not calcu-
lated, and remains unknown, since these elements are not
referred for further calculations. The precursor of X1,1

−1 is
found to be same as X1,0 due to the same inner structure. As
the next step, we set p to 1, and calculate Eq. �30�,

V1,0,0
T = �A0,0�−1�B1,0�B0,0��T=1 � 0 = 0, �A9�

V1,0,1
T = �A0,1�−1�B1,0�B0,1��T=1 � 1 = 1, �A10�

V1,0,2
T = �A0,2�−1�B1,1�B0,2��T=1 � 1 = 1, �A11�

V1,0,3
T = �A0,3�−1�B1,1�B0,3��T=1 � 0 = 0, �A12�

Eq. �28�,

Q1,1,0
T = S0,0

−1 �B0,0V1,0,0
T + B0,1V1,0,1

T − �B1,0�C0,0��T�

=�− 1��1 � 0 + 1 � 1 − 0� = − 1, �A13�

Q1,1,1
T = S0,1

−1 �B0,2V1,0,2
T + B0,3V1,0,3

T − �B1,1�C0,1��T�

=�− 1��1 � 1 + 1 � 0 − 0� = − 1, �A14�

Eqs. �29� and �31�,

V1,1,0
T = �V1,0,0

T

V1,0,1
T

0
� + �L0,0

T

L0,1
T

− 1
�Q1,1,0

T

=�0

1

0
� + � 1

1

− 1
��− 1� = �− 1

0

1
� � L1,0

T ,

�A15�

V1,1,1
T = �V1,0,2

T

V1,0,3
T

0
� + �L0,2

T

L0,3
T

− 1
�Q1,1,1

T
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=�1

0

0
� + � 1

1

− 1
��− 1� = � 0

− 1

1
� � L1,1

T ,

�A16�

and Eq. �32�,

S1,0 = C1,0 − B1,0L1,0
T − B1,1L1,1

T

=1 − �0 1 0 ��− 1

0

1
� − �1 0 0 �� 0

− 1

1
�

= 1. �A17�

Finally updating the precursors X1,0
−1 and X1,1

−1 of the inverse of
the matrix X using Eqs. �38� and �39� yields the inverse of X
as follows:

X2,0
−1 = �X1,0

−1 � �

� X1,1
−1 �

� � 0
� + �Y1,0

T L1,0 � − Y1,0
T

� Y1,1
T L1,1 − Y1,1

T

− Y1,0 − Y1,1 S1,0
−1 �

=�
0 � 1 � � � �

� 0 1 � � � 0

1 1 − 1 � � � �

� � � 0 � 1 0

� � � � 0 1 �

� � � 1 1 − 1 �

� 0 � 0 � � 0

�
+�

1 � − 1 � � � �

� 0 0 � � � 0

− 1 0 1 � � � �

� � � 0 � 0 0

� � � � 1 − 1 �

� � � 0 − 1 1 �

� 0 � 0 � � 1

�
=�

1 � 0 � � � �

� 0 1 � � � 0

0 1 0 � � � �

� � � 0 � 1 0

� � � � 1 0 �

� � � 1 0 0 �

� 0 � 0 � � 1

� � X−1. �A18�

The calculated elements in the inverse X−1 are found to be
consistent with those by conventional methods such as the
LU method. It is also noted that one can easily obtain the
corresponding elements in the inverse of the original matrix
using a table function generated in the nested dissection
which converts the row or column index of the structured
matrix to the original one.

APPENDIX B: CALCULATION OF SELECTED
EIGENSTATES

In this appendix, it is shown that a few eigenstates around
a selected energy � can be obtained by a similar way with the
same computational complexity as in the calculation for the
density matrix, though the proposed method directly com-
putes the density matrix without explicitly calculating the
eigenvectors.

We compute the few eigenstates around � using a block
shift-invert iterative method in which the generalized eigen-
value problem of Eq. �2� is transformed as

�H − �S�−1Sc� =
1

�� − �
c�. �B1�

Then, the following iterative procedure yields a set of eigen-
states around � as the convergent result:

bl = �H − �S�−1Scl, �B2�

�bl
Ĥ
bl�cl+1 = �bl
Ŝ
bl�cl+1�� l+1, �B3�

where l is the iterative step, �� is a square matrix consisting of
diagonal elements, and b and c are a set of vectors, where the
number of vectors is that of the selected states. The matrix
multiplication in Eq. �B2� and the solution of the generalized
eigenvalue problem for Eq. �B3� are repeated until conver-
gence, and the convergent c and the diagonal elements of ��
correspond to the eigenstates around �. If the number of se-
lected eigenstates is independent of the size of system, the
computational cost required for Eq. �B3� is O�N�, which

arises from the matrix multiplications of �bl
Ĥ
bl� and

�bl
Ŝ
bl�. Therefore, the computational cost of the iterative
calculation is governed by the matrix multiplication of �H
−�S�−1yl

T in Eq. �B2�, where yl
T=Scl.

Here we show that the matrix multiplication of �H
−�S�−1yl

T can be performed by a similar way with the same
computational complexity as in the calculation for the den-
sity matrix. As an example of �H−�S�, let us consider the
matrix X given by Eq. �22�. After the recurrence calculation
of Eqs. �28�–�32�, it turns out that the matrix X is factorized
as

X = L1L0DL0
TL1

T �B4�

with matrices defined by

D =�
A0,0

A0,1

S0,0

A0,2

A0,3

S0,1

S1,0

� ,
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L0 =�
IA0,0

IA0,1

L0,0 L0,1 IC0,0

IA0,2

IA0,3

L0,2 L0,3 IC0,1

IC1,0

� ,

and

L1 =�
IA0,0

IA0,1

IC0,0

IA0,2

IA0,3

IC0,1

L1,0 L1,1 IC1,0

� ,

where IA0,0
stands for an identity matrix with the same size as

that of the matrix A0,0, and the same rule applies to other
cases. Then, we see that the inverse of X is given by

X−1 = �L1
T�−1�L0

T�−1D−1�L0�−1�L1�−1 �B5�

with matrices defined by

�L0�−1 =�
IA0,0

IA0,1

− L0,0 − L0,1 IC0,0

IA0,2

IA0,3

− L0,2 − L0,3 IC0,1

IC1,0

�
and

�L1�−1 =�
IA0,0

IA0,1

IC0,0

IA0,2

IA0,3

IC0,1

− L1,0 − L1,1 IC1,0

� .

It should be noted that the inverses of L0 and L1 are remark-
ably simple, and that the inverse of D is found to be a matrix
consisting of diagonal block inverses. In general cases, we
see that a matrix X and its inverse are given by

X = LP ¯ L1L0DL0
TL1

T
¯ LP

T , �B6�

X−1 = �LP
T�−1

¯ �L1
T�−1�L0

T�−1D−1 � �L0�−1�L1�−1
¯ �LP�−1,

�B7�

where the inverse Lp is given in a similar form as well as
those of L0 and L1.

By considering Eq. �B7� and the simple forms of �Lp�−1,
the matrix multiplication of X−1yT can be performed by the
following three steps.

�i� The first step, �y��T= �L0�−1�L1�−1
¯ �LP�−1yT, is calcu-

lated by

�y��ICp,n
��T = − Lp,2n�y�Lp,2n��T − Lp,2n+1�y�Lp,2n+1��T

+ �y�ICp,n
��T, �B8�

�y��IA0,n
��T = �y�IA0,n

��T, �B9�

where p=0, . . . , P and n=0, . . . ,2P−p−1 in Eq. �B8�, and n
=0, . . . ,2P−1 in Eq. �B9�.

�ii� The second step, �y��T=D−1�y��T, is calculated by

�y��ICp,n
��T = �Sp,n�−1�y��Sp,n��T, �B10�

�y��IA0,n
��T = �A0,n�−1�y��IA0,n

��T, �B11�

where p=0, . . . , P and n=0, . . . ,2P−p−1 in Eq. �B10�, and
n=0, ¯ ,2P−1 in Eq. �B11�.

�iii� The third step, �LP
T�−1

¯ �L1
T�−1�L0

T�−1�y��T, is per-
formed by the following recurrence formulas:

�xp+1�Lp,2n��T = �xp�Lp,2n��T − �Lp,2n�T�xp�ICp,n
��T,

�B12�

�xp+1�Lp,2n+1��T = �xp�Lp,2n+1��T − �Lp,2n+1�T�xp�ICp,n
��T,

�B13�

�xp+1�ICm,n
��T = �xp�ICm,n

��T, �B14�

where x0=y�, p+1=1, . . . , P+1, and m= p , . . . , P. At the end
of the recurrence calculation, we obtain the result of the mul-
tiplication as

X−1yT = xP+1 � �H − �S�−1yT. �B15�

The computational effort of the three steps can be easily
estimated by the same way as for the calculation of the in-
verse matrix, and summarized in Table IV. It is found that
the computational complexity of the three steps is lower than

TABLE IV. Computational order of Eqs. �B8� and
�B10�–�B13�.

1D 2D 3D

Equation �B8� N log2 N N3/2 N5/3

Equation �B10� N N log2 N N4/3

Equation �B11� N N N

Equations �B12� and �B13� N log2 N N3/2 N5/3
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that of the calculation of the inverse matrix. Thus, if the
number of selected eigenstates and the number of iterations
for convergence are independent of the size of system, the
computational effort of calculation of the selected eigenstates

is governed by the recurrence calculation of Eqs. �28�–�32�
even for the calculation of selected eigenstates. The scheme
may be useful for calculation of eigenstates near the Fermi
level.
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