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An efficient implementation of the nonequilibrium Green function method combined with the density-
functional theory, using localized pseudoatomic orbitals, is presented for electronic transport calculations of a
system connected with two leads under a finite bias voltage. In the implementation, accurate and efficient
methods are developed especially for the evaluation of the density matrix and treatment of boundaries between
the scattering region and the leads. Equilibrium and nonequilibrium contributions in the density matrix are
evaluated with very high precision by a contour integration with a continued fraction representation of the
Fermi-Dirac function and by a simple quadrature on the real axis with a small imaginary part, respectively. The
Hartree potential is computed efficiently by a combination of the two-dimensional fast Fourier transform and
a finite difference method, and the charge density near the boundaries is constructed with a careful treatment
to avoid the spurious scattering at the boundaries. The efficiency of the implementation is demonstrated by
rapid convergence properties of the density matrix. In addition, as an illustration, our method is applied for
zigzag graphene nanoribbons, a Fe/MgO/Fe tunneling junction, and a LaMnO3 /SrMnO3 superlattice, demon-
strating its applicability to a wide variety of systems.
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I. INTRODUCTION

The nonequilibrium Green function �NEGF� method1–6

potentially has several advantages to investigate electronic
transport properties of nanoscale materials such as single
molecules,7,8 atomic wires,9,10 carbon-based materials,11,12

and thin layers.13,14 The potential advantages are summarized
by the following features of the NEGF method: �i� the source
and drain contacts are treated based on the same theoretical
framework as for the scattering region;3,4,6 �ii� the electronic
structure of the scattering region under a finite source-drain
bias voltage is self-consistently determined by combining
with first-principles electronic structure calculation methods
such as the density-functional theory �DFT� and the Hartree-
Fock �HF� method;15–25 �iii� many-body effects in the trans-
port properties, e.g., electron-phonon26–31 and electron-
electron interactions,32–35 might be included through self-
energies without largely deviating the theoretical framework;
�iv� its applicability to large-scale systems can be anticipated
since the NEGF method relies practically on the locality of
basis functions in real space, resulting in computations for
sparse matrices.36 Due to those potential advantages, recently
several groups have implemented the NEGF method coupled
with the DFT or HF method using atomic type or the other
local basis functions with successful applications for calcu-
lations of the electronic transport properties.15–25,36,37

However, a highly accurate and efficient implementation
method must be still developed from the following two rea-

sons. The first obvious reason is to extend the applicability of
the NEGF method to large-scale systems. The efficient
implementation might lead to more challenging applications
of the NEGF method to very large-scale complicated sys-
tems. The majority part in the computational effort of the
NEGF method mainly comes from the evaluation of the den-
sity matrix, which is decomposed into the evaluation of
Green functions and numerical integrations. Thus, the effi-
cient calculation of the part is a key factor for extending the
applicability to large-scale systems. Nevertheless, accurate
and efficient methods for evaluating density matrix within
the NEGF method have not been fully developed, although
several methods have been already proposed.15,16,38 To ex-
tend the applicability of the NEGF method to large-scale
systems, a remarkably efficient method that we have recently
developed39 will be applied for the problem in this study, and
we will show that the method is much faster than the other
method.16 The second reason is that spurious scattering
should be negligible when the NEGF method is extended to
include the many-body effects beyond the one-particle
picture.26–35 The spurious scattering accompanied by the in-
accurate implementation might make the many-body effects
indistinct in the electronic transport properties. One can
imagine that the spurious scattering can be easily produced
in the NEGF method, since unlike the conventional band-
structure calculations, NEGF has to be evaluated by a patch
work that the self-consistent field �SCF� calculations of the
source and drain leads are performed beforehand, and the
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calculated results are incorporated in the NEGF calculations
through the self-energy and the boundary conditions between
the scattering region and leads. Therefore, a careful treatment
to handle the boundary conditions should be developed to
avoid the spurious scattering.

In this paper, to address the above two issues, we present
an accurate and efficient implementation of the NEGF
method, in combination with DFT using pseudoatomic orbit-
als �PAOs� and pseudopotentials, using a contour integration
method, which is based on a continued fraction representa-
tion of the Fermi-Dirac function. For the accurate treatment
of the boundary conditions between the scattering region and
leads, we also develop a method for calculating the Hartree
potential by a combination of the two-dimensional fast Fou-
rier transform �FFT� and a finite difference method so that
the boundary condition can be correctly reproduced. In addi-
tion, we discuss a careful treatment to construct the charge
density near the boundaries. The efficiency and accuracy of
our implementation are demonstrated by several numerical
test calculations on convergence of the density matrix.

This paper is organized as follows. In Sec. II, the details
of our implementation for treating the equilibrium state of
the scattering region are discussed by focusing on the evalu-
ation of the equilibrium density matrix, the treatment for
constructing the charge density near the boundaries, and
an efficient method for calculating the Hartree potential. In
Sec. III, our implementation for the nonequilibrium state is
described. In Sec. IV, we demonstrate the accuracy and effi-
ciency of the implementation by a series of numerical calcu-
lations and several applications. In Sec. V, our implementa-
tion of the NEGF method is summarized.

II. EQUILIBRIUM STATE

Since most of practical aspects in the implementation of
the NEGF method coupled with DFT using the localized
PAOs �Refs. 40–42� appear in the ground state calculation of
the system at equilibrium, we start our discussion from the
electronic structure calculation of the equilibrium ground
state by using the Green function method with DFT.

A. EGF

Let us consider a system, where one-dimensional infinite
cells are arranged with two-dimensional periodicity, as
shown in Fig. 1. Throughout the paper, we assume that the
electronic transport along the a axis is of interest and that the
two-dimensional periodicity spreads over the bc plane. The
one-dimensional infinite cell consists of the central region
denoted by C0 and the cells denoted by Li and Ri, where i
=0,1 ,2 , . . .. All the cells Li and Ri, arranged semi-infinitely,
contain the same number of atoms with the same structural
configuration, respectively; but the cells Li and Ri can be
different from each other. In the equilibrium state with a
common chemical potential everywhere in the system, the
electronic structure of the system may be determined by
DFT.43–45 Due to the periodicity of the bc plane, the one-
particle Kohn-Sham �KS� wave function in the system is
expressed by the Bloch function on the bc plane using PAOs
�i� located on site �i as

���
�k��r� =

1
�N

�
n

eik·Rn�
i�

c��,i�
�k� �i��r − �i − Rn� , �1�

where �, �, i, and � are indices for the spin, eigenstate, site,
and basis orbital, respectively. The lattice vector Rn and the
Bloch wave vector k are given by Rn= lbb+ lcc, where b and

c are the lattice vectors, and k=kbb̃+kcc̃, where b̃ and c̃ are
the reciprocal lattice vectors, respectively. The summation
over i and � is considered for all the basis orbitals in the
one-dimensional infinite cell, which indicates no periodicity
along the a axis. Considering the variation in the total en-
ergy, within the conventional DFT, of the system expressed
by the KS wave function �1� with respect to coefficients c,
we obtain the following KS matrix equation:

H�
�k�c��

�k� = ���
�k�S�k�c��

�k�, �2�

where c��
�k� is a column vector consisting of the coefficients

�c��,i�
�k� �. The Hamiltonian H�

�k� and overlap matrices S�k� are
given by

H�,i�j	
�k� = �

n
eik·Rnh�,i�j	,Rn

, �3�

Si�j	
�k� = �

n
eik·Rnsi�j	,Rn

, �4�

where h�,i�j	,Rn
and si�j	,Rn

are the Hamiltonian and overlap
matrix elements between two basis functions �i��r−�i� and
� j	�r−� j −Rn�, respectively. The overlap matrix arises from
the nonorthogonality of the PAO basis functions.40–42 Now
we consider an extended central region C composed of the
regions C0, L0, and R0, as shown in Figs. 1�a� and 1�b�. The
extension of the central region C0 is made so that the relax-

C0 R0L0 R1L1

a-axis

b-axis
c-axis

CL1 R1 R2L2

(a)

(b)

FIG. 1. �a� Configuration of the system, treated by the NEGF
method, with infinite left and right leads along the a axis under a
two-dimensional periodic boundary condition on the bc plane. �b�
One-dimensional system compacted from the configuration of �a�
by considering the periodicity on the bc plane, where the region C
is an extended central region consisting of C0, L0, and R0.

OZAKI, NISHIO, AND KINO PHYSICAL REVIEW B 81, 035116 �2010�

035116-2



ation of electronic structure around the interfaces between
the leads L0 and R0 and the central region C0 can be allowed.
In addition, we impose two conditions. �i� The localized ba-
sis orbitals � in the region C0 overlap with those in the
regions L0 and R0 but do not overlap with those in the re-
gions L1 and R1. �ii� The localized basis orbitals � in the
Li�Ri� region has no overlap with basis orbitals in the cells
beyond the nearest neighboring cells Li−1�Ri−1� and
Li+1�Ri+1�.

In our implementation, the basis functions are strictly lo-
calized in real space because of the generation of basis or-
bitals by a confinement scheme.40–42 Therefore, once the lo-
calized basis orbitals with specific cutoff radii are chosen for
each region, the two conditions can be always satisfied by
just adjusting the size of the unit cells for Li and Ri. This is a
benefit in the use of the strictly localized basis orbitals com-
pared to other local basis orbitals such as Slater- and
Gaussian-type orbitals. In the use of the strictly localized
basis orbitals, the eigenvalue problem in the Hilbert space
spanned by the basis orbitals is solved without introducing
any cutoff scheme. On the other hand, in the Green function
method, the matrix elements of the Hamiltonian and overlap
matrices have to be truncated so as to satisfy the above two
conditions in case of the other localized basis orbitals with
the small but long tail. With the above two conditions �i� and
�ii�, the Hamiltonian matrix given by Eq. �3� is written by a
block tridiagonal form as follows:

H�
�k� =�

� � 0

� H�,L1

�k� H�,L1C
�k�

H�,CL1

�k�
H�,C

�k� H�,CR1

�k�

H�,R1C
�k� H�,R1

�k�
�

0 � �

� , �5�

where H�,C
�k� , H�,L1

�k� , and H�,R1

�k� are Hamiltonian matrices of the
central C, left L1, and right R1 regions of which matrix size
are the same as the number of basis orbitals NC, NL, and NR
in the regions C, L1, and R1, respectively. The other block
components in Eq. �5� are the Hamiltonian matrices connect-
ing two regions among the regions, and these matrix sizes
are deduced from those of the two regions. Also the com-
pletely same structure is found in the overlap matrix. Thus,
the electronic structure of the system given by Fig. 1�a� can
be obtained by solving the one-dimensional block chain
model, being k dependent, given by Fig. 1�b� and the corre-
sponding Eq. �2�. By noting G�

�k��Z��ZS�k�−H�
�k��=I and mak-

ing use of the block tridiagonal form of the Hamiltonian and
overlap matrices, the Green function of the central region C
can be written by

G�,C
�k� �Z� = 	ZSC

�k� − H�,C
�k� − 
�,L

�k� �Z� − 
�,R
�k� �Z�
−1 �6�

with self-energies 
�,L
�k� �Z� and 
�,R

�k� �Z� defined by


�,L
�k� �Z� = �ZSCL1

�k� − H�,CL1

�k� �G�,L
�k� �Z��ZSL1C

�k� − H�,L1C
�k� � , �7�


�,R
�k� �Z� = �ZSCR1

�k� − H�,CR1

�k� �G�,R
�k� �Z��ZSR1C

�k� − H�,R1C
�k� � , �8�

where G�,L
�k� �Z� and G�,R

�k� �Z� are surface Green functions of
the left and right regions.

It is worth pointing out that there is an energy functional,
which can be variationally minimized with respect to charge
density n if Eq. �6� is self-consistently solved. The details of
derivation for the functional are given in Appendix A.

B. Surface Green function

In general, the surface Green function G�,s
�k��Z� is defined

by G�,s
�k��Z���ZSs−Hs�−1, where Ss and Hs are the Hamil-

tonian and overlap matrices for the lead regions, and the
suffix s is L or R. It is noted that due to the two conditions �i�
and �ii� mentioned above, the Hamiltonian and overlap ma-
trices for the lead regions can be written by a block tridiago-
nal form as follows:

Hs =�
H11 H12 0

H21 H22 H23

H32 H33 �

0 � �

� , �9�

Ss =�
S11 S12 0

S21 S22 S23

S32 S33 �

0 � �

� , �10�

where the Hamiltonian can be spin and k dependent, while
the indices for them are omitted for simplification of the
notation, and also the index i appearing in Hij corresponds to
the cell number for the lead Li or Ri. It seems to be difficult
to directly diagonalize the KS equation �2� for the one-
dimensional block chain model because of the infinite di-
mension of the matrices. However, instead by focusing on
only the central region, one can evaluate the Green function
of the central region as a rather small problem of NC�NC in
size. The effect of semi-infinite regions L and R are included
through the corresponding self-energies 
�,L

�k� �Z� and 
�,R
�k� �Z�.

In order to practically calculate the Green function of the
central region given by Eq. �6�, we introduce an approxima-
tion, where the regions Li�i=1,2 , . . .� are all equivalent to
each other with respect to the spatial charge distribution, the
KS Hamiltonian, and the relevant density matrix, which are
calculated in advance by adopting the system of which unit
cell is L1 and by using the conventional band-structure cal-
culation. The same approximation also applies for the re-
gions Ri�i=1,2 , . . .�. Strictly speaking, the assumption is not
correct since the charge distribution must be affected by the
interaction between the central region C and the regions
Li�Ri�. However, if the size of the unit vector along the a axis
for the regions L0 and R0 in the extended central region C is
large enough, the assumption will be asymptotically correct
as the unit vector becomes larger. The approximation enables
us to evaluate the surface Green function by the iterative
method.46 The efficient iterative scheme can be performed by
the following procedure:
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ai = �i
−1�i, �11�

bi = �i
−1	i, �12�

�s,i+1 = �s,i − �ibi, �13�

�i+1 = �i − 	iai − �ibi, �14�

�i+1 = �iai, �15�

	i+1 = 	ibi, �16�

with a set of initial values

�s,0 = ZS11 − H11, �17�

�0 = ZS11 − H11, �18�

�0 = − �ZS12 − H12� , �19�

	0 = − �ZS21 − H21� . �20�

By the iterative calculation, in most cases, the inverse of �s,i
rapidly converges at a part of the surface Green function,

Gs,11 = lim
i→

�s,i
−1, �21�

where Gs,11 is the �1,1� block element of the surface Green
function �ZSs−Hs�−1. The �1,1� block element Gs,11 of NL
�NL �or NR�NR� in size has all the necessary information to
calculate the self-energies 
�,L

�k� �Z� and 
�,R
�k� �Z� since there is

no contribution from the other block elements because of the
two conditions �i� and �ii� mentioned above. In practice, the
convergence in the iterative calculation is very fast and the
Frobenius norm, defined by ��l,l����s,i+1�ll�− ��s,i�ll��

2�1/2 of
10−5 �eV� is obtained by typically only 7 iterations.

C. Equilibrium density matrix

One of practical difficulties in the implementation of the
Green function method is how the equilibrium density matrix
is evaluated efficiently and accurately.15,16,38,47–51 In our
implementation, the equilibrium density matrix is highly ef-
ficiently computed using the contour integration method with
a special treatment of the Fermi-Dirac function f .39 If the
Hamiltonian and overlap matrices associated with Eq. �6� are
k dependent, it turns out that the spectrum function in the
Lehmann representation of the central Green function is
complex number in general, as discussed in Appendix B of
Ref. 39. Then, the density matrix ��,Rn

�eq� , where one of the
associated basis orbitals is in the central cell and the other is
in the cell denoted by Rn, is given by making use of both the
retarded and advanced Green functions G�,C

�k� �E+ i0+� and
G�,C

�k� �E− i0+� as

��,Rn

�eq� =
1

Vc


BZ
dk3���,+

�k� − ��,−
�k� �e−ik·Rn �22�

with

��,�
�k� =

i

2�


−



dEG�,C
�k� �E � i0+�f�E − �� , �23�

where Vc is the volume of the unit cell, �BZ represents the
integration over the first Brillouin zone, 0+ is a positive in-
finitesimal, and � is a chemical potential. The integration
over k space is numerically performed by using the
Monkhorst-Pack mesh.52 It is also noted that the phase factor
e−ik·Rn appears through Eq. �1�. If the Hamiltonian and over-
lap matrices are k independent, Eq. �22� can be simplified
into a well-known formula

��,0
�eq� = Im�−

1

�


−



dEG�,C�E + i0+�f�E − ��� . �24�

In case of the k-independent problem, the simplified formula
is used since the number of the evaluation of the Green func-
tion is reduced by half.

For the efficient integration in Eq. �23�, in our implemen-
tation the Fermi-Dirac function is expressed by a continued
fraction representation derived from a hypergeometric
function39 so that the structure of poles can be suitable for
the integration associated with the Green function as follows:

1

1 + exp�x�
=

1

2
−

x

4

1 +
� x

2
�2

3 +
� x

2
�2

5 +
� x

2
�2

¯

�2M − 1�+�

=
1

2
+ �

p=1


Rp

x − izp
+ �

p=1


Rp

x + izp
, �25�

where x=	�z−�� with 	= 1
kBT , T is electronic temperature, z

and x are complex variables. Also, zp and Rp are the poles
and the associated residues of the continued fraction repre-
sentation �25�, which are obtained via an eigenvalue problem
derived from Eq. �25�.39 Since all the zp are real numbers, the
poles izp are located on the imaginary axis. One may find an
interesting distribution of the poles on the complex plane that
the interval between neighboring poles is uniformly located
up to about 61% of the total number of poles on the half
complex plane with the same interval 2�, and from then
onward it increases very rapidly as the distance between the
pole and the real axis increases. The structure of the poles in
Eq. �25� allows us to efficiently evaluate Eq. �23� because of
the asymptotic change 1 /Z of the Green function in the far-
away region of the real axis. In other words, the denser poles
are allocated for the rapidly varying range of the Green func-
tion, and the coarser for smoothly varying range. In addition,
there is no ambiguity in the choice of the path in the contour
integration unlike the other schemes,15,16,38,53 which is one of
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advantages in our method. By terminating the summation of
Eq. �25� at a finite number of poles Np, the integration of Eq.
�23� can be performed by the contour integration, where the
poles in the upper and lower half planes are taken into ac-
count for the terms with plus and minus signs in Eq. �23�,
respectively, and the explicit formula is given by

��,�
�k� = �

1

4
��

�k,0� �
1

	
�
p=1

Np

G�,C
�k� ��p�Rp, �26�

where �p=�� i
zp

	 , and ��
�k,0� is the zeroth-order moment of

the Green function G�,C
�k� . The zeroth-order moment ��

�k,0� is
easily calculated by ��k,0�= iRG�,C

�k� �iR�, which can be derived
from the moment representation of the Green function,39

where R is a large real number and, in this study, 1010 �eV�
is used in order to make the higher-order moments negli-
gible. Although the number of poles in the summation of Eq.
�26� required for the sufficient convergence depends on the
electronic temperature T, the fully convergent result within
double precision is achieved by the use of only 100 poles in
case of T=600 K, as shown later.

If forces on atoms are calculated based on the conven-
tional DFT scheme, using the nonorthogonal basis orbitals,16

the evaluation of the energy density matrix e� is needed. In
Appendix B, we derive the calculation scheme of the equi-
librium energy-density matrix e�

�eq� based on the contour in-
tegration method.

D. Charge density near the boundary

Even though the basis functions we used are strictly lo-
calized in real space, there is the non-negligible contribution
for the charge density near the boundary between the central
and lead regions from the basis functions located in the lead
regions. Note that any treatment for the contribution to the
charge density has not been clarified in the other
implementations.15–21 Thus, we carefully calculate the charge
density in the central region by considering three contribu-
tions,

n��r� = n�
�cc��r� + 2n�

�sc��r� + n�
�ss��r� , �27�

where the suffix s is L or R, and n�
�cc��r�, n�

�sc��r�, and n�
�ss��r�

are the charge densities contributed from the basis functions
located in the central, the lead and central, and the lead re-
gions, respectively. Note that the summation over s is not
required in Eq. �27� because of the conditions �i� and �ii�.
Each charge contribution is explicitly given by

n�
�cc��r� = �

n
�

i�,j	
��,i�,j	Rn

�eq� �i��r − �i�� j	�r − � j − Rn� ,

�28�

n�
�sc��r� = �

n,n�
�

i�,j	
��,i�Rn,j	Rn�

�sc�

� �i�	r − �i − �Rn � a�
� j	�r − � j − Rn�� ,

�29�

n�
�ss��r� = �

n,n�
�

i�,j	
��,i�Rn,j	Rn�

�ss�

� �i�	r − �i − �Rn � a�
� j		r − � j − �Rn� � a�
 ,

�30�

where a is the lattice vector of the unit cell for the L0 or R0
region along the a axis. The displacement of −a�+a� denotes
that the basis function is placed in the L1�R1� region in the
configuration shown in Fig. 1. The charge density given by
Eq. �28� is calculated by the equilibrium density matrix
��,i�,j	Rn

�eq� given by Eq. �22�. Although Eq. �28� can give a
finite electron density on the outside of the central cell with
Rn=0 because of the overlap of basis functions, the contri-
bution is reflected in the central cell with Rn=0 by consid-
ering the periodicity on the bc plane. In the nonequilibrium
case, the equilibrium density matrix is only replaced by the
nonequilibrium density matrix, which will be discussed in
the next section. Each term in the summations for the two
contributions n�

�sc��r� and n�
�ss��r� survives only if the overlap

of the associated two basis orbitals is not zero in the central
region. Since the original central region C0 is extended by
adding the L0 and R0 regions, it is expected that the density
matrix elements ��,i�Rn,j	Rn�

�sc� and ��,i�Rn,j	Rn�

�ss� in Eqs. �29� and

�30� are close to those of the leads in the equilibrium condi-
tion. Therefore, the density matrix elements of the leads cal-
culated by the conventional band-structure calculations are
used for Eqs. �29� and �30�. Due to the treatment, the charge
densities n�

�sc��r� and n�
�ss��r� are independent of the SCF it-

eration so that for the computational efficiency they can be
computed on a numerical mesh and stored before the SCF
iteration. The factor 2 for n�

�sc��r� in Eq. �27� is due to taking
account of the contribution from n�

�cs��r�, while the factor
does not appear for n�

�ss��r� since all the paired terms are
included by the double summation in Eq. �30�.

We add a note that the same consideration has to be ap-
plied even for the calculation of the density of states �DOS�.
In this case, the contribution from off-diagonal block Green
functions, connecting the central and lead regions, should be
added to the DOS of the central region C calculated by
G�,C

�k� �Z�. The off-diagonal block Green functions can be cal-
culated from G�,C

�k� �Z� and the surface Green functions
G�,L1L1

�k� �Z� and G�,R1R1

�k� �Z� by making use of the identity

G�
�k��Z��ZS�k�−H�

�k��= I as follows:

G�,Cs1

�k� �Z� = − G�,C
�k� �Z��ZSCs1

− H�,Cs1

�k� �G�,s1s1

�k� �Z� , �31�

where s is L or R.

E. Hartree potential with the boundary condition

The Hartree potential in the central region is calculated
under the boundary condition that the Hartree potential at the
boundary between the central C and L1�R1� regions is same
as that of the lead, where the Hartree potential in both the
lead regions is calculated using the conventional band-
structure calculation before the calculation of the infinite
chain in Fig. 1�b� using the Green function. In our imple-
mentation, the Hartree potential for the central region with
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the boundary condition is efficiently evaluated by a combi-
nation of the two-dimensional FFT and a finite difference
method, while other schemes are used in the other
implementations.15,16 The majority part of the Hartree poten-
tial in our treatment is accurately calculated by considering
the neutral atom potential, which is the sum of the local
potential of the pseudopotential and the Hartree potential by
the confined charge for the neutralization.54 The neutral atom
potential depends on only the atomic structure and atomic
species and has no relation with the boundary condition. The
effect of the relaxation of charge distribution on the Hartree
potential is taken into account by the remaining minority part
of the Hartree potential �VH given by

�2�VH�r� = − 4��n�r� , �32�

where �n�r� is defined by the difference between the elec-
tron density n�r�	���n��r�
 calculated by the Green func-
tion and the atomic electron density55 n�a��r� calculated
by superposition of each atomic electron density ni

�a��r� at
atomic site i as follows:

�n�r� = n�r� − n�a��r� . �33�

The Fourier transformation of Eq. �32� on the yz plane, cor-
responding to the bc plane depicted in Fig. 1�a�, yields

� d2

dx2 − G2��ṼH�x,G� = − 4��ñ�x,G� , �34�

where G�Gbb̃+Gcc̃ with integer numbers Gb and Gc. By
approximating the second derivative in Eq. �34� with the
simplest finite difference,

d2�ṼH�xn�
dx2 �

�ṼH�xn+1� − 2�ṼH�xn� + �ṼH�xn−1�
��x�2 ,

�35�

we obtain a simultaneous linear equation A�Ṽ=B of �Na
−1�� �Na−1� in size with a tridiagonal matrix defined by

Ann = 2 + ��x�2G2,

An�n+1� = A�n+1�n = − 1 �36�

and a vector defined by

B1 = 4���x�2�ñ�x1,G� + �ṼH�x0,G� ,

Bn = 4���x�2�ñ�xn,G� ,

BNa−1 = 4���x�2�ñ�xNa−1,G� + �ṼH�xNa
,G� , �37�

where �x is the interval between neighboring points xn and

xn+1, n runs from 1 to Na−1, and �ṼH�x0 ,G� and

�ṼH�xNa
,G� are the boundary conditions. Since the lattice

vector of the extended central region C along the a axis is
divided by Na for the discretization, the positions x0 and xNa
are situated at the boundary, along the a axis, of the unit cell

of the central region C. Thus, �ṼH�x0 ,G� and �ṼH�xNa
,G�

can be calculated from the Hartree potential at the left

boundaries along the a axis of the left and right leads, re-
spectively. After solving the simultaneous linear equations
for all the G points, the inverse two-dimensional FFT on the
bc plane yields the difference Hartree potential �VH under
the boundary conditions. It is apparent that there is no ambi-
guity for the inclusion of the boundary conditions in the
method. Although the treatment can be easily extended to the
higher-order finite difference to the second derivative, we
restrict ourselves to the simplest case in the implementation
because of its sufficient accuracy. Employing FFT for two-
dimensional Fourier transformation, the whole computa-
tional effort to solve the Poisson equation �32� under the
boundary conditions is estimated to be �Na�Nb log�Nb�
�Nc log�Nc�, which is slightly superior to that of the three-
dimensional FFT, where Na, Nb, and Nc are the number of
meshes for the discretization along the a, b, and c axes.

F. Hamiltonian and overlap matrix elements

Our implementation of the NEGF method with DFT is
based on the strictly localized PAOs �Refs. 40–42� and a
norm-conserving pseudopotential method.56 Within the
scheme, the calculation of the matrix elements, such as the
overlap and kinetic-energy integrals, consisting of two center
integrals, is performed using a Fourier transform method,57

while the other matrix elements for Vxc and �VH, which can-
not be decomposed into two center integrals, are evaluated
by the numerical integration on the regular mesh in real
space.58 The further details on how the elements of the
Hamiltonian and overlap matrices are calculated can be
found in Ref. 54.

In addition to the above evaluation of the Hamiltonian
and overlap matrix elements, the Hamiltonian matrix ele-
ments associated with the basis orbitals situated at near the
boundary are treated in a special way, as explained below. If
the tails of two basis orbitals located on atoms in the central
region C go beyond the boundary between the central and
the lead regions, the associated Hamiltonian matrix element
is replaced by the corresponding element in the lead region
calculated by the conventional band-structure calculation.
The case can happen only if the two basis orbitals are located
in the region L0�R0� because of the condition �i� so that the
replacement of the Hamiltonian matrix element can be al-
ways possible. The replacement is made by assuming that the
potential profile near the boundary is similar to that near the
boundary between the regions L1�R1� and L2�R2� and can be
justified if the size of the region L0�R0� is large enough.

G. Charge mixing

Compared to conventional band-structure calculations, it
seems that the NEGF method tends to suffer from difficulty
in obtaining the SCF convergence. Our observation in sev-
eral cases suggests that the difficulty may come from charge
sloshing along the a axis, during the SCF iteration. The dif-
ference Hartree potential �VH changes largely by imposition
of the boundary condition even for a small variation in the
charge-density distribution, resulting in a serious charge
sloshing along the a axis. Thus, we consider suppression of

OZAKI, NISHIO, AND KINO PHYSICAL REVIEW B 81, 035116 �2010�

035116-6



the charge sloshing along the a axis by introducing the fol-
lowing weight factor w:

w�xi,G� = g�xi�� �G�2 + �1�G0�2

�G�2 + �0�G0�2� , �38�

where �G0� is a smaller one of either �b̃� or �c̃�, and �0 and �1
are adjustable parameters, while keeping �0��1. The pref-
actor g�xi� is given by

g�xi� = ���dL�xi� − dR�xi�� + 1 G = 0

1 otherwise,
� �39�

with definitions

dL�xi� = �
k=0

i−1

�ñH�xk,G = 0� , �40�

dR�xi� = �
k=i+1

Na−1

�ñH�xk,G = 0� , �41�

where � is an adjustable parameter. Noting that �ñH�xk ,G
=0� is the number of difference electron density of each
layer indexed by k and that the Coulomb potential induced
by each charged layer depends linearly on the distance from
the layer, one can notice that �dL�xi�−dR�xi�� is proportional
to the electric field at position i. Therefore, Eq. �38� takes
charge density under a large electric field into significant
account in addition to the suppression of the charge sloshing
in the bc plane in a sense by the Kerker method.59 In our
implementation, the weight factor given by Eq. �38� is com-
bined with the Kerker method59 and the residual minimiza-
tion method in a direct inversion iterative subspace �Ref. 60�
with substantial improvement.

A technical remark should also be added to avoid a local
trap problem in the SCF calculation. In systems having a
long a axis, an unphysical charge distribution, corresponding
to a large charge separation in real space, tends to be ob-
tained even after achieving the self-consistency. In this case,
the Hamiltonian of the central region C at the first SCF it-
eration, which is calculated via superposition of atomic
charge density, is far from the self-consistently converged
one, while the Hamiltonian matrix used in the calculation for
the self-energy is determined in a self-consistent manner be-
forehand. The inconsistency between the two matrices tends
to produce an unphysical charge distribution at the first SCF
iteration. Once the situation happens at the first SCF itera-
tion, in many cases the electronic structure keeps trapped
during the subsequent SCF iteration, which is a serious prob-
lem in practical applications. However, the local trap prob-
lem can be overcome by a simple scheme that the first few
SCF iterations are performed by using the conventional band
scheme and then onward the solver is switched from the
band scheme to the NEGF method. In the band-structure
calculation for the first few iterations, such an unphysical
charge distribution does not appear due to no self-energy
involved. In most cases, we find that the simple scheme
works well to avoid the local trap problem in the SCF con-
vergence.

III. NONEQUILIBRIUM STATE

A. Nonequilibrium density matrix

Based on the NEGF theory mainly developed by
Schwinger1 and Keldysh,2 the density matrix in the nonequi-
librium state of the central region is evaluated by15,16,19,20

��,Rn

�neq� = ��,Rn

�eq� + ���,Rn
. �42�

In addition to the equilibrium density matrix ��,Rn

�eq� given by
Eq. �22�, a correction term defined by

���,Rn
=

1

Vc


BZ
dk3���

�k�e−ik·Rn �43�

is taken into account, where ���
�k� is defined by

���
�k� =

1

2�


−



dEG�,C
�k� �E + i����,s1

�k� �E�G�,C
�k� �E − i���f�E� ,

�44�

with

��,s1

�k� �E� = i	
�,s1

�k� �E + i�� − 
�,s1

�k� �E − i��
 �45�

and

�f�E� = f�E − �s1
� − f�E − �s2

� . �46�

Either the left �L or right chemical potential �R, which is
lower than the other is used for the calculation of the
equilibrium density matrix in Eq. �42�. As well, in Eqs. �44�
and �46�, the chemical potentials are given by the rule that
s1=R and s2=L if �L��R and s1=L and s2=R if �R��L.
Starting from the NEGF theory, the formula 	Eq. �42�
 may
be derived by introducing two assumptions. The first as-
sumption is that the occupation of the wave functions incom-
ing from the left �right� region still obeys the Fermi-Dirac
function with the left �right� chemical potential even in the
central region. The assumption can be justified within at least
the one-particle picture since the same result can be obtained
from the Lippmann-Schwinger equation for a noninteracting
system.5,15,61 The second assumption is that in the central
region, the states in the energy regime below the lower
chemical potential is in equilibrium due to the other physical
obstacles, such as the electron-phonon26–31 and electron-
electron interactions,32–35 which are not considered explicitly
in our implementation, although the definite role of those
obstacles is obscure as for the occupation of the states. The
second assumption allows electrons to occupy in highly lo-
calized states below the lower chemical potential through the
first term of Eq. �42�. Only the states in the energy regime
between two chemical potentials are treated as in the non-
equilibrium condition in which the contribution of the wave
functions incoming from the lead with the higher chemical
potential is taken into account to form the correction term
given by Eq. �43�.

The integrand in Eq. �44� is not analytic apart from the
real axis since the integrand is a function of both Z�=E+ i��
and Z�. Thus, one cannot apply the contour integration
method that we use for the equilibrium density matrix. In-
stead, a simple rectangular quadrature scheme is applied to

EFFICIENT IMPLEMENTATION OF THE… PHYSICAL REVIEW B 81, 035116 �2010�

035116-7



the integration of Eq. �44� on the real axis with a small
imaginary part �. Since the integrand contains the difference
between two Fermi-Dirac functions, the energy range for the
integration can be effectively reduced to a narrow range that
the difference is larger than a threshold, where the threshold
of 10−12 is used in this study. With the threshold and the step
width of 0.01 �eV�, the number of meshes on the real axis is
152 for ��L−�R�=0.1 �eV� at T=300 K. The convergence
speed depends on the shape of the integrand and how large �
is employed for smearing the integrand, which will be dis-
cussed later.

B. Source-drain and gate bias voltages

The source-drain bias voltage applied to the left and right
leads is easily incorporated by adding a constant electric po-
tential Vb to the Hartree potential in the right lead region.
The effect of the bias voltage appears at three places. The
first effect is that the Hamiltonian matrix in the right region
given by Eq. �9� is replaced using Eq. �10� as

HR → HR + VbSR. �47�

This can be easily confirmed by noting that the matrix ele-
ments for the constant potential Vb is VbSR. The off-diagonal
block elements H�,CL1

�k� , H�,L1C
�k� H�,CR1

�k� , and H�,R1C
�k� , appearing

Eqs. �7� and �8�, are also replaced in the same way. The
second effect is that the chemical potential of the right lead is
replaced as

�R → �R + Vb. �48�

The treatment is made so that the first replacement can be
regarded as just shifting the origin of energy in the right lead.
The last effect is that the boundary condition in Eq. �37� is
replaced as

�VH�xNa
,G� → �VH� �xNa

,G� , �49�

where �VH� �xNa
,G� is calculated by the Fourier transforma-

tion on the bc plane for �VH at xNa
plus Vb. Since only the

difference of the bias voltages applied to the left and right
leads affects the result, one can consider the replacements on
only the right lead at the three places, as shown above. It is
noted that the replacement by Eq. �49� corresponds to adding
a linear potential ax+b to the Hartree potential in the central
region C, where a and b are determined by the boundary
conditions �VH� �xNa

,G� and �VH�x0 ,G�.
In our implementation, the gate voltage Vg�x� is treated by

adding an electric potential defined by

Vg�x� = Vg
�0� exp�− � x − xc

d
�8� , �50�

where Vg
�0� is a constant value corresponding to the gate volt-

age, xc is the center of the region C0, and d is the length of
the unit vector along a axis for the region C0. Due to the
form of Eq. �50�, the applied gate voltage affects mainly the
region C0 in the central region C. The electric potential may
resemble the potential produced by the image charges.62

C. Transmission and current

The spin-resolved transmission is evaluated by the Land-
auer formula for the noninteracting central region C con-
nected with two leads

T��E� =
1

Vc


BZ
dk3T�

�k��E� , �51�

where T�
�k��E� is the spin- and k-resolved transmission de-

fined by

T�
�k��E� = Tr	��,L1

�k� �E�G�,C
�k� �E + i����,R1

�k� �E�G�,C
�k� �E − i��
 .

�52�

Using the transmission formula, the current is evaluated by

I� =
e

h
 dET��E��f�E� . �53�

The formula can be derived by starting from a more general
formula of the current for the interacting central region C
and by replacing the involved Green functions with the non-
interacting Green functions, as shown by Meir and
Wingreen.63 We perform the integration in Eq. �53� on the
real axis with a small imaginary part � by the same way as
for the nonequilibrium density matrix of Eq. �44�.

IV. NUMERICAL RESULTS

A. Computational details

All the calculations in this study were performed by the
DFT code OPENMX.64 The PAOs centered on atomic sites are
used as basis functions.40–42 The PAO basis functions we
used, generated by a confinement scheme,40,41 are specified
by H5.5-s2, C4.5-s2p2, O5.0-s2p2d1, Fe5.0-s2p2d1,
Mg5.5-s2p2, La7.0-s3p2d1f1, Sr7.0-s3p2d1f1, and
Mn6.0-s3p2d2, where the abbreviation of basis functions,
such as C4.5-s2p2, represents that C stands for the atomic
symbol, 4.5 the cutoff radius �bohr� in the generation by the
confinement scheme, and s2p2 means the employment of
two primitive orbitals for each of s and p orbitals. Norm-
conserving pseudopotentials are used in a separable form
with multiple projectors to replace the deep core potential
into a shallow potential.56 Also, a local-density approxima-
tion �LDA� to the exchange-correlation potential is
employed,65 while a generalized gradient approximation
�GGA� �Ref. 66� is used only for calculations of the
LaMnO3 /SrMnO3 superlattice. The real-space grid tech-
niques are used with the cutoff energies of 120–200 Ry in
numerical integrations and the solution of Poisson equation
using FFT.58 In addition, the projector expansion method is
employed in the calculation of three-center integrals for the
deep neutral atom potentials.54

B. Convergence properties

The accuracy and efficiency of the implementation are
mainly determined by the evaluation of density matrix given
by Eq. �42�, which consists of two contributions: the equilib-
rium and nonequilibrium terms given by Eqs. �22� and �43�,
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respectively. In this section, we discuss the convergence
properties of the equilibrium and nonequilibrium terms in the
density matrix as a function of numerical parameters.

Since the majority part of the density matrix given by Eq.
�42� is the equilibrium contribution, let us first discuss con-
vergency of the equilibrium density matrix as a function of
poles. The absolute error in �Etot−Eself� of a carbon linear
chain is shown in Fig. 2�a� as a function of the number of
poles in order to illustrate the convergence property for the
equilibrium density matrix under zero-bias voltage, where
�Etot−Eself� can be regarded as a conventional expression of
the total energy in DFT, and the definitions of the two energy
terms Etot and Eself with the Fermi-Dirac function are given
in Appendix A. For comparison, the result calculated by a
closed contour method is also shown.16,67 One can see that
the accuracy of 10−8 eV per atom is obtained using 140,
100, and 70 poles for the electronic temperature of 300, 600,
and 1200 K, respectively, while about 400 energy points are
needed to obtain the same accuracy using the closed contour
method at 600 K.16 For most cases, we find that the conver-
gence rate is similar to the case shown in Fig. 2�a�. In gen-
eral, the number of poles to achieve the accuracy of 10−8 eV
per atom must be proportional to the inverse of T since the

interval between neighboring poles of the continued fraction
given by Eq. �25� is scaled by kBT. This fact implies that the
computational effort increases as the electronic temperature
decreases. However, we generally use electronic temperature
from 300 to 1000 K for practical calculations, which means
that the use of 100 poles is enough for practical purposes.
Therefore, it can be concluded that the most contribution of
the density matrix can be very accurately evaluated with a
small number of poles, i.e., 100.

To demonstrate the proper treatment of the boundary be-
tween the lead and the central regions in our implementation,
in Fig. 2�b� we show a comparison between the conventional
band structure and the EGF calculations with respect to DOS
of the carbon linear chain. The comparison provides a severe
test to check whether the EGF method is properly imple-
mented or not. It can be confirmed that DOS calculated by
the EGF method is nearly equivalent to that by the conven-
tional band-structure calculation, which clearly shows the
proper treatment of the boundary between the lead and the
central regions in our scheme.

As explained before, the integration of Eq. �44� required
for the evaluation of the nonequilibrium term in the density
matrix has to be performed on the real axis with a small
imaginary part because contour integration schemes may not
be applied due to the nonanalytic nature of the integrand.
The treatment might suffer from numerical instabilities in the
SCF iteration since the integrand can rapidly vary due to the
existence of poles of Green function located on the real axis.
A remedy to avoid the numerical problem is to smear the
Green function by introducing a relatively large imaginary
part.15,16,19,20

To investigate convergency of the nonequilibrium term in
the density matrix, in Fig. 3�a� we show the absolute error in
�Etot−Eself� of the same infinite carbon chain as in Fig. 2, but
under a finite bias voltage of 0.5 eV as a function of the
number of regular grid points used for the evaluation of the
nonequilibrium term in the density matrix given by Eqs. �43�
and �44�. We also tested the Gauss-Legendre quadrature for
the integration of the nonequilibrium term besides the inte-
gration using the regular grid but found that the convergence
rate of the Gauss-Legendre quadrature is rather slower than
the simple scheme possibly due to the spiky structure of the
integrand. Thus, we have decided to use the simple scheme
using the regular grid. As expected, it turns out that the num-
ber of grid points to achieve the accuracy of 10−8 eV per
atom increases as the imaginary part becomes smaller. How-
ever, the accuracy of 10−8 eV is attainable using about 100
grid points in case of the imaginary part of 0.01 eV, while a
few thousands grid points have to be used to achieve the
same accuracy for the imaginary part of 0.000 1 eV.

Although the accuracy of 10−8 eV can be achieved by
introducing the smearing scheme, however, one may con-
sider that results can be affected by the introduction of an
imaginary part. In order to find a compromise between the
accuracy and efficiency, the Mulliken population of the car-
bon linear chain under the finite bias voltage of 0.5 eV is
shown in Fig. 3�b�. We see that the use of the imaginary part
of 0.01 eV gives a result comparable to that obtained by the
use of 0.000 1 eV. Thus, the imaginary part of 0.01 eV can be
a compromise between the accuracy and efficiency in this
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FIG. 2. �Color online� �a� Absolute error in �Etot−Eself� per atom
of a linear carbon chain with a bond length of 1.4 Å under the
zero-bias voltage at electronic temperature of 300, 600, and 1200 K,
where the regions L0, R0, and C0 contain four carbon atoms, respec-
tively. For comparison, the same calculation (closed contour) using
a closed contour method �Refs. 16 and 67� is also shown for T
=600 K. The definitions of Etot and Eself are found in Appendix A.
The reference values are obtained from calculations with a large
number of poles. �b� Total DOS of the carbon linear chain, calcu-
lated by the conventional band-structure calculation �solid line� and
the EGF method �dotted line�, under the zero-bias voltage at 300 K,
where 160 poles are used for the integration of the equilibrium
density matrix. It is hard to distinguish two lines due to the nearly
equivalent results.
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case. As a result, one can find that the energy points of 200
�100 and 100 for the equilibrium and nonequilibrium density
matrices, respectively� are enough to achieve the accuracy of
10−8 eV per atom in �Etot−Eself� at 600 K. However, it
should be mentioned that a proper choice of the imaginary
part must depend on the electronic structure of systems, and
the careful consideration must be taken into account espe-
cially for a case that the spiky DOS appears in between two
chemical potentials of the leads, while for the equilibrium
part of the density matrix, the convergence property is insen-
sitive to the electronic structure.

We also note that the accurate evaluation of the density
matrix makes the SCF calculation stable even under a finite
bias voltage. In fact, for the case with the bias voltage of 0.5
V the number of the SCF iterations to achieve the residual
norm of 10−11 for the charge-density difference is 29, which
is nearly equivalent to that, 30, for the zero-bias case.

C. Interpolation of the effect by the bias voltage

Since for large-scale systems, it is very time consuming to
perform the SCF calculation at each bias voltage, here we
propose an interpolation scheme to reduce the computational
cost in the calculations by the NEGF method. The interpola-
tion scheme is performed in the following way: �i� the SCF
calculations are performed for a few bias voltages, which are
selected in the regime of the bias voltage of interest; �ii�
when the transmission and current are calculated, a linear
interpolation is made for the Hamiltonian block elements
H�,C

�k� and H�,R
�k� of the central scattering region and the right

lead, and the chemical potential �R of the right lead by

H�,C
�k� = �H�,C

�k,1� + �1 − ��H�,C
�k,2�, �54�

H�,R
�k� = �H�,R

�k,1� + �1 − ��H�,R
�k,2�, �55�

�R = ��R
�1� + �1 − ���R

�2�, �56�

where the indices 1 and 2 in the superscript mean that the
quantities are calculated or used at the corresponding bias
voltages, where the SCF calculations are performed before-
hand. Note that it is also possible to perform the interpolation
for k-independent Hamiltonian matrix elements instead of
Eqs. �54� and �55�. In general, � should range from 0 to 1 for
the moderate interpolation. A comparison between the fully
self-consistent and the interpolated results is shown with re-
spect to the current and transmission in the linear carbon
chain in Figs. 4�a� and 4�b�. In this case, the SCF calcula-
tions at three bias voltages of 0, 0.5, and 1.0 V are per-
formed, and the results at the other bias voltages are obtained
by the interpolation scheme. For comparison, we also calcu-
late the currents via the SCF calculations at all the bias volt-
ages. It is confirmed that the simple interpolation scheme
gives notably accurate results for both the calculations of the
current and transmission. Although the proper selection of
bias voltages used for the SCF calculations may depend on
systems, the result suggests that the simple scheme is very
useful to interpolate the effect of the bias voltage while keep-
ing the accuracy of the calculations.

D. Applications

1. Zigzag graphene nanoribbons

As an illustration of our implementation, we investigate
transport properties of zig-zag graphene nanoribbons
�ZGNRs� with different magnetic configurations. A charac-
teristic feature in the band structure of ZGNR is the appear-
ance of flat bands around X point near the Fermi level, re-
sulting in spin polarization of associated states located at the
zigzag edges.68,69 Thus, so far several intriguing transport
properties have been theoretically predicted especially for
ZGNRs among GNRs by focusing on the spin-polarized
edge states.11,12,70–77 For instance, it is found that ZGNRs
might exhibit an extraordinary large magnetoresistance �MR�
effect and a spin-polarized current.12

Here we focus on the current-bias voltage �I−Vb� charac-
teristic of 7- and 8-ZGNRs with two magnetic configura-
tions: ferromagnetic �FM� and antiferromagnetic �AFM�
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FIG. 3. �Color online� �a� Absolute error in �Etot−Eself� per atom
of the same linear carbon chain, as in Fig. 2, calculated by various
imaginary parts, under a finite bias voltage of 0.5 V, where the other
calculation conditions are same as for Fig. 2�b�. The number
pointed by the arrow denotes a grid spacing �eV� corresponding to
the number of grid points. The reference values are obtained from
calculations with a large number of grid points. �b� Mulliken popu-
lations in the carbon chain. The sequential numbers 1 and 12 cor-
respond to the most left- and right-hand side atoms in the central
region C, respectively.
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junctions, as shown in Figs. 5�a� and 5�b�, respectively,
where the number, 7 or 8, is the number of carbon atom in
the sublattice being across ZGNR along the lateral direction.
The odd and even cases will also be referred to as asymmet-
ric and symmetric, respectively. The extended central region
C consists of one sublattice and four unit cells, and contains
72 and 82 atoms for 7- and 8-ZGNRs, respectively. The
poles of 100 are used for the evaluation of the equilibrium
density matrix with the electronic temperature of 300 K,
while the nonequilibrium term in the density matrix is evalu-
ated using the simple quadrature method with the imaginary

part of 0.01 eV and the grid spacing of 0.02 eV. The geomet-
ric structures used are optimized under the periodic boundary
condition until the maximum force is less than 10−4 hartree/
bohr. At each bias voltage, the electronic structure of ZGNR
is self-consistently determined.

Figures 6�a� and 6�b� show the current-voltage �I−Vb�
curves for the up- and down-spin states in the FM junctions
of 7- and 8-ZGNRs. It is found that the current for 7-ZGNR
linearly depends on the bias voltage, while the current for
8-ZGNR is saturated at the bias voltage of about �0.5�. The
distinct behavior of 8-ZGNR from 7-ZGNR can be more
definitely seen in the AFM junction, as shown in Figs. 6�c�
and 6�d�. Interestingly, 8-ZGNR with the AFM junction ex-
hibits a diode behavior for the spin-resolved current. Only
the up-spin state contributes substantially to the current in
the negative bias regime. In contrary in the positive bias
regime, only the down-spin state contributes to the current. It
is worth mentioning that the effect can also be regarded as a
spin filter effect. On the other hand, the I−Vb characteristics
for 7-ZGNR are nearly equivalent to that for the FM junc-
tion. The considerable difference between 7- and 8-ZGNRs
in the I−Vb characteristics can be attributed to the symmetry
of two wave functions � and �� states around the Fermi
level. For 8-ZGNR, the wave functions of the � and ��

states are antisymmetric and symmetric with respect to the
� mirror plane, which is the midplane between two edges,
respectively, while those wave functions for 7-ZGNR are
neither symmetric nor antisymmetric. From a detailed
analysis,78 it can be concluded that the unique distinction in
the I−Vb characteristics arises from an interplay between the
symmetry of wave functions and band structures of ZGNRs.
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FIG. 4. �Color online� �a� Currents of the linear carbon chain
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scheme �dotted line�. �b� Transmission of the linear carbon chain
under a bias voltage of 0.3 V, calculated by the SCF calculations
�solid line� and the interpolation scheme �dotted line�. The imagi-
nary part of 0.01 and the grid spacing of 0.01 eV are used for the
integration of the nonequilibrium term in the density matrix. The
other calculation conditions are the same as for Fig. 2�b�.

FIG. 5. �Color online� 8-ZGNR with �a� a FM junction and �b�
an AFM junction together with the spatial distribution of the spin
density at the source-drain bias voltage Vb=0 V. The zigzag edges
are terminated by hydrogen atoms. The isosurface value of �0.002�
is used for drawing the spin density.
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In addition, we find that spin moments are reduced by apply-
ing the finite-bias voltage, as shown in Fig. 7. Since the flat
bands around X point of the minority spin state are located
about 0.25 eV above the Fermi level, the spin moments at the
zigzag edges are largely reduced by increasing the occupa-
tion of the flat bands for the minority-spin states when the
bias voltage exceeds the threshold, as shown in Fig. 7.79,80

The details of the analysis on the unique spin diode and filter
effect of ZGNRs are discussed elsewhere.78

2. Fe/MgO/Fe tunneling junction

The applicability of our implementation to bulk systems is
demonstrated by an application to a tunneling junction con-
sisting of MgO�100� layers sandwiched by iron. The magne-
totunneling junction was theoretically predicted to exhibit a
large tunneling magnetoresistance �TMR�,81 and, subse-
quently, the TMR effect has been experimentally
confirmed.82 We consider four MgO�100� layers sandwiched
by iron with the �100� surface of which atomic configuration
is shown in Fig. 8�a�, where the lattice constant of the bc
plane used is 2.866 Å, and they are 2.866 and 4.054 Å in
iron and MgO regions along the a axis, and the distance
between the MgO and iron layers is assumed to be 2.160 Å.
The four MgO�100� layers correspond to the region C0 in
Fig. 1�a�, and four Fe layers of the left and right hands cor-
respond to the regions L0 and R0, respectively. The SCF cal-
culations were performed at 1000 K under zero-bias voltage
using k points of 7�7 and 130 poles for the integration of
the equilibrium density matrix. It is found that obtaining the
SCF is much harder than the case of ZGNR discussed before
and that a careful and modest treatment for the charge mix-
ing is required.

As shown in Fig. 8�b�, the net charge of iron atoms in
the interfacial layer is positive due to the coordination to an
oxygen atom, and the reduction in electrons leads to the
increase in the magnetic moment of iron atoms at the inter-
facial layer. The increase in the magnetic moment at the
interfacial layer makes the distinction of the majority- and
minority-spin states at the Fermi energy clear, i.e., the nature
of the majority- and minority-spin states at the Fermi energy
can be assigned to s and d states, respectively. The

k-resolved transmissions at the chemical potential for the
majority- and minority-spin states for the parallel magnetic
configuration between the left and right leads are shown in
Figs. 9�a� and 9�b�, respectively. The large peak at the �
point in the majority-spin state can be attributed to the s
state, while sharp peaks around four pillars come from the d
state, as discussed in Ref. 81. Note that the position of the
sharp peaks is rotated by 45° because of the unit cell rotated
by 45° compared to that in Ref. 81. The conductances Gmaj

�p�

and Gmin
�p� , for the majority- and minority-spin states, calcu-

lated from the average transmission integrated over the first
Brillouin zone, are 11.99 and 2.82 ��−1 �m−2�, respectively,
which implies that the tunneling junction may behave as a
spin filter. The distinction in the conductance should be at-
tributed to decay properties of states in the insulating MgO
region coupled with the two states.81 For the antiparallel
magnetic configuration, the k-resolved transmission at the
chemical potential is understood as a multiplication of the
transmissions for the majority- and minority-spin states in
the parallel configuration, as shown in Fig. 9�c�. The conduc-
tance G�ap� of the antiparallel magnetic configuration is
0.34 ��−1 �m−2�, which is smaller than those of the parallel
case. By defining TMR= �Gmaj

�p� +Gmin
�p� −2G�ap�� / �2G�ap��, we

obtain TMR of 2082%, which is compared to 3700% for a
five layer MgO case reported in Ref. 83.

3. LaMnO3 ÕSrMnO3 superlattice

When the transmission of a system with the periodicity
along the a axis, as well as the periodicity of the bc plane, is
evaluated under zero-bias voltage, it can be easily obtained
by making use of the Hamiltonian calculated by the conven-
tional band-structure calculation without employing the
Green function method described in the paper. This scheme
enables us to explore transport properties for a wide variety
of possible geometric and magnetic structures with a low
computational cost and, thereby, can be very useful for many
materials such as superlattice structures. Once the Hamil-
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tonian and overlap matrices are obtained from the conven-
tional band-structure calculation for the periodic structure,
the transmission is evaluated by Eq. �51�, where all the
necessary information to evaluate Eq. �51� can be recon-
structed by the result of the band-structure calculation. As an
example of the scheme, we calculate the conductance of a
�LaMnO3� / �SrMnO3� superlattice with four different mag-
netic structures, i.e., ferromagnetic, A-type, G-type, and
C-type antiferromagnetic configurations of Mn sites.84,85

In recent years, it has been found experimentally that
the superlattice structures, consisting of LaMnO3 and
SrMnO3 layers, exhibit a metal-insulator transition in terms
of the layer thickness.84 Bhattacharya et al. fabricated
�LaMnO3�2n / �SrMnO3�n superlattices on a SrTiO3 �001� sub-
strate and measured the in-plane resistivity as a function of
temperature.84 The resistivity measurement indicates that the
superlattices are metallic and insulating for n�2 and n�3,

respectively. On the other hand, the �LaMnO3�2 / �SrMnO3�2
superlattices fabricated on the same substrate by Nakano et
al. exhibit a sample dependence in the resistivity measure-
ment, i.e., one of the three samples is metallic and the others
are insulating.85 They argued that the metallic behavior ob-
served in the one sample may be attributed to a certain struc-
tural incompleteness in the superlattice structure and that the
ideal superlattice should become insulating based on their
experimental results. A theoretical model calculation for the
�LaMnO3�2n / �SrMnO3�n superlattices suggests that the
metal-insulator transition at n=3 can be explained by the
existence of the G-type antiferromagnetic barrier in the
SrMnO3 layers sandwiched by the LaMnO3 layers with the
ferromagnetic configuration.86 Since the analysis by Nakano
et al. suggests that the charge transfer between the LaMnO3
and SrMnO3 layers is rather localized in the vicinity of the
interface,85 the model should be applicable to the case of
�LaMnO3�2 / �SrMnO3�2 without significantly depending on
the ratio between the thicknesses of �LaMnO3� and
�SrMnO3� layers, indicating that �LaMnO3�2 / �SrMnO3�2 is
metallic. However, the naive consideration evidently contra-
dicts the experimental result.85

As a first step toward comprehensive understanding of
transport properties of the superlattice structures by the first-
principle calculations, we consider the simplest superlattice,
i.e., �LaMnO3� / �SrMnO3�. In the calculations, the in-plane
lattice constant is fixed to be 3.905 Å, which is equivalent to
that of the SrTiO3 substrate. The out-of-plane lattice constant
is assumed to be 7.735 Å since those are experimentally
determined to be 3.959 Å and 3.776 Å for the LaMnO3 and
the SrMnO3 layers, respectively, grown on the SrTiO3 sub-
strate and the average out-of-plane lattice constant for the
superlattices is nearly equivalent to the average of the two
values.85 With those lattice constants, internal structural pa-
rameters are optimized for each magnetic configuration with-
out any constraint until the maximum force is less than 2.0
�10−3 hartree /bohr. The optimized structure for the ferro-
magnetic configuration is shown in Fig. 10�a�. It is found
that the position of oxygen atoms is largely distorted due to
the different ionic radii between La and Sr atoms, showing
that Mn atoms are located in the center of each distorted
octahedron. Also, bond angles of Mn-O-Mn are found to be
167.4 and 161.6 �° � for the in-plane and out-of-plane, re-
spectively. The total energies relative to the ferromagnetic
configuration are listed in Table I. The calculated ground
state is the ferromagnetic configuration, and the A-type anti-
ferromagnetic configuration lies just above 5 meV per for-
mula unit. It may be considered that the nearly degeneracy
between the two configurations corresponds to the neighbor-
hood of the boundary at x=0.5 and c /a=1 in the phase dia-
gram for the tetragonal La1−xSrxMnO3.87 The two configura-
tions have both a metallic DOS, while the ferromagnetic
configuration is half-metallic, as shown in Figs. 10�b� and
10�c�, reflecting the large in-plane and out-of-plane conduc-
tances, as shown in Table I. From a detailed analysis �not
shown� of DOSs, we see that the electronic states at the
Fermi level are composed of eg orbitals of Mn atoms and p
orbitals of oxygen atoms. Also, the Mulliken population
analysis �not shown� suggests that the charge state of Mn
atoms in the superlattice is in between those in the LaMnO3
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potential for �a� the majority-spin state of the parallel configuration,
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and SrMnO3 bulks. This implies that the metallic band struc-
tures are induced by partial filling of the eg bands. Since the
bond angle of Mn-O-Mn for the out of plane is slightly
acute, therefore, this may be attributed to the reduction in the
conductance of the ferromagnetic state in the out of plane, as
shown in Table I. A systematic study for the thicker cases
and the effect of Coulomb interaction88 in the eg orbitals are
highly desirable, and the details will be discussed elsewhere.

E. Parallelization

The computation in the NEGF method can be parallelized
in many aspects such as k points, energies in the complex
plane at which the Green functions are evaluated, spin index,
matrix multiplications, and calculation of the inverse of the
matrix. Here we demonstrate a good scalability of the NEGF
in the parallel computation by a hybrid scheme using the
message passing interface �MPI� and OPENMP, which are
used for internodes and intranode parallelizations, respec-
tively. The Green function defined by Eq. �6� is specified by
the k point, energy Z, and spin index �. Since the calculation
of the Green function specified by each set of three indices
can be independently performed without any communication
among the nodes, we parallelize triple loops corresponding
to the three indices using MPI. Each node only has to calcu-
late the Green functions for an allocated domain of the set of
indices and partly sum up Eq. �26� or Eq. �44� in a dis-
cretized form. After all the calculations finish, a global sum-
mation among the nodes is required to complete the calcula-
tion of Eq. �26� or Eq. �44�, which, in most cases, is a very
small fraction of the computational time even including the
MPI communication among the nodes. Thus, the reduction in
scalability for the parallelization of the three indices is
mainly due to imbalance in the allocation of the domain of
the set of indices. The imbalance can happen in the case that
the number of combination for the three indices and the
number of processes in the MPI parallelization are relatively
small and large, respectively. In addition to the three indices,
one may notice that the matrix multiplications and the calcu-
lation of the matrix inverse can be parallelized, which are
situated in the inner loops of the three indices. The evalua-
tion of the central Green function given by Eq. �6�, the sur-
face Green functions given by Eq. �21�, and the self-energies
given by Eqs. �7� and �8� are mainly performed by the matrix
multiplications and the calculation of the matrix inverse. We
parallelize these two computations using OPENMP in one
node. Since the memory is shared by threads in the node, the
communication of the data is not required unlike the MPI
parallelization. However, the conflict in the data access to the
memory can reduce the scalability in the OPENMP paralleliza-
tion. As a whole, in our implementation, the k point, energy
Z, and spin index � are parallelized by MPI, and the matrix
multiplications and the calculation of the matrix inverse are
parallelized by OPENMP.

In Fig. 11, we show the speed-up ratio in the elapsed time
for the evaluation of the density matrix of 8-ZGNR under a
finite bias voltage of 0.5 eV. The geometric and magnetic
structures and computational conditions for 8-ZGNR are the
same as before. The energy points of 197 �101 and 96 for the
equilibrium and nonequilibrium terms, respectively� are used
for the evaluation of the density matrix. Only the � point is
employed for the k-point sampling, and the spin-polarized
calculation is performed. Thus, the combination of 394 for
the three indices is parallelized by MPI. It is found that the
speed-up ratio of the flat MPI parallelization, corresponding
to 1 thread, reasonably scales up to 64 processes. Further-
more, it can be seen that the hybrid parallelization, corre-
sponding to 2 and 4 threads, largely improves the speed-up
ratio. By fully using 64 quad core processors, corresponding

TABLE I. Total energy �meV� per formula unit,
LaMnO3 /SrMnO3, and conductance G��−1 �m−2� of the
�LaMnO3� / �SrMnO3� superlattice with four different magnetic con-
figurations, i.e., ferromagnetic �F�, A-type �A�, G-type �G�, and
C-type �C� antiferromagnetic configurations of Mn sites. The total
energy is measured relative to that of the ferromagnetic configura-
tion. G↑,in is the in-plane conductance for the up-spin state, and the
others are construed in the similar way. For the conductance calcu-
lations, k points of 60�60 were used.

F A C G

Energy 0 5.0 163.8 248.2

G↑,in 2262 1433 1169 1646

G↓,in 1.82�10−2 1425 1105 1646

G↑,out 1741 664 1127 678

G↓,out 6.43�10−3 655 1128 677
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FIG. 10. �Color online� �a� Optimized geometric structure of
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to 64 processes and 4 threads, the speed-up ratio is about
140, demonstrating the good scalability of the NEGF
method.

V. CONCLUSIONS

We have presented an efficient and accurate implementa-
tion of the NEGF method for electronic transport calcula-
tions in combination with DFT using pseudoatomic orbitals
and pseudopotentials. In the implementation, we have devel-
oped accurate methods for the evaluation of the density ma-
trix and the treatment of the boundary between the scattering
region and the leads.

A contour integration method with a continued fraction
representation of the Fermi-Dirac function has been success-
fully applied for the evaluation of the equilibrium term in the
density matrix, which evidently outperforms the previous
method,16 while a simple quadrature scheme on the real axis
with a small imaginary part is employed for that for the
nonequilibrium term in the density matrix. It has been dem-
onstrated by numerical calculations that the accuracy of
10−8 eV per atom in �Etot−Eself� is attainable using the en-
ergy points of 200 in the complex plane even under a finite
bias voltage of 0.5 V at 600 K. However, the evaluation of
the nonequilibrium density matrix still requires a careful
treatment, where the pole structure of the Green functions
has to be smeared by introducing a finite imaginary part. The
numerical calculations suggest that the number of energy
points required for the convergence can be largely reduced
by introducing the imaginary part of 0.01 eV without largely
changing the calculated results in a practical sense. We also
note that the accurate evaluation of the density matrix pro-
vides another advantage that the SCF calculations even un-

der a finite bias voltage smoothly converge in a similar fash-
ion as the conventional band-structure calculation does.

We have also developed an efficient method for calculat-
ing the Hartree potential by a combination of the two-
dimensional FFT and a finite difference method without any
ambiguity in reproducing the boundary conditions. In addi-
tion, a careful evaluation of the charge density near the
boundary between the scattering region and the leads is pre-
sented in order to avoid the spurious scattering accompanied
by the inaccurate construction of the charge density. The
proper treatment for the charge evaluation in our implemen-
tation can definitely be verified by a comparison between the
conventional band-structure calculation and the EGF method
with respect to the DOS of the carbon chain.

Finally, we have demonstrated the applicability of our
implementation by calculations of spin-resolved I−Vb char-
acteristics of ZGNRs, showing that the I−Vb characteristics
depend on the symmetry of ZGNR, and that the symmetric
ZGNR exhibits a unique spin diode and filter effect. Also, the
applicability of our implementation to bulk systems is dem-
onstrated by applications to a Fe/MgO/Fe tunneling junction
and a LaMnO3 /SrMnO3 superlattice. Based on the above
discussions and the good parallel efficiency in the hybrid
parallelization shown in the study, it is concluded that our
implementation of the NEGF method can be applicable to
challenging problems related to large-scale systems and can
be a starting point, apart from numerical spurious effects, to
include many-body effects beyond the one-particle picture in
the electronic transport.
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APPENDIX A: AN ENERGY FUNCTIONAL
FOR THE EQUILIBRIUM STATE

Let us introduce the following density functional, which
may define the total energy of the central region C being a
part of the extended system at equilibrium with a common
chemical potential �

Etot = Ekin + Eext + Eee + Exc + Eself, �A1�

where Eext is the Coulomb interaction energy between elec-
trons and the external potential of the central region C given
by

Eext = dr3n�r�vext�r� , �A2�

and Eee is the Hartree energy defined by

Eee =
1

2
  dr3dr�3 	n�r� + n��r�
	n�r�� + n��r��


�r − r��
,

�A3�

where n� is an additional electron density, which arises from
the boundary condition between the central and lead regions.
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FIG. 11. �Color online� Speed-up ratio in the parallel computa-
tion of the calculation of the density matrix for the FM junction of
8-ZGNR by a hybrid scheme using MPI and OPENMP. The speed-up
ratio is defined by T1 /Tp, where T1 and Tp are the elapsed times by
a single core and a parallel calculations. The cores used in the MPI
and OPENMP parallelizations are called process and thread, respec-
tively. The parallel calculations were performed on a Cray XT5
machine consisting of AMD opteron quad core processors �2.3
GHz�. In the benchmark calculations, the number of processes is
taken to be equivalent to that of processors. Therefore, in the par-
allelization using 1 or 2 threads, 3 or 2 cores are idle in a quad core
processor.
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In fact, the additional electron density n� can be obtained by
back Fourier transforming Eq. �37� divided by 4���x�2

within our treatment. The last term of Eq. �A1�, Eself, is a
self-energy density functional, which may correspond to the
energy contribution from the self-energy due to the semi-
infinite leads, given by

Eself = Tr�−
2

�
Im

−

�

dEGC�E+���E�� , �A4�

with

��E� = 
�E+� − E
�
�E+�

�E
, �A5�

where E+�E+ i0+, the factor of 2 is due to the spin multi-
plicity, and the self-energy 
 is the sum of the self-energies
arising from the left and right leads. Although we neglect the
spin and k dependency on the formulation for the simplicity
throughout Appendixes A and B, its generalization with the
dependency is straightforward. The kinetic energy Ekin can
be evaluated by Eq. �6� as the band energy Eband minus
double counting corrections as follows:

Ekin = Tr�−
2

�
Im

−

�

dEGC�E+�HC,kin�
= Eband − dr3n�r�veff�r�

− Tr�−
2

�
Im

−

�

dEGC�E+�
�E+�� , �A6�

where Eband is defined by

Eband = Tr�−
2

�
Im

−

�

dEEGC�E+�SC� . �A7�

It is noted that the last term in Eq. �A6� cancels the contri-
bution from the first term in Eq. �A5�. The effective potential
veff in the second term of Eq. �A6� will be defined later. Also,
the exchange-correlation energy Exc in Eq. �A1� is consid-
ered to be a density functional, such as LDA and GGA,
evaluated using electron density n in the central region C.

We now consider the variation of the energy Etot with
respect to n. The variations of Eext and Eee are simply given
by

�	Eext
 = dr3�n�r�vext�r� �A8�

and

�	Eee
 = dr3�n�r� dr�3n�r�� + n��r��
�r − r��

. �A9�

By noting the Dyson equation and GCSCGC=−
�GC

�E
+GC

�

�E GC, which are both derived from Eq. �6�, and

Tr�AB�=Tr�BA�, the variation of Eband is given by two con-
tributions,

�	Eband
 = dr3�n�r�Tr�−
2

�
Im

−

�

dE

� EGC�E+�
�Hv

�n�r�
GC�E+�SC�

= dr3�n�r�Tr�−
2

�
Im

−

�

dE

� E�− �Hv

�n�r�
� �GC�E+�

�E �
+ dr3�n�r�Tr�−

2

�
Im

−

�

dE

� EGC�E+�
�Hv

�n�r�
GC�E+�

�
�E+�
�E � . �A10�

The trace in the first term of Eq. �A10� can be transformed
by considering a partial integral and assuming the system to
be insulating as follows:

Tr�−
2

�
Im

−

�

dEE�− �Hv

�n�r�
� �GC�E+�

�E �
= − Tr�−

2

�
Im

−

�

dE�− �Hv

�n�r�
�GC�E+��

= dr�3n�r��
�veff�r��

�n�r�
. �A11�

It is also noted that the second term in Eq. �A10� cancels the
variation in the contribution from the second term in Eq.
�A5�. The variation in the second term in Eq. �A6� is easily
found as

�� dr3n�r�veff�r�� = dr3�n�r�veff�r�

+ dr3�n�r� dr�3n�r��
�veff�r��

�n�r�
.

�A12�

Thus, it turns out using Eqs. �A8�–�A12� that the variation of
the energy Etot is given by

�	Etot
 = dr3�n�r��− veff�r� + vext�r�

+ dr�3n�r�� + n��r��
�r − r��

+
�Exc

�n�r�� . �A13�

Letting �	Etot
 be zero so that the variation of the energy Etot
can be always zero with respect to n, we obtain a form of the
effective potential
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veff�r� = vext�r� + dr�3n�r�� + n��r��
�r − r��

+
�Exc

�n�r�
.

�A14�

It is found that the effective potential takes the same form as
in the Kohn-Sham method.44 The fact implies that the self-
consistent solution of the Green function under the zero-bias
condition may correspond to the minimization of the energy
functional defined by Eq. �A1�, since in practice the Green
function defined by Eq. �6� is calculated using the effective
potential given by Eq. �A14�, as a consequence of combining
the NEGF method with DFT.

The generalization of the functional to the metallic case
with a finite temperature and the nonequilibrium state might
be an important direction in the future study so that forces on
atoms can be variationally calculated from the functional
since the existence of a variational functional has been re-
cently suggested for the nonequilibrium steady state.89–91

APPENDIX B: ENERGY DENSITY MATRIX

The equilibrium energy density matrix e�,Rn

�eq� , where one of
the associated basis orbitals is in the central cell and the
other is in the cell denoted by Rn, is calculated using the
contour integration method applied to the equilibrium den-
sity matrix as follows:

e�,Rn

�eq� =
1

Vc


BZ
dk3�e�,+

�k� − e�,−
�k� �e−ik·Rn, �B1�

with

e�,�
�k� =

i

2�


−



dEEG�,C
�k� �E � i0+�f�E − �� . �B2�

If the Hamiltonian and overlap matrices are k independent,
as well as Eq. �22�, Eq. �B2� can be simplified to

e�,0 = Im�−
1

�


−



dEEG�,C�E + i0+�f�E − ��� . �B3�

For the general case with the k-dependent Hamiltonian and
overlap matrices, Eq. �B2� is evaluated by the contour inte-

gration method with the special form of Fermi-Dirac func-
tion given by Eq. �25� as follows:

e�,�
�k� = �

1

4
��

�k,1� �
1

2
�0��

�k,0� �
1

	
�
p=1

Np

G�,C
�k� ��p�Rp�p,

�B4�

with

�0 =
2

	
�
p=1

Np

Rp, �B5�

where ��
�k,1� is the first-order moment of the Green function

G�,C
�k� . In Eq. �B4�, a term, i

2� limR→ R��
�k,0�, which appears

mutually for e�,�
�k� , is omitted since the diverging terms cancel

each other out in Eq. �B1�. By making use of the moment
representation of the Green function,39 the following simul-
taneous linear equation is derived for the zero- and first-order
moments:

�1 z0
−1

1 z1
−1 ����

�k,0�

��
�k,1� � = �z0G�,C

�k� �z0�
z1G�,C

�k� �z1�
� . �B6�

Letting z0 and z1 be iR and −R, respectively, the zero- and
first-order moments can be evaluated by

��
�k,0� =

R

1 − i
	G�,C

�k� �iR� − G�,C
�k� �− R�
 , �B7�

��
�k,1� =

iR2

1 + i
	iG�,C

�k� �iR� + G�,C
�k� �− R�
 , �B8�

where R is a large real number so that the higher-order mo-
ments can be neglected.

For the nonequilibrium Green function, the nonequilib-
rium contribution �e� in the energy density matrix e�

�neq� can
be calculated using the simple quadrature scheme in the
same way as for the nonequilibrium term in the density ma-
trix.
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