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Abstract

We propose a new method for the numerical evaluation of the spherical Bessel
transform. A formula is derived for the transform by using an integral represen-
tation of the spherical Bessel function and by changing the integration variable.
The resultant algorithm consists of a set of the Fourier transforms and numerical
integrations over a linearly spaced grid of variable k in Fourier space. Because
the k-dependence appears in the upper limit of the integration range, the in-
tegrations can be performed effectively in a recurrence formula. Several types
of atomic orbital functions are transformed with the proposed method to illus-
trate its accuracy and efficiency, demonstrating its applicability for transforms
of general order with high accuracy.

Key words: Hankel transforms, spherical Bessel functions, atomic orbitals
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1. Introduction

Numerical evaluation of integrals containing the spherical Bessel function
is of importance in many fields of computational science and engineering since
the spherical Bessel function is often used as the eigenfunction for spherical
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coordinate systems. The integrals are known as the spherical Bessel transform
(SBT) which is classified into a more general family of the Hankel or Fourier-
Bessel transforms. The SBT is involved in many physical problems such as
the scattering in atomic or nuclear systems [1, 2], the simulation of the cosmic
microwave background [3], and the interaction of electrons in molecules and
crystals [4, 5].

Several computational methods have been developed for the Hankel trans-
forms [6, 7, 8]. However, not many of them can be applied for SBT. There have
been proposed three different approaches for SBT for general order: (a) recast-
ing the transform integral as a convolution integral by changing the coordinate
variables [9, 10, 11], (b) expansion in terms of a series of Fourier cosine and
sine transforms by the trigonometric expansion of the spherical Bessel function
[12], and (c) the discrete Bessel transform method which describes SBT as an
orthogonal transform [13]. The approach (a) is quite fast since it utilizes the
fast Fourier transform (FFT) algorithm. The computation time actually scales
as N log2 N , where N is the number of quadrature points. It, however, has a
major drawback caused by the logarithmic grid that almost all the grid points
are located in close proximity of the origin. The computation time of the ap-
proach (b) which also uses FFT scales as (ℓ+1)N log2 N , where ℓ is the order of
transform. Therefore, it becomes slower for the higher order transform. In ad-
dition to that, since it requires the integrand to be multiplied by inverse powers
of the radial coordinate, the high order transforms may become unstable. The
computation time of the approach (c) scales as N2. The quadrature points are
located at each zero of the spherical Bessel function. The optimized selection
of the quadrature points enables us to use a small number of N while keeping
the accuracy of the computation. However, when consecutive transforms with
different orders are required, it may become a minor trouble that the optimized
quadrature points differ depending on the order of transform.

In this paper, we propose a new method for the numerical SBT which uses
a linear coordinate grid. The transform is decomposed into the Fourier trans-
forms and the numerical integrations which can be evaluated recursively. The
computation time for the present method scales as N log2 N with overhead for
the numerical integration which scales as N . The linear coordinate grid prevents
us from troubles caused by the non-uniform or order-dependent grid points. If
the considered problem requires to transform a function with various orders,
the present method has further the advantage that the results of the most time
consuming calculations (i.e. the Fourier transforms and the integrations) for a
transform with a certain order ℓ can also be used for transforms with any order
less than ℓ.
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2. Formulation

We are interested in the ℓ-th order SBT of a function f(r) which is defined
as follows:

f̃ℓ(k) =

∫ ∞

0

jℓ(kr)f(r)r2 dr, (1)

where jℓ(z) is the spherical Bessel function of the first kind. The integral rep-
resentation of the spherical Bessel function is given by

jℓ(z) =
1

2iℓ

∫ 1

−1

eiztPℓ(t) dt, (2)

where Pℓ(t) is the Legendre polynomials

P2n(x) =
n

∑

j=0

(−1)n−j (2n + 2j − 1)!!

(2j)!(2n − 2j)!!
x2j , (3)

P2n+1(x) =
n

∑

j=0

(−1)n−j (2n + 2j + 1)!!

(2j + 1)!(2n − 2j)!!
x2j+1. (4)

Here, n!! is the double factorial

n!! = n(n − 2)(n − 4) · · · (5)

with an exceptional definition that (−1)!! = (0)!! = 1. By substituting Eq. (2)
into Eq. (1), and using the parity property Pℓ(−t) = (−1)ℓPℓ(t), the transform
is rewritten as follows:

f̃ℓ(k) =

∫ ∞

0

jℓ(kr)f(r)r2 dr

=
1

2iℓ

∫ 1

−1

dt Pℓ(t)

∫ ∞

0

dr eikrtf(r)r2

=
1

2iℓ

[
∫ 1

0

dt Pℓ(t)

∫ ∞

0

dr eikrtf(r)r2

+

∫ 1

0

dt Pℓ(−t)

∫ ∞

0

dr e−ikrtf(r)r2

]

=
1

2iℓ

∫ 1

0

dt Pℓ(t)

∫ ∞

0

dr
(

eikrt + (−1)ℓe−ikrt
)

f(r)r2. (6)

Now, we change the variables as t′ = tk, and it becomes

f̃ℓ(k) =
(−1)⌊ℓ/2⌋

k

∫ k

0

dt′Pℓ(t
′/k)F(ℓ)(t

′), (7)
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where F(ℓ)(t) is the Fourier cosine/sine transform of f(r)r2,

F(ℓ)(t) ≡











∫ ∞

0

dr cos(tr)f(r)r2 , ℓ is even,
∫ ∞

0

dr sin(tr)f(r)r2 , ℓ is odd,
(8)

and ⌊x⌋ is the largest integer that does not exceed x. Finally, by expanding
the Legendre polynomials, the transform is decomposed into a sum of definite
integrals In(k)

f̃2n(k) =

n
∑

j=0

(−1)j (2n + 2j − 1)!!

(2j)!(2n − 2j)!!
I2j(k), (9)

f̃2n+1(k) =

n
∑

j=0

(−1)j (2n + 2j + 1)!!

(2j + 1)!(2n − 2j)!!
I2j+1(k), (10)

where In(k) is given by

In(k) =
1

kn+1

∫ k

0

dt tnF(n)(t). (11)

Since the integrals In(k) appearing in Eqs. (9) and (10) have the same
parity as the order of transform ℓ, either the Fourier cosine or sine transform is
required to be performed, for given ℓ. In our implementation, as explained later,
at most two more Fourier transforms are required to be performed to evaluate
the derivatives of F(n)(t). Therefore, regardless of the order of transform, only
three Fourier transforms are required. On the other hand, since the integrals
In(k) depend on the order of transform through tn terms, a number of ℓ/2 + 1
different integrals are required for the summation in Eqs. (9) and (10). Even
so, however, this does not increase the computational cost because k does not
appear in the integrand of Eq. (11) and thus the computation cost for In(k)
scales as N , rather than as N2.

3. Implementation

In order to avoid problems arising from 1/kn+1 at the origin, we define the
r- and k-grid points at half-interval shifted positions as follows:

rj = (j + 1/2)∆r (j = 0, 1, . . .N − 1), (12)

km = (m + 1/2)∆k (m = 0, 1, . . .N − 1). (13)

At each point of km, the integral In is divided into its segments

In(km) =
1

kn+1
m

m
∑

m′=0

Tn,m′, (14)
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where the segments are defined as

Tn,0 ≡

∫ k0

0

dt tnF(n)(t), (15)

Tn,m′ ≡

∫ k
m

′

k
m

′
−1

dt tnF(n)(t) (0 < m′ < N). (16)

By defining the sum of the segments as Sn,m ≡
∑m

m′=0 Tn,m′ , the following
simple recurrence formula is obtained:

Sn,m = Sn,m−1 + Tn,m, (17)

In(km) =
Sn,m

kn+1
m

. (18)

Therefore, the evaluation of the integral is accomplished for all the k-grid points
through a summation of segments Tn,m′ , where, at each step of the summation,
the subtotal Sn,m divided by kn+1

m gives In(km).
Each segment is evaluated by locally interpolating F(n)(t) with a polynomial

curve. Since no grid point is available in between the both ends of the integration
range, the derivatives of F(n)(t) are also required to interpolate with higher order
polynomials. By noting that only the trigonometric functions depend on t in the
integrand of (8), the derivatives and second derivatives are obtained analytically
as follows:

F ′
(n)(t) =











−

∫ ∞

0

dr sin(tr)f(r)r3 , n is even,
∫ ∞

0

dr cos(tr)f(r)r3 , n is odd,
(19)

F ′′
(n)(t) =











−

∫ ∞

0

dr cos(tr)f(r)r4 , n is even,

−

∫ ∞

0

dr sin(tr)f(r)r4 , n is odd.
(20)

By interpolating F(n)(t) with a P -th order polynomial, the integral segments
are given by

Tn,m′ ≈

∫ k
m

′

k
m

′
−1

dt tn
P

∑

ξ=0

cξt
ξ

=

P
∑

ξ=0

cξ

n + ξ + 1

(

kn+ξ+1
m′ − kn+ξ+1

m′−1

)

, (21)

where the coefficients cξ are determined from the values and derivatives of
F(n)(t) at t = km′ and t = km′−1 (see Appendix A). We have performed the
interpolation with linear (P = 1), cubic (P = 3), and quintic (P = 5) polynomi-
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als. Since a higher order interpolation suffers more severely from the arithmetic
errors, interpolations with a polynomial of order P > 5 have not been tested.

To summarize, the present method computes the transform of a function
f(r) with the order ℓ via the following steps:

• Fourier cosine/sine transforms of f(r) multiplied by a power of r (Eqs.
(8), (19), and (20)).

• Evaluation of the integral segments Tn,m′ by the piecewise polynomial
interpolation. (Eq. (21)).

• Evaluation of In through the summation of Tn,m′ (Eqs. (17) and (18)).

• Weighted summation of In to give the transformed function f̃ℓ(k) (Eqs.
(9) and (10)).

The order of transform explicitly appears only in the final step. Therefore, once
a transform with an order ℓ is performed, then one can also perform another
transform with another order ℓ′ < ℓ by repeating only the final step and skipping
the others. The computation cost for the first step is p×N log2 N , where p is the
required number of the Fourier transforms. If the quintic interpolation is used
and a transform with one specific order is required, p = 3, as mentioned before,
while p = 6 if transforms with various orders are required. The computation cost
for the second and third steps scales as N because of the use of the recurrence
formula. It is, however, multiplied by the overhead due to the polynomial
interpolation which depends on the order of interpolation P . The computation
cost for the final step is (ℓ/2 + 1)N .

4. Computation results

The present method has been applied in transforming the atomic orbital
wave functions which are used in quantum chemistry and condensed matter
physics. Three types of atomic orbitals have been examined: the Gaussian-
type orbital (GTO), the Slater-type orbital (STO), and the numerically defined
pseudo-atomic orbital (PAO) functions. The first two functions are good ex-
amples to investigate in detail the numerical error accompanied by the present
method since the exact form of the transformed function is available, while
the PAO function, being strictly localized within a certain radius, is another
example to check the applicability of the method for non-analytic functions.

The normalized GTO function in spherical coordinate is defined as follows:

χGTO
ℓ (r) = Nℓ rℓe−ζr2

, (22)

where the normalization factor is given by

NGTO
ℓ =

(

1

2πζ

)1/4
√

(4ζ)ℓ+2

(2ℓ + 1)!!
. (23)
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The corresponding transformed function is

χ̃GTO
ℓ (r) =

∫ ∞

0

jℓ(kr)χGTO
ℓ (r)r2 dr

= NGTO
ℓ

√

π

4ζ

(

1

2ζ

)ℓ+1

kℓe−k2/4ζ . (24)

Figure 1 (a) shows the the numerical error in the present method in the 0th-
order transform of the GTO function, where the integral segments Tn,m′ have
been evaluated by interpolating F(n)(t) with the linear (solid line), cubic (dashed
line), and quintic (dash-dotted line) polynomials. The parameters used in the
calculation are as follows: the exponent of GTO ζ = 1, the number of grid points
N = 128, and the maximum value of r-grid rmax = 20. It is clearly observed that
the error is reduced quickly as the order of interpolation polynomial increases,
and that the quintic polynomial gives a sufficiently accurate result. In Fig. 1
(b), the numerical error for the 15th-order transform of GTO is shown, where
the same parameters as the previous calculation and the quintic polynomial
interpolation is used. Even in such a high order transform, the error remains
small. This implies that the numerical error comes mainly from the integration
of the segments while the possible rounding-off error in Eqs. (9), (10), and (11)
is actually negligible unlike in the approach (b) referred in the introduction of
this paper [12].

Since the numerical error in the integration of a segment remains in the
summation in Eq. (14), the numerical error of the segments in the small-k
region also contributes to the error in the large-k region. This explains why the
damping of the error at large-k region is so slow in Fig. 1 (a). A downward
summation is effective to reduce this error. In Fig. 2, the numerical error
in the 0th-order transform of GTO is plotted, where the summation of the
segments are performed upward (solid line) and downward (dashed line). In
the downward summation, the numerical error in the large-k region becomes
much smaller, while, in the small-k region, the error becomes larger because of
the accumulation of the error from the large-k region. Therefore, by connecting
the results of the upward and downward summations at a certain k point (for
example, k = 5), accurate results can be obtained in both small- and large-k
regions.

So far, the transforms have been performed where the order of transform ℓ
and the order of the GTO function ℓ′ are equivalent. In Fig. 3, the numerical
error in the transform with the order ℓ = 1 for the GTO function whose order
is ℓ′ = 0 is plotted with a variety of grid spacings in real space. It is found
that the error (solid line) is larger than that of the case ℓ = ℓ′ = 0 calculated
with the same condition (dash-dotted line in Fig. 1 (a)). The decrease of the
error by smaller grid spacing implies that fine grid spacing is necessary for the
accurate sine transform in Eq. (8) since the GTO function of the order ℓ′ = 0
has a finite value at r = 0 while the spherical Bessel function of the order ℓ = 1
vanishes proportionally to r. The different behaviors near the origin results in
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another undesirable fact that the transformed function in Fourier space has a
very long tail. In the case considered here, the analytic form of the SBT of the
GTO function is given as

∫ ∞

0

j1(kr)e−r2

r2dr =

(

1

2
+

1

k2

)

D(k/2) −
1

2k
, (25)

where D(x) is the Dawson’s integral [14] which is defined as

D(x) ≡ e−x2

∫ x

0

et2dt. (26)

From the asymptotic form of the Dawson’s integral, the SBT of the GTO func-
tion is known to behave as

∫ ∞

0

j1(kr)e−r2

r2dr ≈
1

k3
, (27)

when k is large. Therefore, in general, a wide range of k-grid has to be employed
where the orders of transform and the function are not equivalent.

In quantum chemistry, the STO wave functions are often used as the basis
functions for the molecular orbitals. The radial part of the STO functions is
given by

χSTO
ℓ (r) = NSTO

ℓ rℓe−ζr, (28)

where the normalization factor is

NSTO
ℓ = (2ζ)ℓ+1

√

2ζ

(2ℓ + 2)!!
. (29)

The corresponding transformed function is given as

χ̃STO
ℓ (k) = NSTO

ℓ

2ζ

(ζ2 + k2)2

(

2k

ζ2 + k2

)ℓ

. (30)

In Fig. 4, plotted is the numerical error for the 0th- and 15th-order transforms
of STO. The parameters used in the calculations are as follows: the number of
grid points N = 256 and the maximum value of the r-grid rmax = 20 (solid line
in Fig. 4 (a)); N = 2048 and rmax = 30 (dashed line in Fig. 4 (a)); N = 256
and rmax = 80 (solid line in Fig. 4 (b)); N = 1024 and rmax = 600 (dashed line
in Fig. 4 (b)). The exponent of STO is ζ = 1 for all the calculations. There are
two kinds of sources for the numerical error in the SBT for STO: the cusp at
the origin and the long tail of STO, and they are illustrated in Fig. 4. The use
of the fine grid by increasing N reduces the error as shown in Fig. 4 (a), which
implies the requirement of a fine grid near the cusp for the accurate integration
in Eq. (8). On the other hand, the error is reduced by using the wide range of
r-grid as shown in Fig. 4 (b) because of the long tail of STO (ℓ = 15).
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In the electronic structure calculations based on the density functional theory
(DFT), the non-analytic atomic orbitals are often used as well as the analytic
functions such as the GTO and STO functions. The PAO function is one of those
non-analytic basis functions and used in many O(N) DFT calculation methods.
A PAO function is calculated by solving the atomic Kohn-Sham equation with
confinement pseudopotentials [15]. Figure 5 (a) shows the PAO functions of the
1s and 3d states of an oxygen atom, where the confinement radius is rc = 4.5 a.u.
The corresponding transformed functions are plotted in Fig. 5 (b). Since the
mathematical formula for the forward and backward SBT is equivalent except
for an additional factor of 2/π, the function should recover the original shape
by two consecutive transforms and thus we can illustrate the numerical error
by comparing the input function and the back-and-forth transformed function.
In Fig. 6, the numerical error accompanied by the present method in two
consecutive transforms of the PAO functions of the oxygen 1s and 3d states is
plotted. The parameters used for the calculations are: N = 512 and rmax = 24.
The error is less than 10−5 which may not be sufficiently small but is acceptable
in practice depending on the particular problems.

For the purpose of comparison, we have performed the back-and-forth trans-
form of the PAO function of the oxygen 3d state with the method proposed by
Siegman and Talman [9, 10]. In the calculations, we have used ρmin = −7.0
and ∆t = 0.45. As shown in Fig. 7, to suppress the error less than 10−5 in
the region r < rc, a very large number of quadrature points (N ≥ 2048) are
required. As in this case, due to the use of the linear coordinate grid, a small
number of the grid points is enough for the present method to achieve the same
degree of accuracy. The computation time has also been measured by taking
the average of the CPU time used for 1000 repetitions of a set of transforms,
which was carried out on a machine with an Intel Core i7 processor at 2.67
GHz. The program code of the Siegman-Talman method is also implemented
by the authors according to the article [10]. The Siegman-Talman method costs
0.64 msec per transform with N = 2048, and the present method costs 1.32
msec per transform with N = 512. In this measurement, each transform is
performed independently so that any speed-up technique is not used such as
skipping redundant calculations and reusing resources. This is just a rough es-
timation, but looks reasonable considering the theoretical computation cost of
the both methods (i.e. the computation cost for the Siegman-Talman method
is basically coming from that of two Fourier transforms, whereas the present
method requires three times of the Fourier transforms as well as the additional
numerical integrations). In the present method, as mentioned before, once a
transform with an order ℓ is performed, another transform with another order
ℓ′ < ℓ can also be performed by repeating only the final step. In the set of trans-
form with 15 different orders for a single input function, a substantial amount
of redundant calculations are included. In fact, similar redundancy arises also
in the Siegman-Talman method. By skipping those redundant calculations, av-
erage time per transform reduces to 0.45 msec for the Siegman-Talman method
and to 0.22 msec for the present method, in the same measurement as previ-
ous one except for the skipping. Therefore, the present method can be quite
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effective for a particular type of applications where a single input function is
required to be transformed several times with different orders. An example of
such applications is the calculation of two-electron integrals in molecules and
solids [4, 5]. The authors believe that the present method is an alternative to
the Siegman-Talman method with comparable efficiency. The most significant
difference of the present method from the Siegman-Talman method is the use
of a uniform coordinate grid. For many physical systems which are better de-
scribed by the uniform coordinate grid, a small number of the quadrature points
are required, which gives the advantages not only in the computation speed but
also in, for example, the reduction in the memory size and communication traffic
in parallelized computations.

5. Summary

In conclusion, we have proposed and demonstrated a new method for the
numerical evaluation of SBT. Sufficiently accurate results are obtained in trans-
forming analytic atomic orbital functions. Even the non-analytic PAO functions
can be transformed by the present method with a practically acceptable accu-
racy. Application of the present method to evaluate the electron-electron repul-
sion integrals is currently in progress by the authors. A similar framework could
also be developed for the Hankel transform of integer order, by using the integral
expression of the Bessel function in terms of the Gegenbauer polynomials.

6. Acknowledgments
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A. Piecewise polynomial interpolation

For given values and derivatives of F (t) at two points, a polynomial which
interpolates locally between the points can be obtained by simply solving simul-
taneous equations. For example, a cubic (P = 3) polynomial which interpolates
locally between t = t0 and t = t1 is given by

F (t) ≃ c0 + c1(t − t0) + c2(t − t0)
2 + c3(t − t0)

3, (A1)

where the coefficients are

c0 = F (t0), (A2)

c1 = F ′(t0), (A3)

c2 =
3(F (t1) − F (k0))

(t1 − t0)2
−

F ′(t1) − F ′(k0)

t1 − t0
, (A4)

c3 =
−2(F (t1) − F (t0))

(t1 − t0)3
+

F ′(t1) + F ′(t0)

(t1 − t0)2
. (A5)
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A quintic (P = 5) polynomial is obtained by using the second derivatives of
F (t),

F (t) ≃ c0 + c1(t − t0) + c2(t − tt)
2 + c3(t − t0)

3 + c4(t − t0)
4 + c5(t − t0)

5,
(A6)

where the coefficients are

c0 = F (t0), (A7)

c1 = F ′(t0), (A8)

c2 = F ′′(t0), (A9)

c3 =
10(F (t1) − F (t0))

(t1 − t0)3
−

4F ′(t1) + 6F ′(t0)

(t1 − t0)2
+

F ′′(t1) − 3F ′′(t0)

2(t1 − t0)
, (A10)

c4 = −
15(F (t1) − F (t0))

(t1 − t0)4
+

7F ′(t1) + 8F ′(t0)

(t1 − t0)3
−

2F ′(t1) − 3F ′(t0)

2(t1 − t0)2
, (A11)

c5 =
6(F (t1) − F (t0))

(t1 − t0)5
−

3(F ′(t1) + F ′(t0))

(t1 − t0)4
+

F ′(t1) − F ′(t0)

2(t1 − t0)3
. (A12)

B. Asymptotic expansion for Tn,0

The segment of integral Tn,0 is evaluated in another way. Since k0 is usually
very small, the Fourier cosine/sine transform can be expanded in a Taylor’s
series. If n is even, the Fourier cosine transform becomes

F(n)(t) =

∫ ∞

0

cos(tr)f(r)r2 dr (B1)

=

∫ ∞

0

(

1 −
(tr)2

2
+

(tr)4

12
+ · · ·

)

(B2)

=

∫ ∞

0

f(r)r2 dr −
t2

2

∫ ∞

0

f(r)r4 dr +
t4

12

∫ ∞

0

f(r)r6 dr + O(t6) (B3)

= γ2 −
γ4

2
t2 +

γ6

24
t4 + O(t6), (B4)

where

γn ≡

∫ ∞

0

f(r)rn dr. (B5)

Therefore, the segment for an even number of n is given as

Tn,0 ≈ γ2

∫ k0

0

tn dt −
γ4

2

∫ k0

0

tn+2 dt +
γ6

24

∫ k0

0

tn+4 dt (B6)

=
γ2

n + 1
kn+1
0 −

γ4

2(n + 3)
kn+3
0 +

γ6

24(n + 5)
kn+5
0 . (B7)
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Similarly, for an odd number of n, it is

Tn,0 ≈
γ3

n + 2
kn+2
0 −

γ5

6(n + 4)
kn+4
0 +

γ7

120(n + 6)
kn+6
0 . (B8)
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List of Figure Captions

Figure 1:
(a) Numerical error accompanied by the 0th-order transform of the GTO func-
tion (ℓ = 0), where the linear (solid line), cubic (dashed line), and quintic
(dash-dotted line) polynomial interpolations are used to evaluate integrals. (b)
Numerical error accompanied by the 15th-order transform of the GTO function
(ℓ = 15), where the quintic polynomial interpolation is used to evaluate inte-
grals.

Figure 2:
Numerical error accompanied by the 0th-order transform of the GTO function
(ℓ = 0), where the upward (solid line) and downward (dashed line) summations
are used.

Figure 3:
Numerical error accompanied by the 1st-order transform of the GTO function
(ℓ = 0), where the quintic polynomial interpolation and the upward summation
are used. The calculations are performed with various N , namely, 128 (solid
line), 256 (dashed line), 512 (dash-dotted line), and 1024 (dotted line), while
keeping rmax = 10.

Figure 4:
(a) Numerical error accompanied by the 0th-order transform of the STO func-
tion (ℓ = 0), where the following two configurations are used: N = 256,
rmax = 20, and kmax = 40.2 (solid line); N = 2048, rmax = 30, and kmax = 214.5
(dashed line). The quintic interpolation and the upward summation are used.
(b) Numerical error accompanied by the 15th-order transform of the STO func-
tion (ℓ = 15), where the following two configurations are used: N = 256,
rmax = 80, and kmax = 10.0 (solid line); N = 1024, rmax = 600, and kmax = 5.4
(dashed line). The quintic interpolation and the upward summation are used.

Figure 5:
(a) PAO functions of the oxygen 1s (solid line) and 3d (dashed line) states, where
the confinement length is rc = 4.5 a.u. (indicated by the vertical dashed line).
(b) Transformed PAO functions of the oxygen 1s (solid line) and 3d (dashed
line) states.

Figure 6:
Numerical error accompanied by the back-and-forth transform of the PAO func-
tions of the oxygen 1s (solid line) and 3d (dashed line) states.

Figure 7:
Numerical error accompanied by the Siegman-Talman method in performing
the back-and-forth transform of the PAO function of the oxygen 3d state. The
calculations are performed with various N , namely, 128 (solid line), 1024 (dashed
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line), and 2048 (dash-dotted line), while keeping ρmin = −7.0 and ∆t = 0.45.
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