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Hajime Ishihara and Peter Schuster∗

April 19, 2010

Abstract

We show that in elementary analysis (EL) the contrapositive of countable choice
(CCC) is equivalent to double negation elimination for Σ0

2-formulas. By also proving
a recursive adaptation of this equivalence in Heyting arithmetic (HA), we give an
instance of the conservativity of EL over HA with respect to recursive functions and
predicates. As a complement, we prove in HA enriched with the (extended) Church
thesis that every decidable predicate is recursive.

Throughout let x, y, z, z′, e stand for numbers (i.e., nonnegative integers); f for every-
where defined number-number functions; and P , Q for decidable predicates of numbers.
The focus is on the contrapositive of countable choice [5, 2, 1]:

CCC ∀f∃xP (x, f (x))→ ∃x∀y P (x, y).

In [1, Section 2.4, Lemma 5.5]1 it was proved that CCC follows from double negation
elimination for Σ0

2-formulas:

Σ0
2-DNE ¬¬∃x ∀y P (x, y)→ ∃x∀y P (x, y);

and that CCC implies the law of excluded middle for Σ0
1-formulas:

Σ0
1-LEM ∃xP (x) ∨ ∀x¬P (x).

In [1, Footnote 4] it was also conjectured that CCC lies strictly in between these two
instances of the law of excluded middle.

The objective of the present note is to show that if one works in elementary intuitionis-
tic analysis EL [4, 3.6], and restricts P to quantifier-free predicates, then CCC is actually
equivalent to Σ0

2-DNE. Now EL is conservative over intuitionistic first-order arithmetic
HA ([3] and [4, 3.6.2]) whenever the function variables characteristic of EL are inter-
preted as ranging over all (total) recursive functions, and thus—by Kleene’s normal form

∗Corresponding author.
1Where Σ0

2-DNE and Σ0
1-LEM were called 2-Markov and 1-EM, respectively.
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theorem—can be represented by numbers. Since CCC is the only place where a function
variable occurs in the context of this paper, the equivalence of CCC and Σ0

2-DNE can
already be proved in HA provided that we limit f to recursive functions, and likewise P
to recursive predicates. We give a formal proof of this result for the sake of completeness.
As a complement we show, in HA enriched with the (extended) Church thesis, that every
decidable predicate is recursive.

We first show how to arrive at the desired equivalence in EL. For this purpose let P
stand for a quantifier-free predicate. The aforementioned implications involving CCC are
valid under these circumstances too; for the reader’s convenience we briefly recall, in the
subsequent lemma, their proofs from [1, Section 2.4, Lemma 5.5]. It is useful to remember
before that double negation elimination for Σ0

1-formulas:

Σ0
1-DNE ¬¬∃xP (x)→ ∃xP (x),

also known as Markov’s principle (MP), follows from each of Σ0
2-DNE and Σ0

1-LEM.

Lemma 1 [1, Section 2.4, Lemma 5.5]

(a) EL + Σ0
2-DNE ` CCC .

(b) EL + CCC ` Σ0
1-LEM .

Proof. (a) Assume that ∀f∃xP (x, f (x)). To show ∃x∀y P (x, y), in the presence of Σ0
2-

DNE it suffices to disprove ∀x¬∀y P (x, y). From the latter we can infer ∀x∃y¬P (x, y) by
Σ0

1-DNE; whence the function f = λx.µy.¬P (x, y) is everywhere defined. By assumption,
for this f there is x with P (x, f(x)), which is in conflict with the definition of f .

(b) We first notice ∀f∃x [P (x) ∨ ¬P (f(x))]. (For any f , if ¬P (f(0)), then take x = 0,
and if P (f(0)), then x = f(0) is as required.) By CCC there is x with ∀y [P (x) ∨ ¬P (y)].
For any such x, if P (x), then ∃xP (x), whereas if ¬P (x), then ∀y ¬P (y). q.e.d.

It is to be noted that in EL the construction of a function by unbounded minimisation, as
used in part (a) of the foregoing proof, can be coped with by quantifier-free choice.

Lemma 2 In EL each of the following assertions implies the next:

∃f ∀x¬P (x, f (x)) ; ∀x ∃y ¬P (x, y) ; ∀x¬∀y P (x, y) .

Proposition 3 EL ` Σ0
2-DNE↔ CCC .

Proof. It suffices to show that CCC implies Σ0
2-DNE, to which end we may use Σ0

1-
DNE. Since the consequents of CCC and Σ0

2-DNE are identical, we only have to verify
that C ≡ ∀f∃xP (x, f (x)), the antecedent of CCC, follows from D ≡ ¬∀x¬∀y P (x, y),
an equivalent of the antecedent of Σ0

2-DNE. By Lemma 2, D implies ∀f ¬∀x¬P (x, f (x)),
from which we arrive at C by means of Σ0

1-DNE. q.e.d.

One may have noticed in the foregoing proof (see also Lemma 2) that CCC even implies
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¬∀x∃y ¬P (x, y)→ ∃x∀y P (x, y).

This clearly entails Σ0
2-DNE, of which it therefore is yet another equivalent in EL.

We next turn to HA and a recursive adaptation of CCC. In the rest of this paper let
P , as it occurs in the axiom schemes under consideration, stand for recursive predicates.
Before going into any detail we first sketch how we arrived at the equivalence we were after.
To this end we relativise CCC to any collection F of number-number functions:

CCCF ∀f ∈ F∃xP (x, f (x))→ ∃x∀y P (x, y) .

It is plain that if G ⊆ H, then CCCG implies CCCH. Hence CCC, which is CCCF with F
consisting of all the number-number functions, is the weakest form. In particular, Σ0

1-LEM
follows from CCCF for arbitrary F .

An inspection of the proof of [1, Section 2.4, Lemma 5.5], also recalled in our Lemma
1, revealed the following:

— Let fP = λx.µy.P (x, y) for every recursive predicate P such that ∀x∃y P (x, y). If F
contains all these fP , then Σ0

2-DNE implies CCCF .

— If there is a partial recursive function F such that F consists of the F ( , e) which
are total functions with e any number, then CCCF implies Σ0

2-DNE.

Since the collection F of all the recursive functions satisfies the hypotheses of both items
above, we thus have achieved the desired equivalence.

Before we make this argument precise we recall some well known facts from the theory
of recursive functions. Whenever one says that recursive functions can be enumerated by
numbers, and thus that quantification over the former can be reduced to quantification
over the latter, one tacitly invokes Kleene’s normal form theorem [4, 3.4.2, 3.7.6]. This
indeed provides us with a predicate T and a function U , both primitive recursive, such
that the partial recursive functions are precisely the functions of type {e} with {e} (x) '
U (µz.T (e, x, z)), and any such {e} is a total function precisely when ∀x∃z T (e, x, z).
Moreover, computation is deterministic in the sense that

T (e, x, z) ∧ T (e, x, z′)→ z = z′ ;

in particular, given e and x, if T (e, x, z) for any z, then {e} (x) = U (z) for this z. As a
consequence, for every recursive f there is e with f = {e}, for which ∀x∃z T (e, x, z), and
f (x) = U (z) whenever T (e, x, z).

With Kleene’s normal form theorem at hand it is easy to see that CCC for recursive
functions is equivalent to

CCC0 ∀e [∀x∃z T (e, x, z)→ ∃x∃z [T (e, x, z) ∧ P (x, U (z))]]→ ∃x∀y P (x, y) .
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Note that CCC0 is free of function variables. If P is a recursive predicate we write

A ≡ ∀e [∀x∃z T (e, x, z)→ ∃x∃z [T (e, x, z) ∧ P (x, U (z))]]

for the antecedent of (the outmost implication of) CCC0, so that CCC0 simply reads as
A→ ∃x∀y P (x, y). It is useful to keep in mind that A is equivalent to

∀e [∀x∃z T (e, x, z)→ ∃x∀z [T (e, x, z)→ P (x, U (z))]] .

Parts (a) and (b) of the subsequent proposition are related to [1, Section 2.4, Lemma
5.5] as it is recalled in Lemma 1 above, whereas part (c) is related to Proposition 3.

Proposition 4

(a) HA + Σ0
2-DNE ` CCC0 .

(b) HA + CCC0 ` Σ0
1-LEM .

(c) HA + CCC0 ` Σ0
2-DNE .

Proof. To prove (a), suppose that P is a recursive predicate for which A holds.
Since ¬P , too, is a recursive predicate, by Kleene’s normal form theorem there is e with
{e} ' λx.µy.¬P (x, y); for the time being this recursive function may be partial. To show
∃x∀y P (x, y), in the presence of Σ0

2-DNE it suffices to show ¬∀x¬∀y P (x, y): that is, to
deduce a contradiction from ∀x¬∀y P (x, y). Assume the latter, which by Σ0

1-DNE means
that ∀x∃y ¬P (x, y). Hence ∀x∃z T (e, x, z) and thus, by A, there are x and z with T (e, x, z)
and P (x, U (z)), for which also {e} (x) = U (z) and thus ¬P (x, U (z)), a contradiction.

To prove (b), let Q be a recursive predicate. To show ∃xQ (x) ∨ ∀x¬Q (x), it suffices
to verify A for Q(x) ∨ ¬Q(y) in place of P (x, y). Indeed, by CCC0 we then obtain x
with ∀y [Q(x) ∨ ¬Q(y)]. For this x either Q(x) or ¬Q(x); in the former case ∃xQ(x),
in the latter case ∀y ¬Q(y). To verify the desired instance of A, fix e and assume that
∀x∃z T (e, x, z). In particular, for x = 0 there is z with T (e, x, z). For this z either
¬Q(U(z)) or Q(U(z)). In the former case the present choice of x and z is as required. In
the latter case we take x = U(z), for which by assumption there is z′ with T (e, x, z′).

To prove (c), let P be a recursive predicate, and assume that ¬∀x¬∀y P (x, y). To
show ∃x∀y P (x, y), in the presence of CCC0 it suffices to show A, to which end we may
use Σ0

1-DNE according to (b). To prove A fix e and assume that ∀x∃z T (e, x, z). By
Σ0

1-DNE, to show ∃x∃z [T (e, x, z) ∧ P (x, U (z))] it suffices to deduce a contradiction from
∀x∀z¬ [T (e, x, z) ∧ P (x, U (z))] as follows. For every x there is z with T (e, x, z), for which
z we must have ¬P (x, U (z)); whence ∀x ∃y ¬P (x, y) and thus ∀x¬∀y P (x, y), which is
in conflict with our assumption. q.e.d.

Corollary 5 HA ` Σ0
2-DNE↔ CCC0 .

We conclude this paper with a proof of the fact that in HA plus the (extended) Church
thesis every decidable predicate is recursive. To be precise on this, we need to consider the
following three properties of a predicate R relative to an extension S of HA :
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(1) R is externally recursive in S: that is, there is a closed term (or numeral) t such that
S ` ∀x ∃z [T (t, x, z) ∧ (R (x)↔ U (z) = 0)] ;

(2) R is internally recursive in S: that is, S ` ∃e ∀x ∃z [T (e, x, z) ∧ (R (x)↔ U (z) = 0)] ;

(3) R is decidable in S: that is, S ` ∀x (R (x) ∨ ¬R (x)) .

It is plain that (1) implies (2), and that (2) implies (3). Before we can look at possible
reverse implications, we need to recall some theory from [4].

Let CT0 and ECT0 stands for the arithmetical form of Church’s thesis and of the ex-
tended Church thesis [4, 4.3.2, 4.4.8]. As shown in [4, 4.4.10, 3.5.10], we have the following:

Lemma 6

(i) HA + ECT0 ` R↔ ∃x(x r R) ;

(ii) HA + ECT0 ` R⇔ HA ` ∃x(x r R) ;

(iii) HA ` ∃xR(x)⇒ HA ` R (n) for some numeral n .

By Lemma 6.iii, which says that HA satisfies the explicit definability property for numbers
(EDN), it is clear that if S is HA, then (2) implies (1).

Proposition 7

(a) In HA + ECT0, every decidable predicate is externally recursive.

(b) In HA + CT0, every decidable predicate is internally recursive.

Proof. (a) We show that

(3’) HA + ECT0 ` ∀x(R(x) ∨ ¬R(x))

implies the existence of a numeral m for which

(1’) HA + ECT0 ` ∀x∃z[T (m,x, z) ∧ (U (z) = 0↔ R(x))].

To start with, (3’) implies HA ` ∃u(u r ∀x(R(x) ∨ ¬R(x))) by Lemma 6.ii, and hence
HA ` n r ∀x(R(x) ∨ ¬R(x)) for some numeral n by Lemma 6.iii. For this n we have

HA ` ∀x∃z(T (n, x, z) ∧ z r (R(x) ∨ ¬R(x)))

by the definition [4, 4.4.2] of r, by which further

HA ` ∀x∃z[T (n, x, z)∧((j1(U (z)) = 0∧j2(U (z)) r R(x))∨(j1(U (z)) 6= 0∧j2(U (z)) r ¬R(x)))] .

Now two invocations of ∃-introduction yield

HA+ECT0 ` ∀x∃z[T (n, x, z)∧((j1(U (z)) = 0∧∃v(v r R(x)))∨(j1(U (z)) 6= 0∧∃v(v r ¬R(x))))] ,
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from which by Lemma 6.i we arrive at

HA + ECT0 ` ∀x∃z[T (n, x, z) ∧ ((j1(U (z)) = 0 ∧R(x)) ∨ (j1(U (z)) 6= 0 ∧ ¬R(x)))] ,

which in turn implies (1’): simply take a numeral m such that {m} = j1 ◦ {n}.
(b) Note first that

HA ` ∀x (R (x) ∨ ¬R (x))↔ ∀x ∃y (R (x)↔ y = 0) .

Now if HA + CT0 ` ∀x(R(x)∨¬R(x)), then HA + CT0 ` ∀x ∃y(R(x)↔ y = 0) and thus

HA + CT0 ` ∃e∀x∃z[T (e, x, z) ∧ (R(x)↔ U (z) = 0)]

as required. q.e.d.

To prove part (b) already Church’s thesis for disjunctions CT∨
0 [4, 4.3.2] is sufficient. It is

unclear, however, whether HA + CT0 has EDN, and thus whether (a) can be proved with
CT0 in place of the stronger ECT0.
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