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An autonomous framework to produce and
distribute personalized team-sport video summaries:

a basket-ball case study
Fan Chen, Damien Delannay, and Christophe De Vleeschouwer

Abstract—Democratic and personalized production of multi-
media content is a challenge that content providers will have
to face in the near future. In this paper, we address this
challenge by building on computer vision tools to automate the
collection and distribution of audiovisual content. Especially, we
proposed a complete production process of personalized video
summaries in a typical application scenario, where the sensor
network for media acquisition is composed of multiple cameras,
which, for example, cover a basket-ball field. Distributed analysis
and interpretation of the scene are exploited to decide what
to show or not to show about the event, so as to produce a
video composed of a valuable subset of the streams provided
by each individual camera. Interestingly, the selection of the
streams subsets to forward to each user depends on his/her
individual preferences, making the process adaptive and person-
alized. The process involves numerous integrated technologies
and methodologies, including but not limited to automatic scene
analysis, camera viewpoint selection, adaptive streaming, and
generation of summaries through automatic organization of
stories. The proposed technology provides practical solutions to
a wide range of applications, such as personalized access to
local sport events through a web portal, cost-effective and fully
automated production of content dedicated to small-audience, or
even automatic log in of annotations.

Index Terms—Production of Personalized Video Summariza-
tion, Content Repurposing, Multi-sensored Processing

I. INTRODUCTION

Today’s media consumption evolves towards increased user-
centric adaptation of contents, to meet the requirements of
users having different expectations in terms of story-telling
and heterogeneous constraints in terms of access devices. In-
dividuals and organizations want to access dedicated contents
through a personalized service that is able to provide what they
are interested in, at the time when they want it and through
the distribution channel of their choice.

To address such kind of demands, this paper presents a
unified framework for cost-effective and autonomous gener-
ation and distribution of contents from multi-sensored data,
with an emphasis on team sports use cases. It first inves-
tigates the automatic extraction of intelligent contents from
a network of sensors distributed around the scene at hand.
Here, intelligence refers to the identification of salient seg-
ments within the audiovisual content, using distributed scene
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analysis algorithms. Second, it explains how that knowledge
can be exploited to automate the production and personalize
the summarization of raw video contents. In the basket-ball
scenario envisioned to demonstrate our framework, the salient
segments in the raw video content are identified based on
player movement analysis and scoreboard monitoring. Player
detection and tracking methods rely on the fusion of the
foreground likelihood information computed in each view [1],
[2], which allows overcoming the traditional hurdles asso-
ciated to single view analysis, such as occlusions, shadows
and changing illumination. Scoreboard monitoring provides
valuable additional inputs to recognize the main actions of
the game.

To produce semantically meaningful and perceptually com-
fortable video summaries based on the extraction of sub-
images from the raw content, we formulate the selection of
temporal segments and corresponding viewpoints in the edited
summary as two independent problems, namely video produc-
tion (for camerawork planning) and video summarization (for
temporal content reorganization).

Although good production strategy and story organization
are relative to a person’s perspective, there are certain gen-
eral principles whose implementation results in improved
understanding of the scene, with a more enjoyable viewing
experience. Especially, we identify the following three major
factors to abstract the semantic and narrative requirement of
video contents, i.e.,

• Completeness, which stands for both the integrity of
view rendering in camera/viewpoint selection, and that
of story-telling in summarization. A viewpoint of high
completeness includes more salient objects, while a story
of high completeness consists of more key actions.

• Fineness, which refers to the amount of details provided
about the rendered action. Spatially, it favors close views.
Temporally, it implies redundant story-telling, including
replays. Increasing the fineness of a video does not only
improve the viewing experience, but is also essential in
guiding the emotional involvement of viewers by close-up
shots.

• Smoothness, which refers to the graceful displacement
of the virtual camera viewpoint, and to the continuous
story-telling resulting from the selection of contiguous
temporal segments. Preserving smoothness is important
to avoid distracting the viewer from the story by abrupt
changes of viewpoints or constant temporal jumps [3].
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Obviously, those three concepts have to be maximized to
produce a meaningful and visually pleasant content. In practice
however, maximization of the three concepts often results in
antagonist decisions, under some limited resource constraints,
typically expressed in terms of the spatial resolution and tem-
poral duration of the produced content. For example, at fixed
output video resolution, increasing completeness generally
induces larger viewpoints, which in turns decreases fineness of
salient objects. Similarly, increased smoothness of viewpoint
movement prevents accurate pursuit of actions of interest along
the time. The same observations hold regarding the selection
of segments and the organization of stories along the time,
under some global duration constraints.

Hence, our production/summarization system turns to search
for a good balance between the three major factors. It first
defines quantitative metrics to reflect completeness, fineness,
and smoothness. It then formulates constrained optimization
problems to balance those concepts. Both the metrics and
the problem can be formulated as a function of individual
user preferences, typically expressed in terms of output video
resolution, or preferred camera or players actions, so that it
becomes possible to personalize the produced content.

The federating objective of this paper is to present an
integrated architecture for autonomous and cost-efficient pro-
duction and distribution of personalized video summaries.
To achieve this objective, it surveys/reviews some of our
earlier works[1][4][5][6], but also introduces a bunch of
novel contributions. Specifically, regarding the autonomous
camerawork planning, and in addition to our previous work
described in [4], we propose a new criterion, which has a
clearer physical meaning and several calibration guidelines
for efficient parameter determination, to drive the selection of
the so-called optimal viewpoints to render a team-sport scene,
along with a computationally efficient searching algorithm.
Regarding summarization, we propose to extend our resource
allocation formulation [5][6] to schedule the streaming of
a concatenated subset of automatically produced and pre-
encoded clips. This is an improvement compared to [5][6],
which only considers the summarization of manually produced
content, and relies on the detection of manually edited video
shots to organize the summariy.

The paper is organized as follows. Section II surveys the
previous related works, both in terms of autonomous camera-
work planning and video summarization. Section III presents
an overview of our integrated framework for personalized
content distribution, with a short presentation of how personal-
ization of the streamed content can be achieved at low compu-
tation cost, simply based on the concatenation of pre-encoded
video clips. The paper then focuses on how to generate those
clips automatically, and how to control their manipulation
within the server, to forward personalized contents, adapted to
user constraints or preferences. Section IV explains how multi-
view analysis does support content generation. It first surveys
our solution for players detection and tracking, as required
by autonomous production tools. It then presents how those
data are completed by the scoreboard information to recognize
the main actions of a basket-ball game, so as to support
personalized summarization. Section V then presents our inte-

grated framework for autonomous production of personalized
summaries. Section VI demonstrates the effectiveness of the
approach, whilst Section VII concludes.

II. RELATED WORKS

Regarding the camerawork planning in autonomous produc-
tion, we interpret the planning of ”virtual” camera actions as
selecting a camera view and its in-frame viewpoint, rather
than synthesizing a free-viewpoint scene. The related previous
works are roughly classified into three major categories:

• Event-triggered selection: Camera switching or viewpoint
movements are triggered by certain activities detected
in the scene from audiovisual clues, such as an object
entering the field of view or an audio event happening.
[7] and [8] consider a meeting room scenario, and switch
to the camera that displays the speaker. Event-triggered
systems usually target at people-sparse and low-activity
scenarios, and perform selection based on naive but
explicit rules.

• Rule-based selection: More complicated conditions of
camera switching can be achieved by introducing se-
mantic or cinematic rules, relying on the analysis of
objects, events and other contextual information. [7] used
decaying curves to avoid fast camera switching and
suppress too long shots in multimodal meetings. [9] and
[10] selected a best shot from a list of candidate shots
of each scene for a video conference or a multiplayer
game TV show, according to pre-defined cinematic rules.
[11] studied camera selection for athletic videos based
on rules explicitly defined on user preferences and the
characteristics of athletic events. The most challenge
task is to extract explicit rules based on the integrated
knowledge derived from scene understanding algorithms.
For conference or athletic videos, it is possible to identify
the dominant object of the scene, such as the speaker
or the leading runner. Following this dominant object
provides a reasonable and effective base to those rules.
However, it is difficult to guide all camera/viewpoint se-
lection with pre-defined rules for people-dense scenarios,
such as basketball, where players change their speeds
and directions all the time and the ball is passing rapidly
between players.

• Data-driven selection: Rather than defining explicit rules,
methods in this category adaptively adjust camera and
viewpoints by evaluating some criteria defined on the
current contextual configuration. There are some meth-
ods proposed in the literature for selecting the most
representative area from a standalone image [12][13],
based on some visual attention model [14]. In contrast,
we presented an automatic video production system in
[4], where the optimal camera/viewpoint is found by
evaluating some global metrics about the completeness,
fineness and occlusion of the scene, under the specified
user preference. Compared to event-triggered or rule-
based methods, data-driven selection is able to deal
with people-dense, high activity scenarios, such as team-
sports, in a flexible and efficient manner.
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Summarization implies selection of temporal segments and
local stories organization. Here, we identify two classes of au-
tomatic methods that have addressed this problem in previous
literature:

• Methods targeting clustering of visual stimuli: Many
works interpreted video summarization as extracting a
short video sequence of a desired length from native
video content, in a way that minimizes the loss resulting
from the skipped frames and/or segments. Those methods
differ in their various definition of the similarity between
the summary and the original video, and in their diversi-
fied techniques to maximize this similarity. They cluster
similar frames/shots into so called key frames [15][16],
or solve constrained optimization of objective functions
[17][18]. Since they attempt to preserve as much as
possible of the initial content, all those methods are well
suited to support efficient browsing applications.

• Methods targeting story-telling and semantic relevance:
End-users motivation in viewing summaries is not limited
to fast browsing of all clips in the whole video content.
It also includes the intention to enjoy a concise video
with well-organized story-telling and retrieval of seman-
tically meaningful events that best satisfy users interest.
Regarding semantic relevance, we observe that many
works have been devoted to the automatic detection of
key actions in sport events, especially for football games
[19][20][21][22][23][24]. However, when addressing the
problem of summary organization from actions, all those
methods just implement pre-defined filtering or ranking
procedures to extract the actions of interest from the
original audiovisual stream. Typically, it just arbitrarily
extracts a pre-defined fraction of the scene, e.g. 15 or
30 seconds prior the end of the last live action segment
preceding the replay [24], without taking care of story-
telling artifacts. In contrast, [25] considers the continuity
of the clips included in the generated summary to improve
story-telling, and [26] organizes stories by considering
a graph model for managing semantic relations among
concept entities. Compared to general videos, stories
in sport videos have much simpler structures and a
limited set of possible events, which allows for both
local and global control of story-telling without the need
for sophisticated ontology or semantic graph models, as
demonstrated by our work [5] in the context of soccer
summarization. It unifies all previous works, in the sense
of exploiting all kind of available knowledge, related to
either production principles or the semantic of events.
It goes beyond previous works by offering a flexible
and generic resource allocation framework to adaptively
select audio-visual segments into the summary according
to user preferences. By evaluating the benefit of segments
from both the content and the presentation style of the
summary, our framework is able to balance the semantic
(what is included in the summary) and narrative (how it is
presented to the user) aspects of the summary in a natural
and personal way, which is the fundamental difference of
our method to filtering based approaches.

III. PERSONALIZED CONTENT DISTRIBUTION FRAMEWORK

OVERVIEW

We aim at designing an autonomous production system that
generates and distributes personalized contents according to
individual user preferences. In the present paper, we organize
a summarized story through clip selection, and simulate the
real camerawork by selecting a so-called optimal viewpoint
(defined as a proper camera and a rectangle area within this
camera view).

Step 3: Camerawork Planning

Multi-sensored Video Data

Meta-data on
Salient Objects/EventsScene Analysis

Camera Selection Viewpoint Selection

Step 4: Video Summarization

?

?

?

Segment m

or

or

or

Find a subset
of clips

Step 1: Game Segmentation
a complete

action?
an offense

/defense round?
A period between

two breaks?

Step 2: Planning of Production Strategy
* Change the shot type?
* Far or close-up view?
* Insert a replay?

Close-up
Far
Replay

U
se

rR
eq

ue
st

User Request

Result Video
Video Data of
Selected Clips

Listof
Selected

C
li ps

Encode and Save Clips
for Common Options

Adaptive Steaming ServerVideo Data Server
Offline Processing Block Online Processing Block

Fig. 1. The integrated framework we proposed for cost-efficient production
and distribution of personalized video summaries. Besides those arrows with
explicit labels, we use solid blue arrows for inputting video data, and dotted
blue arrows for inputting meta-data. Wide arrows present the order of different
processing steps.

We are targeting at an efficient distribution system suit-
able for large scale deployment, by clearly separating pre-
computable parts from those that have to be handled online.
Especially, by summarizing the game based on the concatena-
tion of a subset of those clips that have been pre-encoded for
several pre-specified camerawork options, we avoid computa-
tionally expensive online re-encoding of contents. In addition,
according to the intrinsic hierarchical structure of video con-
tents, both production and summarization are envisioned in
the divide and conquer paradigm for improved computational
efficiency. In our hierarchical video structure, a segment is
defined as a video portion for a semantically complete action,
which is rendered by a sequence of shots with different view-
types, e.g. far view or close-up. Hence, camerawork is planned
on the shot level for a continuous viewpoint sequence. A clip is
the elemental component in summarization, which is obtained
by further subdividing a shot. In Fig.1, we depict the over-
all architecture of our proposed production and distribution
system, and highlight the offline and online processing stages.
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From source video data, scene analysis is performed to
identify salient objects and detect highlighted events. Based on
these contextual metadata, we divide the whole game into short
segments, where each segment covers a semantically self-
contained period, e.g., an offense/defense round, a complete
action, a period between two breaks, etc. For each segment,
we plan the production strategy by determining the temporal
boundary and view-type of each shot, and by inserting neces-
sary replays, based on a pre-defined rule which is explained
later with Fig.5, considering conventional production princi-
ples. We then perform camerawork planning for each shot that
have been identified when planning the production strategy,
under various options. Produced shots are further divided into
short clips for finer story reorganization. The resulting edited
video clips are compressed, e.g. using the H.264/AVC encoder,
and stored on a disk. This ends up the offline part of the whole
process, performed only once, during or just after the game.

In the online phase, given an end-user request, video
summarization decides about which clips should be part of
the summary, according to user preferences. The pre-encoded
streams corresponding to those clips are then concatenated
to be forwarded as a continuous stream to the client. The
detailed description of the implementation of a streaming
server supporting client-transparent concatenation of streams
on a server side is beyond the scope of this paper. Interested
readers can for example refer to the adaptive streaming server
we have described in [28].

IV. SCENE ANALYSIS

Automatic collection of contextual meta-data related to
players and events is a key factor to the practicality of the
above framework in a real applicative scenario. To make the
whole paper self-contained, we intend to briefly introduce
some computer vision technologies developed in the APIDIS
project [35], which exploit multi-view analysis to support team
sport actions monitoring and understanding. We first surveys
our solution for players detection and tracking, which are
mainly used in camerawork planning. We then present how
those data are completed by the scoreboard information to
recognize the main actions of a basket-ball game, so as to
support personalized summarization.

A. Multi-view players detection, recognition, and tracking

Tracking multiple people in cluttered and crowded scenes is
a challenging task, primarily due to occlusion between people.
The problem has been extensively studied, mainly because it is
common to numerous applications, ranging from (sport) event
reporting to surveillance in public space. Detailed reviews
of tracking research in monocular or multi-view contexts are
for example provided in Yilmaz et al. [29], Khan and Shah
[30][31] or Fleuret et al. [2]. In the context of team sport
event monitoring, all players have similar appearance. For this
reason, we focus on a particular subset of methods that do
not use color models or shape cues of individual people, but
instead rely on the distinction of foreground from background
in each individual view to infer the ground plane locations
that are occupied by people. Those methods are reviewed in
Delannay et al.[1].

Fig.2 summarizes our proposed method. Similar to [2][30],
our approach computes foreground likelihood independently
on each view, using standard background modeling techniques.
It then fuses those likelihoods by projecting them on the
ground plane, thereby defining a set of so-called ground
occupancy masks. The originality of our method compared
to previous art is twofold. First, it computes the ground
occupancy mask in a computationally efficient way, based
on the implementation of integral image techniques on a
well-chosen transformed version of the foreground silhouettes.
Second, it proposes an original and simple greedy heuristic to
handle occlusions, and alleviate the false detections occurring
at the intersection of the masks projected from distinct players
silhouettes by distinct views. In final, our method appears to
improve the state of the art both in terms of computational
efficiency and detection reliability, reducing the error rate by
one order of magnitude, typically from 10 to 1%. Due to the
lack of space, we encourage the interested reader to access
the description presented in [1] for more details. Once players
and referee have been localized, the system has to decide
who’s who. Therefore, histogram analysis is performed on
the expected body area of each detected person. Histogram
peaks extraction allows to assign a team label to each detection
(see bounding boxes color in Fig.2). Further segmentation and
analysis of the regions composing the expected body area
permits to detect and recognize the digit(s) printed on the
players shirts when they face the camera [1].

Since the player digit can only be read when the players
back faces one of the cameras, we have to trace the detected
players across time. Therefore, we have implemented a rudi-
mentary whilst effective algorithm. The tracks propagation is
currently done over a 1-frame horizon, based on the Munkres
general assignment algorithm [32]. Gating is used to prevent
unlikely matches. A high level analysis module is also used to
link together partial tracks based on shirt color and/or player
digit estimation. Such post-linking process only occurs when
it is non-ambiguous, i.e. when one option is much more likely
compared to other linking options.

B. Multi-view ball detection

The proposed approach to detect the ball relies on a set
of binary masks, each mask being computed independently in
each view, so as to discriminate the ball pixels from rest of the
scene. In our case, the mask relies on background subtraction,
completed by a cleanup pass that removes small, large, non-
circular or non-moving connected regions. The ball is then
expected to appear as a circular silhouette, when not occluded
by players. When relevant, any additional knowledge about
the texture or the color of the ball could easily be exploited.
Given the masks in all views, we consider two detection
strategies. The first one investigates whether a pre-defined set
of 3D positions, selected along a regular 3D grid, are likely
to support the ball or not. This is implemented efficiently
by using integral images to approximate the correlation of
the masks with the projected ball template. In contrast, the
second approach selects 2D candidates in each individual
view, and then computes 3D ball positions based on the
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Fig. 2. Player detection and recognition: On the left, the foreground likelihoods are extracted in each view. They are projected and accumulated to the
homography ground plane to define a ground occupancy map (bottom right), from which people positions are extracted through an occlusion-aware greedy
process. The digits lying on the players shirts that face the camera are then recognized (top right).

triangulation and validation of those 2D candidates. Once
plausible 3D ball candidates have been detected, the analysis
of the candidates trajectory helps in discriminating between
true and false positives, since the ball is supposed to follow a
ballistic trajectory, which is not the case of most of the false
detections (corresponding to body parts). Experimental results
are presented in [27], which demonstrates the effectiveness
and complementarity of both approaches.

C. Event recognition

This section summarizes how to detect and recognize
the main actions occurring during a basketball game, i.e.
field goals, violations, fouls, balls out-of-bounds, free-throws,
throw-in (ball back to court), throw, rebounds, and lost balls.
All those actions correspond to clock-events, i.e. they cause
a stop, start or re-initialization of the 24” clock, or do occur
during periods for which the clock is stopped.

Fig. 3. Basket-ball action tree structure.

Hence, by assuming an accurate monitoring of the 24”
clock and of the scoreboard, we propose to organize the
actions hierarchically, as a function of the observed clock and

scoreboard status. This results in the tree structure depicted
in Figs.3 and 4. Most of the tests implemented in the nodes
of the tree only rely on the clock and scoreboard information.
When needed, this information is completed by visual hints,
typically provided as outcomes of the players (and ball)
tracking algorithms. The initial instance of our system defines
dedicated if-then-else rules to decide about the branch to go in
each node. As an example, the decision to take after a start of
the 24” clock - on the left node of Fig.3 - about a ”rebound”
or ”throw-in” action can be inferred from the analysis of
the trajectories of the players. A detailed description of the
detectors involved in the nodes of this tree is beyond the
scope of this paper, and can be accessed in Devaux et al. [33].
Experiments demonstrate that the approach achieves above
90% accuracy.

V. AUTONOMOUS PRODUCTION OF PERSONALIZED

SUMMARIES

With the contextual meta-data, we know when a user’s
favorite event happens or where his favorite player stands.
However, practical content adaption usually requires more
than simply filtering those corresponding events/objects, due
to the global constraints and also possible conflicts between
different user preferences. Furthermore, in order to produce
visually comfortable video contents, extra regulation con-
straints have to be included into the production process to
suppress visual/story-telling artifacts caused by sudden camera
switching or incomplete story. In the following sections, we
explain our solution following the four steps given in Fig.1.

A. Clock-event based game segmentation

Game segmentation enables local processing of video sto-
ries in our divide-and-conquer paradigm for more efficient
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Fig. 4. Basket-ball action tree structure (Continue).

production, which could be implemented in various ways
depending on the different characteristic of the target team
sports, e.g, we could naturally segment a volleyball game
into rallies and a baseball game according to pitchings. In
basketball, the attacking team needs to attempt a shot within
24” of gaining possession, according to the 24 seconds rule.
Many key events, including shooting, foul, interception and
others, are closely related to starting/ending/restarting of clock
counting, which are named ”Start”, ”End” and ”Reinit” clock
event, respectively. We thus use clock events as a reasonable
base for basketball game segmentation. Since most of critical
actions (e.g. successful shots or fouls) lead to ”End” clock
event, it is safe and better to include all ”Reinit” events in the
same segment for a complete local story. More specifically,
we define a segment as the period between two consecutive
”Start” clocking events, as shown in Fig.5, where the clocking
information could be obtained by either easily recording from
the clocking system or by analyzing the score board.

B. Planning of production strategies

Shots of various view types play an important role in telling
an attractive story: far views are used to present the complexity
of team sports, while close-up views are essential to increase
the emotional involvement of audiences. For more important
actions, replays should be appended for clearer explanation
of local details [3]. In conventional sport video production,
a director always has a rough advance plan in his mind on
how to organize those factors to present the game to viewers,
based on general principles of sport video production. We

Fig. 5. Based on clock events, we divide the video into segments, and plan
the full local story of each segment, including both view-type determination
and replay insertion.

simulate this process, and plan the production strategy for each
segment before any computationally expensive optimization
in corresponding viewpoint selections, by only analyzing the
structure of clock-events.

A basic rule of sport video production is to avoid dramatic
camera/shot-type switching when critical action is taking
place in the playing area [3]. Close-up views, replays and
commercials are thus usually inserted during game breaks.
However, compared to other team sports such as volleyball
and soccer, basketball game runs in a much faster pace, due
to the fact that the 24” shot clock could be reinitialized right
after the previous round. By exploring the view structure of
three broadcasted sport videos [6], we confirm that a basketball
video is rendered in far/medium views for most of the time,
because the director has only a few chances to insert close-
up views and replays. We plan the production strategy by
following this production convention. Furthermore, since it
usually takes the audiences about one second to reestablish
their relationship to the game after camera/view switching [3],
we prefer to include a temporal bias for a smoother transition
between view types.

As shown in Fig.5, we take the following reference strategy
to render each segment, i.e.,

(1) A 2” close-up is taken 1” ∼ 2” before the ”Start” event.
(2) A 1” ∼ 2” close-up is inserted after the ”End” event,

depending on the length of break to the next ”start” event.
(3) A replay is inserted to cover a period from the last 1/3

part of the round before the ”End” event to the starting point
of the close-up in (2), if this period is longer than 3”.

(4) We also insert a replay for the break between the end
event and the next start event. Note that this break overlaps
with the next segment, which we think is necessary to help
audiences to reorient themselves in the new segment.

(5) Other parts of the segment are rendered as far views.

C. Autonomous production

According to the view-type planned, we start to implement
the camerawork in a personalized way that reflects users’
preferences and device limitations. Three kinds of camera
movement could be simulated: camera rotation is able to be
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partially implemented via camera switching, while camera
zooming and translation are approximated by cropping.

In our first trial in [4], we built a viewpoint selector by
picking a Mexican-hat like function to trade off between
completeness (including more objects) and fineness (enlarging
screen sizes of objects), based on manually annotated objects
independently collected from each camera view. As a spe-
cially designed function without a (real or assumed) physical
explanation, it is neither easy to select proper parameters for
this criterion nor simple to further improve it. This criterion
also fails to reflect the correct relationship between different
camera views, which thus forced us to define another criterion
for camera selection in [4], where inconsistency between these
two criteria was left as unsolved.

Automatically detected salient objects in Section IV-A pre-
serve inter-camera relationship in two aspects: 1.) At each
moment, all camera views share the same universal set of
salient objects, although some objects are only visible in a
subset of camera views. Accordingly, the completeness of
a viewpoint could be directly evaluated from the number
of its visible objects; 2.) The bounding-boxes obtained by
re-projecting the identical 3D salient object into all camera
views partially reflect the relative camera positions, such as
close/far or view angle to the ground plane. By exploiting
those information, we are allowed to design a unified criterion
for both camera selection and viewpoint selection.

Basically, we optimize the completeness by maximizing the
accumulated interests of various salient objects, as in [4]. This
results in the tendency to enlarge the viewpoint, which is
withheld from the request to maximize the fineness. In this
paper, we reformulate the criterion, where the role of each
term in completeness, fineness and occlusion is clearer. We fur-
ther summarize the following guidelines of camera/viewpoint
selection, which serve as calibration baselines to refine the rel-
ative significance of different factors in the proposed criterion
so as to stabilize its performance.

• In the ideal case where all salient objects have the same
importance and are evenly distributed in the scene, the
size of the optimal viewpoint should be equal to the
specified display resolution so as to avoid quality loss
due to image resampling;

• For two viewpoints of different sizes which have com-
pletely the same coverage of the play court, the defined
criterion should output the same benefit value since they
are identical when rendered using the display resolution;

• In team sport broadcasting, most of the scenes are pro-
vided by side cameras, which is not only due to their
lower installation costs (especially for outdoor games) but
also because they could present player’s local activity as
well as the global team work.1 It also looks more natural
to the audiences that players stand vertically and move
horizontally. From two camera positions that have the
same completeness and occlusion, we prefer the closer
one if they have the same view angle to the ground plane,
and prefer the one of a smaller view angle if they have

1Similarly, in a swimming match, more scenes come from ceiling cameras
and underwater cameras.

the same distance.

Formally, we define a viewpoint vki in the kth camera view
of the ith frame, by its size Ski and its center cki. Assume
that N salient objects have been detected in a frame, and the
location of the nth object in the kth view is denoted by xnki.
Owing to player identification, we define the importance of the
n-th object as a function In(u

P , uT ) of a preferred player uP

or a preferred team uT . For producing far views and replays,
we select the optimal camera k∗ and its viewpoint v∗

ki, by
maximizing the overall benefit

Bki(vki|u) = wk(u
C)

N∑
n=1

wki(xnki)In(u
P , uT ), (1)

where wk(u
C) denotes the weight assigned to the k th camera,

so as to force the system to favor a user-preferred camera uC .
The attentional significance of each salient object within the
present viewpoint is weighted by

wki(xnki) = α(.)β(.)ok(xnki). (2)

In the above equations:
a) Function α(.) modulates the weights of the objects

according to their distance to the scene center, normalized by
the viewpoint size. This weight should be high and positive
when the object-of-interest is within the viewpoint and close
to the scene center cSCN

ki , and should be negative or zero when
the object lies outside the viewing area. Especially, we use the
following α(.), i.e.,

α(.) = exp

(
−
∥∥xnki − cSCN

ki

∥∥2
2S2

ki

)
× V(xnki, Ski, cki), (3)

where visibility function V(xnki, Ski, cki) takes 1 if object
xnki is fully covered by viewpoint vki, and 0 for not. We set
cSCN
ki to the ball position (or the gravity center of all objects

when ball position is not available) so as to cover more key
objects in the current action, based on a simple assumption
that dominant players usually surround the ball.

b) Function β(.) reflects the penalty induced when the native
signal of the k-th camera has to be sub-sampled once the
viewpoint size becomes larger than the maximal resolution
ures allowed by the user. An appropriate choice consists in
setting the function equal to one when Ski < ures, and in
making it decrease afterwards, e.g.,

β(.) = hk(xnki)

[
min

(
ures

Ski
, 1

)]uclose

, (4)

where hk(xnki) is the height in pixels of projecting a six
feet tall vertical object (average height of a player) located
in xnki into camera view k, which serves as normalization
of different camera views, and is directly computed based
on camera calibration. Maximizing hk(xnki) leads to either
a closer camera view to the player or a smaller view angle to
the ground plane, both result in higher fineness. u close > 1
increases to favor close viewpoints compared to large zoom-
out views. It assures that the loss of fineness increases faster
than the benefit of completeness through further zoom-out,
when the viewpoint is already larger than ures.
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c) ok(xnki) measures the occlusion ratio of the n-th object
in camera view k, which is defined as the fraction of pixels of
the object NOT overlapped by other objects when projected to
the camera view. The z-depth order could be approximately
computed from the size of the bounding box h k(xnki). For
replay, we use o2k(xnki) instead of ok(xnki) to emphasize
more on reducing occlusions.

For conciseness, we use vector u to group all these user
preferences mentioned above, i.e. u = [ucloseuresuPuTuC ].
In the section of experiments, we will further clarify the role
of each term, and also verify that the above criterion could
satisfy all those guidelines we set.

Since the optimal viewpoint to maximize the benefit is not
directly solvable, a search over candidate viewpoints needs to
be executed. It is natural to ask the viewpoint of a far view or
replay to include multiple players. In this situation, we are
able to improve the efficiency of this search, by reducing
the size of the solution space. Eq.(1) reflects the trade-off
between fineness and completeness. If we decay the α(.) slow
enough, reducing fineness through virtual zooming out is only
beneficial if it includes additional players in the viewpoint.
In other words, it is useless to enlarge the viewpoint (thereby
reducing fineness) without including any additional player. As
a consequence, an optimal viewpoint (of a fixed aspect ratio)
will always be spanned by two players. We can thus restrict
our initial full-search analysis to a selective search focusing on
viewpoints of the required aspect ratio that include a pair of
support players on their border. Even an exhaustive selection
of all possible pairs of (maximum 10) players can reduce
computational complexity dramatically, compared to the grid
search used in [4].

We assign higher wk(u
C) to two major side-view cameras

for far view, while for replays other cameras have higher
wk(u

C), so as to produce different results for normal game
plays and replays. For close-up views, we simply find the
minimal box that covers the closest player to the scene center
cSCN
ki . 2 When the viewpoint is determined, we expand the

viewpoint by 10% in all directions to leave a margin space
for better appearance, as in conventional production[3].

Finally, an iterative smoothing process based on a two-
layer Markov chain is applied to the selected sequences of
viewpoints to remove visual artifacts such as flicking and
fluctuation of the view (see [4]). In the first layer, a camera-
wise smoothing is committed to stabilize the viewpoint motion
in each camera, based on the sequence of optimal viewpoints
obtained in each individual camera view. Camera benefits,
which are evaluated on each individual frame based on the
determined viewpoints, are then fed into the second layer
of the smoothing process as the a priori knowledge so as
to recover a smooth camera sequence without abrupt camera
switching.

After generating the viewpoint sequences, we cut long shots
into shorter clips (∼ 2”). It is worth mentioning here that
the reference rendering strategy does not define the actual

2Obviously it makes more sense to zoom on the player of interest (e.g.
preferred player, or player who scored). We provide this as a provisional
implementation before we have reliable automatic player identification, so as
to complete the overall framework and leave space for future local revisions.

way a segment is rendered. We have only constructed a
universal set of pre-encoded clips. Any subset of the clips of
a segment actually defines an eligible rendering strategy. An
optimal strategy is then selected by the summarization method
described in the next section.

D. Personalized summarization

A summary is organized by proper selection of clips, so as to
satisfy both semantic preferences in terms of action or player
and narrative preferences in terms of story-telling patterns
(replays or not, long or short segment stories). This process is
based on the generic resource allocation framework, which has
been verified to be efficient in summarizing broadcasted sport
videos [5]. Fig.6 briefly reminds the proposed summarization
framework. As explained in Section V-A, each segment corre-
sponds to a short sub-story, which consists of consecutive clips
that are semantically related. If we define a sub-summary, also
named narrative option or local story, as one way to select clips
within a segment, we regard the final summary as a collection
of non-overlapping sub-summaries. All optimal combinations
of clips within each segment are evaluated by their benefits and
costs under specified user-preferences. We generate a universal
set of candidate sub-summaries with various descriptive levels,
and search for the best combination of sub-summaries which
maximizes the overall benefit under user-preferred constraints.

Fig. 6. A resource allocation based framework of sport video summarization.

Formally, for the m-th segment Sm, we consider L different
narrative options {sml}, each option defining the subset of the
clips of this segment that are rendered during display. A pair
of benefit/cost values, i.e., B(sml) and C(sml), is assigned to
each option sm, and a summary is obtained by maximizing
the overall benefit under the length constraint uLEN , i.e.,

{s∗ml} = argmax
{sml}

∑
m

B(sml),
∑
m

C(sml) = uLEN , (5)

which is thus able to be modeled as a resource allocation prob-
lem. Under strict constraints, the problem is hard and relies on
heuristic methods or dynamic programming approaches to be
solved. In contrast, when some relaxation of the constraint is
allowed (e.g.,

∑
m C(sml) ≤ uLEN ), Lagrangian optimization

and convex-hull approximation can be considered to split the
global optimization problem in a set of simple block-based
local decision problems[34].

The convex-hull approximation consists in restricting the
eligible summarization options for each sub-summary to the
(benefit,cost) points sustaining the upper convex hull of the
available (benefit, cost) pairs of the segment. The main theo-
rem of applying the Lagrangian relaxation to this convex-hull
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approximated resource allocation problem reads that if λ is a
non-negative Lagrangian multiplier and {s∗

ml} is the optimal
set that maximizes

L({sml}) =
∑
m

B(sml)− λ
∑
m

C(sml) (6)

over all possible {sml}, then {s∗ml} maximizes
∑

mB(sml)
over all {sml} such that

∑
mC(sml) �

∑
mC(s∗ml). Hence,

if {s∗ml} solves the unconstrained problem in Eq.(6), then it
also provides the optimal solution to the constrained problem
in Eq.(5), with uLEN =

∑
mC(s∗ml). Since the contributions

to the benefit and cost of all segments are independent and
additive, we can write∑

m

B(sml)− λ
∑
m

C(sml) =
∑
m

(B(sml)− λC(sml)). (7)

From the curves of B(sml) with respect to their corresponding
summary length C(sml), the collection of points maximizing
B(sml) − λC(sml) with a same slope λ produces one un-
constrained optimum. Different choices of λ lead to different
summary lengths. If we construct a set of convex hulls from
the curves of B(sml) with respect to C(sml), we can use a
greedy algorithm to search for the optimum under a given
constraint uLEN. For each point in each convex hull, we first
compute the forward (incremental) differences in both benefits
and summary-lengths. We then sort the points of all convex-
hulls in decreasing order of λ, i.e., of the increment of benefit
per unit of length. Given a length constraint uLEN, ordered
points are accumulated until the summary length gets larger
or equal to uLEN. Selected points on each convex-hull then
define the sub-summaries for each segment.

One major advantage of using this summarization method is
that it allows highly personalized nonlinear story organization
via flexible definition of benefits. In the present paper, the
benefit is defined as

B(sml) =
∑

j∈sml

ImljG(sml, u
P , uT )PCR

ml (u
C , uR)PF

ml, (8)

which includes accumulated semantic importance of selected
clips

∑
j∈sml

Imlj and extra gain G(sml, u
P , uT ) from user

favorite player uP and team uT , and also evaluates narra-
tive preferences on story-telling (e.g., penalty P CR

mj on user
specified story continuity uC , and story redundancy uR).
Satisfaction of general production principles is also evaluated
through the penalty for forbidden cases P F

mj , to avoid frus-
trating visual/story-telling artifacts(e.g., over-short/incomplete
local stories).

VI. EXPERIMENTAL VALIDATION

We organized a data-acquisition in the city of Namur,
Belgium, under real game environment, where seven cameras
were used to record four games. All those videos are publicly
distributed in the website of APIDIS project [35] and more
detailed explanation about the acquisition settings could be
found in [36]. In Fig.7, sample images from these cameras
are given. Performance evaluation of the proposed production
system has been committed based on these videos.

CAM 1       CAM 2       CAM 3       CAM 4       CAM 5      CAM 6       CAM 7

Fig. 7. Sample views gathered by different cameras.

In the following part of this section, we first investigate the
behavior of the proposed criterion for viewpoint selection. We
then present some result summaries, followed by subjective
evaluation results, to verify the capability of our system in
satisfying various user preferences.

A. Behavior of the viewpoint selection criterion

Due to infinite possible configurations of player positions,
it is difficult to evaluate whether the viewpoint selector fulfills
the design goal, by directly inspecting the determined view-
points from a real game video. Here we use an ideal sandbox
case for verifying the behavior of the proposed criterion for
both camera and viewpoint selection.

As depicted in Fig.8(a), we consider a special case where
players are evenly distributed along the 28m long central line
of the basketball court. Those players are of the same height
1.75m and the distance between any two consecutive players is
set to 1m. Accordingly, we have 29 players in total. By moving
a pinhole camera along the circular trail, we collect source
camera views from all angles. The radius of this circular trail
should be large enough, which is 80m here, so as to assure that
the optimal viewpoint is covered by one of these camera views.
Without loss of generality, we assume that we intend to find an
optimal viewpoint for a target display, whose resolution is only
half of that of this pinhole camera. Intuitively, we conclude
that the viewpoint that needs no resampling should have the
same size of the target resolution, which is equivalent to put
the virtual camera 40m away.

For each virtual camera position with a distance ranging
from 5m to 60m, we compute its equivalent viewpoint in
the corresponding source camera view, where positions of
players within this viewpoint are easily computable by using
projective geometry. We then use the proposed criterion to
compute the benefit of this virtual camera position3. We plot
these benefits in Fig.8(b)-(d), by using both the complete form
of the criterion and two incomplete forms with certain terms
missing, which helps us to clarify the exact role of each
term. When only completeness is considered (by omitting β(.)
function and the occlusion term), enlarging the viewpoint to
include more players is always beneficial, which drives the
virtual camera far away (Fig.8(b)). Inclusion of β(.) function
leads to three obvious changes, as revealed by Fig.8(c). 1)
The tendency of enlarging the viewpoint is withheld by the
will to have a larger pixel size for each player, where a
trade-off has been built up; 2) A virtual camera with parallel
optical axis to the ground plane is most favored, since they
increase both the number and the pixel size of visible players,
without considering the occlusion; 3) A circular ridge starts
to appear around 40m. This ridge becomes much clearer in

3Here, the camera weight wk(u
C) is always set to 1, and all players have

the same interest.
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(c) Incomplete form without occlusion
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(d) The complete form of proposed criterion
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(e) The old version we proposed in [4]

Fig. 8. Maps of benefits computed at various virtual camera positions are
plotted in a sandbox ideal case, so as to clarify the role of each term in the
proposed criterion and make comparisons to a previous version in [4].

Fig.8(d), where an even more balanced benefit is computed
by further considering the occlusion term. In Fig.8(d), the
maximal benefit is achieved from virtual cameras with an
oblique view angle to the ground plane, among which those
positions on the 40m circle are further favored so as to avoid
unnecessary resampling, which coincides with our intuitive
understanding and predefined guidelines about the optimal
viewpoint. When the target resolution changes, the optimal
circular ridge moves accordingly, which hence realizes the
personalization against device resolutions.
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Fig. 9. Selected camera index and viewpoint sizes of a 90” long summary
produced under four resolutions, i.e., 160 × 120, 320 × 240, 480 × 360,
640× 480.

In Fig.8(e), we also plot the criterion we proposed in
[4]. Although this old version also built up the balance
between completeness and fineness, it is difficult to determine
the best settings of parameters. Furthermore, due to lacking
normalization of object size in different camera views, this
criterion favors top views more, because they could include
more players with less occlusion. Compared to that, the new
criterion considers the normalization between different camera
views and is thus able to perform more natural camera selec-
tion, owing to the availability of inter-camera correspondence
relations from multi-view analysis. The new criterion has a
clearer meaning for all its terms, which lights up the direction
of future improvements. It also has several guidelines to
calibrate relative strengths of these terms, which helps to tune
parameters and makes it practically more useful.

B. Autonomous production of personalized summaries

A major advantage of this proposed framework lies in that
it provides flexible personalization abilities to satisfy various
user preferences. We first provide some representative results
so as to give the readers an initial idea of the output, and
then depend on subjective evaluation in the next section for
performance validation.

In Fig.9, we investigate the personalization ability in res-
olution adaption by plotting the resultant camera index (in
the upper part of sub-graph) and viewpoint widths (in the
lower part of sub-graph) of a 90” long summary under four
resolutions, i.e., 160×120, 320×240, 480×360, and 640×480.
It is obvious that larger viewpoints have been selected for a
larger resolution. We also observe that the viewpoint sizes are
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Fig. 10. Temporal ranges and view-types of selected clips by using
native game time for two different length constraints, i.e., 4min(upper) and
5min(lower), along with their corresponding clocking events and dominant
players.

maintained in an average level that is close to the resolution,
so as to minimize the quality loss in resampling.

Fig.10 presents two results with different length constraints,
namely, 4min and 5min. Within each sub-graph, we plot the
temporal ranges and view-types of selected clips by using na-
tive game time, along with their clocking events and dominant
players. It reveals that our summarization method does not
simply expand story around pre-detected hot-spots, but intends
to reallocate the time resources to render events of interests,
considering both local and global story-telling.

Interested readers can access more summary samples under
different user preferences at [35]. A demo system including
both the production tool and all required data is also down-
loadable through the above webpage.

C. Subjective Evaluation

Subjective evaluations have been performed separately in
[4] and [6], relating to viewpoint selection and summa-
rization, respectively. Produced results have been evaluated
from both their global impressions and visual/story-telling
artifacts, where the efficiency of each corresponding method
has been confirmed. The main contribution of the paper lies in
integrating our video analysis and production/summarization
components into a fully automatic framework. Therefore,
novel subjective evaluations are performed here to address: 1.)
The relevance of our personalized video production concept;
2.) The efficiency of our proposed implementation in achieving
this personalized production.

Relevance of personalized summarization concept
We interviewed 17 people for their opinions about our

personalized production concept. Interestingly, the panel cor-
responds to a representative set of users since they include
4 content production professionals, 3 sport professionals, 6
basket-ball fans, and 4 computer vision experts. In the ques-
tionnaire (downloadable from the supplemental page [35]), we

considered several content creation scenarios [full game pro-
duction for VoD, summary generation, interactive browsing,
and access to game/players statistics], and asked them to write
down what they would expect from a personalized service
for each application scenario. We also prepared a list of per-
sonalization criteria, including many game actions, statistics
and audio/graphic elements, and asked them to evaluate the
importance of each criterion.

User’s understanding/feeling of personalized summarization
concept has been evaluated before and after playing with our
summarization prototype, which is available in the supplemen-
tal page [35]. Hence, we summarize their feedbacks into two
groups. The a priori opinions collected before playing with
the prototype are summarized as follows:

• All application scenarios envisioned in the questionnaire
(production, summarization, browsing, statistical analy-
sis) are considered to be relevant to at least one kind of
end-user;

• The level of interest of a given user towards a specific
scenario depends on his/her professional background.
Coaches and players are especially interested in statistics
and browsing capabilities. Fans are interested in generic
and personalized summaries. Content production profes-
sionals are primarily interested in raw content provision-
ing at low cost, e.g. for VoD services or to feed the
manual construction of summaries.

• When considering the personalization/browsing criteria,
it appears that recognition of both the action and its
associated players is important. Classification of struc-
tured actions, i.e., selection of actions for which a given
player receives the ball in a particular place, only interests
coaches. Zoomed-in views are of little importance to sport
coaches and players, and only interest content producers,
if sufficient resolution can be preserved.

After having played with the prototype, the following addi-
tional conclusions could be drawn:

• The personalization criteria currently implemented in our
summarization test-bed are considered as being relevant.
However, their implementation effectiveness is generally
evaluated to medium or even low for the replays and
resolution. Based on users oral feedbacks, we conclude
that this is probably due to the fact that (1) the image
quality degrades a lot when zooming-in the picture, and
(2) replays are not properly inserted in the narrative flow.
They are played very fast, and do not always provide a
different point-of-view on the action.

• Additional personalization criteria have been pointed out
by the users, including the opportunity to select a time
period of the game, and the period of the game during
which one specific player was on the field. Sport profes-
sionals pointed out the fact that all criteria listed in the
questionnaire were relevant. Augmenting a top view with
the label of each player would also be useful.

• Audio support and graphics elements (score, timer, etc)
are considered as a fundamental component of the sum-
mary. The absence of those components in our test-bed
has often been pointed as one of its main drawbacks.
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• Most of the interviewees believe that consumers would be
ready to pay for such personalized services. Fans consider
that the services should be part of a provider package.
Content distribution professionals would be ready to pay
a fee to access high-quality contents. Sports professionals
(clubs, managers, coaches, etc) tolerate lower quality
content, but request personalized access mechanisms.

Quantitative evaluation of user satisfaction
Besides the qualitative impression over the prototype, we

also perform a standalone subjective evaluation via ”mean
opinion scores” to provide some quantitative results. We
prepared a webpage as given in [35], which presents 5 groups
of videos under different user-preferences. Viewers were asked
to score the relevance of several personalization criteria, and
also the effectiveness of our implementation in personalizing
the video with respect to each investigated criterion. Both
notions were scored using four ranks, i.e., ”Very High”(=4),
”High”(=3), ”Low”(=2) and ”Very Low”(=1). Five criteria
have been selected, i.e., ”Display Resolution”, ”Replay Inser-
tion”, ”Preferred Event”, ”Preferred Player” and ”Summary
Duration”. We collected answers from 20 persons, and plotted
the mean scores and their standard deviations in Fig.11.

Display 
Resolution

Replay
Insertion

Preferred
Event

Preferred
Player

Summary
Duration

Very 
High
High

Very
Low

Low

Very 
High
High

Very
Low

Low

*Very High=4,  High=3,  Low=2, Very Low=1

Fig. 11. Subjective evaluation results from 20 subjects show that our proposed
implementation is efficient in personalizing videos with respect to several
major personalization criteria.

In the top sub-graph of Fig.11, we present the relevance
of the five factors as personalization criterion, while in the
bottom, we show how user appreciate the effectiveness of our
implementation. We make the following major observations:

• As an overall result, all the five factors are regarded
as highly relevant to personalized production, and our
method is regarded as efficient to personalize the video
with respect to these factors.

• ”Preferred Event” and ”Preferred Player” are rated as two
most important personalization criteria, which coincides
with conventional understanding of personalized video
summaries. ”Display Resolution” is introduced to multi-
view video production, which was less often discussed in
single-view video summarization. ”Replay Insertion” is
an operation against conventional understanding of sum-
marization as producing a concise video of the original
source. Therefore, it is natural to find that they are less
accepted. However, we still observe that these two factors

are rated as ”highly” relevant, which not only validates
our concept of video production from multi-view data,
but also confirms our argument that video summarization
should be regarded as a chance to personalize the contents
rather than simply filtering important events.

• As for our implementation effectiveness, the highest
score is obtained by personalization against ”Preferred
Event”. Our implementation against ”Preferred Player”
is also evaluated as ”highly” efficient. Hence, despite
the possible incompleteness and errors of information of
both events and dominant players, we are still allowed
to provide meaningful results, so as to partially satisfy
users’ semantic preferences.
Our personalized ability against ”display resolution” ob-
tained the second highest score, which proves the effi-
ciency of our production system, including both camera
and viewpoint selection. Our implementation against ”Re-
play Insertion” has the lowest effectiveness, which also
coincides with the overall impressions of those people
after playing with our prototype. In order to improve
the quality of ”Replay Insertion”, we need to have more
accurate localization of beginning and ending points of
events, and consider the proper presentation, e.g., slow
playback, which is left as one of our future work.

Note about computational complexity
Regarding computational complexity, the deployment of a

permanent infrastructure in the spiroudome, a major basketball
stadium in Charleroi, Belgium, has proven the computational
feasibility of our production concept. All stages related to IP
camera image decompression, to player detection, to viewpoint
selection, and to image reconstruction are running in real-time
on a HP server including 2 quad-core processors. The com-
putational complexity of the resource allocation algorithms
involved in the summarization process is known to be small
[6], since selection and organization of local stories only
requires a few hundreds of milliseconds in the summarization
test-bed. One unknown remains regarding the complexity of
player recognition and tracking processes, as well as regarding
the ball detection algorithms. Those stages are important
to complete the information collected on the scoreboard, to
recognize the actions and their key players. Their real-time
implementation is however beyond the scope of this paper.

All the above results demonstrate the relevance and feasi-
bility of the APIDIS sport production concept, but also reveal
a number of challenges that need to be addressed before
lucrative commercial exploitation of the concept. Specifically,
even if the current solution appears to fulfill the expectations
of basket-ball fans for (local) game coverage, it also appears
that improved image quality or more accurate game analysis
solutions are required to fully satisfy the requirements of
content providers and sports professionals, respectively.

VII. CONCLUSIONS

We proposed a framework for producing personalized sum-
maries of basketball videos from multi-sensored data. The
system builds on multiview video analysis to interpret the
game. By taking divide-and-conquer strategy, we efficiently
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solve the problem of viewpoint determination and temporal
segment selection. Especially, we defined the planning rule
of production strategy and flexible criteria for viewpoint
selection, and implemented a real-time production system.

One major contribution of this paper is to integrate our
video analysis and production/summarization components into
a fully automatic framework. Furthermore, an original content
distribution framework that is suitable for large scale deploy-
ment is presented, and subjective experiments are reported to
validate both the semantic relevance and the implementation
effectiveness of our personalization criteria.

Our method for producing personalized video summaries
has four major advantages. Namely, it offers 1.) Strong per-
sonalization opportunities: Semantic clues about the events
detected in the scene can easily be taken into account to adapt
camerawork or story organization to the needs of the users. 2.)
Improved story-telling complying with production principles:
On the one hand, production cares about smooth camera move-
ment while focusing on semantically meaningful actions. On
the other hand, summarization naturally favors continuous and
complete local stories. 3) Computational efficiency: We adopt
a divide-and-conquer strategy and consider a hierarchical
processing, from frames to segments. 4) Generic and flexible
deployment capabilities: The proposed framework balances the
benefits and costs of different production strategies, where
benefits and other narrative options can be defined in many
ways, depending on the application context.

Subjective evaluation also highlighted our future works. In
a near future, we will focus on improving the insertion of
replay/close-up views and the enhancement of image qualities.
Towards a practical media service, insertion of audios and
other supportive information, e.g., on-screen texts and graph-
ics, and implementation of online user interaction for more
flexible content personalization should also be addressed.

All these exploit a way to provide highly personalized
video services to satisfy various user preferences, not only in
basketball game, but also in many other application scenarios.
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