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Abstract 

 This review article presents the collected recent findings and advancements in 

understanding and manipulating the electronic properties of the Au/Ag NP system from the 

standpoint of controlling the characteristics of heterostructured core@shell NPs. The discovery of 

the electronic transfer effect through analysis of both Ag@Au and Au@Ag type NPs inspired the 

analysis of the resulting enhanced properties. First, the background on the synthesis and 

characterization of Ag, Au, Ag@Au, Au@Ag and Au@Ag@Au NPs, which will be used as a 

basis for studying the electronic transfer and stability properties is presented. Next, Mie Theory is 

used to inspect the optical properties of the Ag@Au NPs, revealing subtle structural 

characteristics in these probes, which has implications to the plasmonic properties. This is 

followed by the inspection of the electronic properties of the Au@Ag NPs primarily through XPS 

and XANES analysis, revealing the origins of the electronic transfer phenomenon. The unique 

electronic properties are then revealed to result in improved particle stability in terms of 

susceptibility to oxidation. Finally, an assessment of the resulting enhanced plasmonic sensing 

properties is discussed. The results are presented in terms of synthesis technique, material 

characterization, understanding of the electronic properties and manipulation of those properties 

to create Au@Ag NPs with enhanced resistance to oxidation and galvanic replacement.  
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1. INTRODUCTION 

Nanotechnology is driven by the desire to discover materials with new, unique and 

technologically beneficial properties that can be used in advanced applications. Our knowledge in 

the field has come a long way in a short time, yet there is still much we don’t understand about 

how to control the specific novel properties, which arise as a function of the particle 

characteristics such as size, shape, composition, structure, surface properties, etc. Gold (Au) and 

Silver (Ag) Nanoparticles (NPs) are some of the oldest known examples and have received the 

most attention in terms of synthetic refinement and elucidation of the resulting nanoscale 

properties. Yet there are still important discoveries being made that provide insight on how to 

truly control these novel properties, which can be applied to a broad range of NP systems. Much 

of the knowledge being gained in this area today includes techniques for manipulating the NP 

structure or composition in multicomponent type NPs. Such systems can display multiple 

properties arising from the individual components, but it is the observation of synergistic 

phenomena that is the most intriguing. A good example of this is the Au/platinum (Pt) alloy NP 

system, where it was found that the isolation of Pt atoms in the Au matrix led to an electronic d-



 

band shift at the Pt sites, resulting in enhanced methanol oxidation reactivity, which could not be 

achieved with pure Au or Pt NPs [1]. Building on these types of observed phenomena, 

researchers have begun to probe increasingly complex NP structures, developing systems where 

the individual NPs are composed of multiple components, for example the well-known 

core@shell NP structures [2]. This class of NP has been termed “heterostructured”, reflecting the 

multicomponent nature of the individual NPs. These new NP materials offer multiple parameters 

that can be individually tuned to manipulate the desired NP properties. Several examples have 

emerged of promising heterostructured systems that display multifunctional properties arising 

from the individual components. Heterostructured nanowires (NW)s composed of 

semiconducting core and shell components such as silicon and germanium have been synthesized 

which offer the ability to tune the emission or passivation properties of the materials, opening the 

door to a wide range of photonic and electronic device applications [3]. Tetrapod structured NPs 

composed of cadmium selenide cores with cadmium sulfide arms have been demonstrated to 

possess high photoluminescence efficiencies and large extinction coefficients which are 

promising for bio-diagnostics and bio-molecular labeling applications [4].  

Perhaps the most well-known heterostructured NPs include the coinage metal plasmonic 

NPs. Au and Ag heterostructured NPs are a classic example that illustrates the potential for 

heterostructures to offer enhanced, synergistic or multi-functionality in a single particle [2]. As a 

result, a wide range of structures have been synthesized with the target of controlling the optical, 

reactivity and stability properties [5,6,7]. This class of NP is considered very promising for use in 

molecular sensing and bio-diagnostics applications where the unique plasmonic properties of the 

particles serve as a sensitive route to detecting minute traces of analyte or target molecule [8,9]. 

Ideally speaking, Ag@Au NPs are considered ideal for these applications because the Ag core 

would supply enhanced plasmonic properties (high extinction coefficient) while a Au shell would 

impart bio-molecular reactivity (via sulfur reactivity) as well as chemical stability against 

aggregation and oxidation [5,8,9,10,11]. The ability to obtain this structure however, is elusive 



 

because of the relatively higher reduction potential for Au over Ag, resulting in the galvanic 

replacement reaction [6,7,12,13,14,15]. The end result is typically quasi-core@shell particles that 

have imperfections such as gaps or holes in the Au shell, alloying, or even complete removal of 

the Ag core [5,6,7,12,13,14,16,17]. The inverse structure (i.e. Au@Ag) is also interesting, but has 

traditionally not been considered feasible as a sensing probe because of the exposure of Ag to the 

outside environment, leading to surface oxidation and NP aggregation. However, it has recently 

been shown that careful control of the structure in Au@Ag NPs leads to the observation of 

enhanced properties for the Ag in terms of resisting oxidation and the galvanic replacement 

reaction [15,18,19,20]. The observation is unexpected because many researchers have probed the 

properties for this NP heterostructure without observing the enhanced stability [21]. The key to 

the observation is to control the thickness of the Ag shell in a range where a unique electronic 

transfer from the Au core to the Ag shell can take place [19,20]. Such a finding is of note not only 

because of the potential implications to the development of plasmonic sensors, but also because 

the phenomenon can be applied to other heterostructured NP systems, for example in catalysis, 

magnetics and thermoelectrics applications, among many others. The complete understanding of 

the recently discovered charge transfer phenomenon in Au@Ag NPs has the potential to lead to a 

new class of NPs with unique and novel properties and will provide the necessary insight to 

develop new and unique materials that are composed of abundant and non-toxic elements for 

future high technology applications.  

 

2. SYNTHESIS OF CORE@SHELL NANOSTRUCTURES 

There is a much literature available on various synthesis techniques towards noble and coinage 

metal NPs. As is well known, the most important aspect is the ability to control the size, shape, 

composition, structure and surface properties of the resulting NPs that is of paramount importance. 

The control of these NP characteristics is key because these are what determine the unique 

properties that arise as a result of the nanoscale size of the particles. The unique properties of NPs 



 

are oftentimes highly size dependent and the ability to obtain a desired property is directly linked 

to the ability to control the NP synthesis. While much work has been done elucidating the factors 

that affect NP characteristics through synthetic means, the work presented here focuses on a 

narrow slice in the aqueous wet chemical synthesis of Ag and Au based core@shell NPs. These 

particles serve as a platform to study the resulting unique electronic properties displayed by the 

core@shell structures, the results of which can be readily applied over the entire field of 

nanotechnology. 

 2.0.1. Chemicals used in the Synthesis of NPs. This section lists the chemicals used in 

the experiments throughout this review. Gold tetrachloroaurate trihydrate (HAuCl4·3H2O) 99.9 %, 

silver nitrate (AgNO3) 99.9999 %, sodium acrylate (SA) 97 %, trisodium citrate (SC) 99.0 %, 

sodium chloride (NaCl) 99.0 %, calcium chloride (CaCl2) 96.0 %, hydrochloric acid (HCl) 37 %, 

and common solvents were obtained from Aldrich. 3-amino-1,2,4-triazole-5-thiol (ATT) 98.0% 

was obtained from Tokyo Chemical Industry. Water was purified with a Millipore Direct-Q 

system (18.2 MΩ). 3-aminopropyltrimethoxysilane (APTMS) was obtained from Wako Pure 

Chemical Industries and was used to functionalize the surface of glass slides as a substrate for 

Raman analysis. Dialysis membranes with molecular weight pore size of 10,000 daltons were 

obtained from Spectra/Por and were rinsed in pure water before use. 

2.0.2. Instrumentation and Measurements. Techniques including transmission electron 

microscopy (TEM), High Resolution TEM (HR-TEM), Scanning TEM equipped with a High 

Angle Annular Dark Field detector (STEM-HAADF), Energy Dispersive Spectroscopy (EDS) 

elemental mapping, X-Ray Photoelectron Spectroscopy (XPS), Dynamic Light Scattering  (DLS), 

X-Ray Absorption Near Edge Structure (XANES), Raman spectroscopy and Ultraviolet-visible 

spectroscopy (UV-Vis) were used to characterize the size, shape, composition and other 

properties of the NPs. TEM analysis was performed on an Hitachi H-7100 instrument operated at 

100 kV. HR-TEM and EDS analysis was performed on an Hitachi H-9000NAR transmission 

electron microscope operated at 300 kV. STEM-HAADF and EDS elemental mapping were 



 

performed on a Jeol JEM-ARM200F operated at 200 kV with a spherical aberration corrector, the 

nominal resolution is 0.8 Å. Samples for TEM, STEM-HAADF and EDS elemental mapping 

were prepared by dropping the suspended NPs onto a carbon coated copper grid and drying in air 

overnight. XPS analysis was carried out on a Shimadzu Kratos AXIS-ULTRA DLD high 

performance XPS system. Photoelectrons were excited by monochromated Al Kα radiation. 

Detection was done with a delay-line detector (DLD) and a concentric hemispherical analyzer 

(CHA). The X-ray tube was operated at 150 W. The pass energy of the CHA was 20 eV for 

narrow-scan spectra. The analyzed area on the specimen surface was 300×700 μm
2
 and was 

located in the center of the irradiated region. For the sample preparation, the precipitated NPs 

were deposited on carbon tape and dried in air. The instrument was operated at a vacuum level of 

1×10
8

 Torr. Raman spectra were obtained with an Ar
+
 laser (wavelength 514.5 nm, power 50 

mW), using a Horiba-Jobin Yvon Ramanor T64000 triple monochromator equipped with a CCD 

detector. The nonpolarized Raman scattering measurements were set under a microscope sample 

holder using a 180° backscattering geometry at room temperature. The laser spot diameter was 1 

μm. An acquisition time of 60 seconds per spectrum was used with averaging of 3 spectra per 

analysis area. UV-Vis spectra were collected in the range of 300 to 1100 nm using a Perkin-

Elmer Lambda 35 UV-Vis spectrometer. 

 Au L2,3-edge XANES spectra were recorded at beam line BL01B1 of SPring-8 [19]. The 

photon energy was calibrated by the distinct peak in the differential spectrum of Au foil at the Au 

L3-edge as 11.919 keV. The energy step of measurement in the XANES region was 0.3 eV. Both 

the ion-chambers were filled with N2(85%)/Ar(15%) (I0) and Ar (transmission mode), and the 

Lytle’s detector was filled with Kr (fluorescence mode) and was operated at room temperature. 

NP samples for XANES analysis were adsorbed onto a boehmite (Wako) substrate, diluted with 

boron nitride (Wako), grained and pressed to a pellet (10 mm). Au foil was used as a reference 

for the bulk metallic Au. The obtained XANES spectra were analyzed using the Rigaku REX2000 

software (ver. 2.5.7). The pre-edge background subtracted spectra were normalized to the edge 



 

jump at the center of EXAFS oscillation following a linear background subtraction, which was 

taken to the value of the atomic background at 13.815 and 12.050 keV, for the L2- and L3-edges, 

respectively. Estimation of the d-orbital electron density was carried out according to Mansour’s 

method [22] as follows; The While Line (WL) feature in the L2-edge is related to the 2p1/2  5d3/2 

dipole-allowed transition while that of the L3-edge is due to the 2p3/2  5d5/2 and 5d3/2 dipole-

allowed transitions, resulting from the spin-orbit interaction of the d states [23]. Therefore, 

integration of these transitions reflects the number of holes in the 5d5/2 and 5d3/2 orbitals above the 

Fermi level as shown in Figure 1A. 

 

Changes in the numbers of holes in the d3/2 and d5/2 orbitals from those of bulk Au,  

bulk,2/3NP,2/32/3 =Δ hhh －  and bulk,2/5NP,2/52/5 =Δ hhh － , were expressed as 
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where bulkj,NPj,j =Δ AAA －  is the difference values between NPs and bulk, and Aj is the edge 

area for the Lj-edge XANES spectrum (eV·cm
1

). C = 75213 eV·cm
1

 is the characteristic 

constant of the absorption [22,24]. 

The total width of the WL feature depends on the lifetime of the core hole, the 

experimental resolution, the dipole-transition matrix element, and the distribution of the density 

of states of unoccupied d band at the Fermi level of the metal [25,26]. However, the first three 

factors can be considered to be uniform for the L2,3-edge WLs [25,26]. To correlate the relative 

area of the WL to the d-electronic structure, the difference spectrum between the L3- and the L2-

edge XANES spectra of the Au foil was plotted in Figure 1B. A single distinct peak in the 



 

difference spectrum is observed in accordance with previous observations [24]. The area in the 

range from 10 eV below the X-ray absorption edge (E0 = 0 eV) to 13 eV above the E0 was cut off 

for calculating the d-hole density [22]. For the values of h3/2,bulk and h5/2,bulk, 0.118 (atom
1

) and 

0.283 (atom
1

) were used [27]. The occurrence of holes was explained by the spin-orbit splitting 

and s-p-d hybridization effects [25,27,28,29,30] despite no 5d holes in unperturbed Au (electron 

configuration [Xe]6s
1
4f

14
5d

10
). 

 

2.1 Synthesis of Ag NPs 

Two types of Ag NPs suspended in water were synthesized as core NPs for the further deposition 

of Au. Acrylate capped Ag NPs offer high NP size and shape uniformity, which has historically 

been challenging to achieve with an aqueous synthetic technique. The citrate capped Ag NP 

synthesis technique offers relatively larger sized Ag NPs as compared to the Acrylate technique at 

the expense of particle size and shape uniformity.  

2.1.1. Synthesis of Acrylate Capped Ag NPs. The ability to synthesize Ag NPs with 

controllable characteristics such as size, shape and surface properties is still elusive, especially for 

sensing and bio-diagnostics applications which call for mono-dispersed hydrophilic NPs. The 

hydrophilic Ag NPs synthesized here are noteworthy for enhanced mono-dispersity in the 20 nm 

size range [5], and as a result are used as cores for the further deposition of Au in later 

experiments. Briefly, 50 ml of water was used to dissolve 1.2510
−5

 moles of AgNO3, and then 

6.7510
−6

 moles of NaOH were slowly added to the solution, which results in a dilute yellow-

colored suspension of Ag(OH)2
- 
[5]. This solution is purged with argon and is then brought to 

reflux. At reflux, 2.5510
−4

 moles of SA are added, causing the suspension to turn completely 

clear. The solution is refluxed for 1 hour, during which time the color changes from clear to 

green-yellow and finally to amber-yellow. The as-synthesized Ag NPs were purified before use 

by the dialysis method. In this approach, NaOH was added, which typically leads to insoluble 

Ag2O, a black or brown material. However, the relative concentration of Ag is very low, allowing 



 

the formation of an Ag(OH)2
-
 compound [5]. This precursor allows a degree of control over the 

rate of nucleation and subsequent growth of Ag NPs, which typically is a challenge. In a synthesis 

where all of the Ag is available from the start of the reaction, as the particles form and grow in 

size the Ag is used up, changing the Ag precursor concentration and the kinetics of the reaction, 

which results in non-mono-dispersed NPs. The Ag(OH)2
-
 serves as a regulatory source of Ag, 

resulting in more uniform Ag NPs. Figure 2A shows a TEM image of the as-synthesized Ag NPs 

capped by acrylate. The particle size distribution is 20.5 ± 3.3 nm (16% deviation) and represents 

a significant improvement in the mono-dispersity of these particles at this size range over other 

preparation techniques. UV-Visible spectroscopy in Figure 2B shows the resulting UV-Vis 

spectrum with an SPR maximum at 416 nm, consistent for Ag NPs. The Ag NP concentration is 

7.28×10
11 

M and the extinction coefficient is 2.11×10
10 

M
1

cm
1 

[5].  

 2.1.2. Synthesis of Citrate Capped Ag NPs. Ag NPs capped in citrate molecules were 

synthesized to obtain relatively larger Ag NPs [18]. Briefly, 50 ml of a 1 mM solution of AgNO3 

was prepared in a 100 ml round flask. This solution is then purged with argon and stirred with 

heating until reflux. Next, 1 mL of a 3.4×10
-3

 mM aqueous solution of SC is added to the 

refluxing AgNO3 solution. The solution is refluxed for 1 hour. After about 3 minutes of boiling, 

the solution turned yellow, and after about 5 minutes it turned gray-yellow and became opaque. 

The reaction solution was cooled to room temperature after 1 hour of refluxing, the opaque 

dispersion was then centrifuged at 4000 rpm for 30 minutes. After centrifugation, the upper part 

of the solution became a transparent yellow color. The upper part of the solution was removed 

and contains the final citrate capped Ag NPs used in experiments. Figure 3 shows the TEM image 

and UV-Vis spectrum collected for the as-synthesized NPs, illustrating the general morphology 

and optical properties. In general the particles have a spherical morphology with a minor fraction 

of nanorods also being incorporated. The SPR maximum occurs at 403 nm, consistent for Ag NPs, 

the particle size distribution is 39.4 ± 6.5 nm. 

2.2 Synthesis of Au NPs 



 

Two different sizes of Au NPs were prepared using the basic citrate reduction technique [31,32]. 

These relatively small and large NPs were prepared for two different purposes, the small NPs 

(~13 nm diameter) are primarily used as cores for the further coating with Ag to create 

core@shell NPs while the larger Au NPs (~43 nm diameter) are used for comparison of the 

plasmonic properties among different core@shell samples.  

 2.2.1. Synthesis of Small Au NPs. Au NPs were synthesized by the well-established 

citrate reduction method to be used as cores for the further formation of Au@Ag NPs [31,32]. 

Briefly, an aqueous solution of HAuCl4·3H2O (50 ml, 1.2510
−5

 moles HAuCl4·3H2O) is 

vigorously stirred and heated to reflux at 100 °C. Next, an aqueous solution of SC (0.5 ml, 0.17 

moles SC) is added to the reaction solution. Refluxing is continued for 1 hour. The light yellow 

Au solution turns immediately clear and after 5 minutes the color changes to purple, slowly to 

dark purple and over time becomes a wine red colored solution. After refluxing, the mixture is 

cooled to room temperature and used without further processing. The Au NPs are a deep-red 

color with a LSPR band at 518 nm. Figure 4 shows the representative TEM and UV-Vis spectrum 

for the particles. The particles have a uniform and spherical morphology with a mean diameter of 

14.2 ± 0.7 nm [20]. 

 2.2.2. Synthesis of Large Au NPs. For the synthesis of relatively larger Au NPs, the 

general procedure followed is the same as above, but a much smaller ratio of SC is added [18]. 

An aqueous solution of HAuCl4·3H2O (50 mL, 1.2510
−5

 moles HAuCl4·3H2O) was vigorously 

stirred and heated to reflux at 100 °C. Then, an aqueous solution of SC (0.5 mL, 1.710
−11 

moles 

SC) was added to the reaction solution. Refluxing was continued for 1 hour. The light yellow Au 

solution turned immediately clear and after 5 minutes the color changed to purple, slowly to dark 

purple and over time became a light red/pink colored solution. After the refluxing, the mixture 

was cooled to room temperature and used for experiments without further processing. Figure 5 

shows the TEM and UV-Vis spectrum collected for the Au NPs, illustrating the general 

morphology and optical properties. In general the particles have a spherical morphology with a 



 

particle size distribution of 43.1 ± 4.3 nm. The SPR maximum occurs at 525 nm, consistent for 

Au NPs [18]. 

 

2.3 Synthesis of Ag@Au NPs 

The effort to achieve the ideal Ag@Au NP structure has been highly elusive. Many studies have 

probed synthetic techniques including both organic and aqueous solvent based wet chemical 

methods, with mixed results. The galvanic replacement reaction causes a competition in the 

reduction of Au with the oxidation of the Ag core during typical deposition procedures. Careful 

control of the synthetic parameters in these reactions has led to the creation of quasi Ag@Au NPs 

with non-uniform structures such as NPs with partially hollow interiors, limited alloy formation, 

or non-continuous Au shells [5,9,10]. Sometimes the galvanic replacement reaction has been 

taken advantage of to create hollow Au structures templated from the original Ag NP core [6,7].   

 2.3.1. Synthesis of Acrylate Capped Ag@Au NPs. The acrylate capped Ag@Au NPs 

were synthesized as a platform to study the resulting plasmonic and structural properties for this 

class of nanomaterial [5]. Briefly, 50 ml of the dialyzed acrylate capped Ag particles (7.28×10
11 

M Ag NPs) are brought to reflux and 10 ml of a HAuCl4·3H2O solution (ranging from 6.25×10
7

 

to 3.13×10
6

 moles according to the thickness of the Au shell desired) and 10 ml of a SA solution 

(from 5.10×10
5

 to 2.55×10
4 

moles) are added drop-wise simultaneously. The solution color 

changes depending on the amount of Au added. In general, as Au and SA is added to the Ag NPs, 

the color changes from yellow-amber to dark amber to grey to grey-purple and finally to purple.  

Table 1 lists the metallic feeding ratio, moles of Ag and Au used in each synthesis as well as the 

resulting NP size as determined by TEM and composition determined from EDS and XPS. The 

primary difference between the EDS and XPS techniques is that EDS could be used to determine 

the composition of several different particles individually, then an average was taken, while for 

XPS a relatively large beam area results in simultaneous analysis of many particles at the same 

time. 



 

 Figure 6 shows a series of TEM images of the synthesized Ag@Au NPs. The NPs 

synthesized with atomic feeding ratio of 5% Au reveals particles with a uniform spherical 

morphology. For the Ag@Au NPs synthesized with an atomic feeding ratio of 15% Au, the 

particles retain the spherical morphology, but now several particles are observed that appear to 

have a light spot on the particle surface. These lighter colored spots arise from the formation of an 

incomplete Au shell on the Ag particle surface, a gap or hole in the Au shell occurring as a result 

of the galvanic replacement reaction [6,7]. Figure 7 shows a collection of Ag@Au NPs 

synthesized with 15% feeding ratio Au exhibiting a hole in the Au shell. Increasing the feeding 

ratio to 25% Au leads to many particles with a light center and thick dark outside. Now the 

particles seem to have adopted roughly hexagonal or pentagonal shapes, likely reflecting the 

tendency of Ag nanocrystals to be oriented in the twinned structure, templating the growth of Au 

at the surface. It is important to note that while the NPs synthesized with 15% Au feeding ratio 

show gaps or holes in the Au shell, they are still core@shell NPs, albeit with structural 

imperfections. This core@shell nature can be readily observed in a TEM study where an intense 

electron beam was applied to a single particle, as shown in Figure 8. The core@shell morphology 

is observed through the rupture of the Au shell, and the bursting (boiling) of the Ag core 

contained inside. As the particle is irradiated with a progressively stronger electron beam, the Au 

shell starts to peel back from the hole in the particle surface. The formation of a diamond shape in 

the shell indicates splitting of the Au shell. Finally the Au shell ruptures completely, causing the 

Au shell to collapse to a smaller dark ring. In addition the light material surrounding the remains 

of the Au shell is the Ag metal that has melted under the intense beam and has seeped to the area 

surrounding the particle. Such an observation is an excellent visual diagnostic for assessing the 

core@shell structure. 

UV-Vis spectra and photographs of the Ag@Au NPs are shown in Figure 9, with the 

parent Ag core NP data included for reference [5,14]. In general, the color changes from a pale 

yellow, to slightly amber-yellow, and finally to purplish, for 5, 15 and 25% feeding ratio of Au, 



 

respectively. It is important to note that these samples were all stable for several months of 

storage at ambient conditions with no signs of precipitation or changes in the coloring of the 

solution, which is aided by the removal of the excess reactants after synthesis. The UV-Vis 

spectra reveal an evolution in the plasmonic properties for the NPs as the amount of Au is 

increased in each sample. In general, the SPR band is slightly dampened in intensity for a feeding 

ratio of 5% Au. For a feeding ratio of 15% Au, the peak is significantly dampened, the peak is 

shifted to higher frequency and a new peak around 600 nm has emerged arising from Au. Finally 

for a feeding ratio of 25% Au, the Ag component of the SPR is completely dampened and only a 

broad peak is observed from the Au component.  

 2.3.2. Synthesis of Citrate Capped Ag@Au NPs. The as-synthesized citrate-capped Ag 

NPs were used as core particles in the synthesis of relatively larger sized Ag@Au NPs [18]. 

Briefly, the Ag NP dispersion (50 mL) is brought to reflux with stirring, and then HAuCl4·3H2O 

(8.31×10
7

 moles, 10 mL, 0.0831 mM) and SC (8.49×10
4

 moles, 10 mL, 0.849 mM) are 

simultaneously added dropwise. The reaction solution is refluxed for 1 hour. The yellow colored 

solution turns slightly orange after the coating of Au onto the Ag core. After refluxing, the 

mixture is cooled to room temperature and used for further experiments. Figure 10 shows the 

TEM image and UV-Vis absorption spectra of the as-synthesized Ag@Au NPs. The LSPR peak 

wavelength occurs at 423 nm with a single non-symmetrical shape observed between that for Ag 

and Au (only slightly shifted from the orginal Ag peak position) indicating the coating of Au onto 

the Ag NPs. The TEM image shows that the NPs have a roughly spherical morphology (a minor 

fraction of nanorods forms in the Ag NP synthesis but the occurrence is too low to significantly 

impact the optical properties). In addition, slightly darker rings outside the lighter spherical 

centers are observed indicating the formation of a Au shell on the Ag NP surfaces [5]. The mean 

size and size distributions 43.9 ± 7.9 nm for Ag@Au NPs. 

 EDS mapping analysis was conducted to study the relative positions of Ag and Au within 

the individual Ag@Au NPs [18]. Figure 11 shows the high angle annular dark field (HAADF) 



 

image and the elemental mapping images for Ag, Au and an overlay of both. In general the dark 

field image reveals NPs with a dense outer shell and a relatively less dense inner area. When 

comparing this image to the Au map it is shown that a majority of the Au exists at the periphery 

of the NPs, which is expected for the formation of an Au shell. However, the Ag map also shows 

several particles with relatively less Ag in some particle centers. This can be attributed to partial 

etching of the Ag cores as Au is added in the coating procedure. While some etching may take 

place, a majority of the Ag remains, with a coating of Au forming over it, as can be observed in 

the overlay map of Ag and Au showing many particles with a majority of Ag concentrated inside 

the NPs and a majority of the Au concentrated at the periphery (shell) of the NPs. 

 

2.4 Synthesis of Au@Ag NPs 

The as-synthesized citrate-capped Au NPs were used as core particles (seeds) in the preparation 

of Au@Ag core@shell NPs [15,20]. The Au NP dispersion (20 ml) was brought to reflux with 

stirring, and then 5 ml of a 20 mM solution of AgNO3 (1.010
−4

 moles) and 5 ml of a 13.5 mM 

solution of SC (6.7510
−5

 moles) were simultaneously added dropwise. The reaction solution was 

refluxed for 20 minutes and then left to cool to room temperature. As a major advantage of the 

seed-mediated synthesis, the Ag shell thickness of the resulting Au@Ag core@shell NPs can be 

finely controlled by varying the amount of AgNO3 added to the reaction solution. The Ag shell 

thickness of Au@Ag core@shell NPs was controlled by adding different amounts (0.3, 0.7, 1.8, 

and 3.2 ml) of 20 mM AgNO3. Figure 12 shows the TEM images collected for each sample, 

revealing the four different Ag shell thicknesses obtained, including 0.40.3, 1.00.6, 2.20.4 

and 3.60.4 nm, which correspond very closely to the theoretical shell thickness (0.45, 1.09, 2.29, 

and 3.48 nm, respectively) calculated from the metallic feeding ratio. The Ag shell thickness is 

expressed in the subscript hereafter, e.g. Au@Agx; x denotes the Ag shell thickness. Table 2 lists 

the size parameters of the NPs. It is noteworthy to point out that the resultant Au@Ag NPs are 

highly mono-disperse in terms of size and shape in comparison to Ag NPs synthesized by 



 

comparable reduction methods. The UV-Vis spectra of all Au@Ag core@shell NPs are shown in 

Figure 13. When x was increased, the LSPR band gradually became blue-shifted, with the LSPR 

peak of Ag eventually becoming dominant. Finally, the Au@Ag3.6 NPs show a single LSPR peak 

at 390 nm, which stems from the plasmon resonance of the Ag shells. The appearance of a 

monomodal LSPR band corresponding to Ag indicates that the Au cores are uniformly covered 

by the Ag shell and the optical contribution from the Au cores is completely screened. The 

significant blue-shift of the LSPR peak appearing in the Ag shell of the Au@Ag core@shell NPs 

suggests a higher electron density in the Ag shells than that of pure Ag NPs due to an electron 

transfer from the Au core to the Ag shell [33]. 

 To provide definitive characterization of the core@shell nature of the Au@Ag NPs, 

STEM-HAADF imaging and EDS elemental mapping were performed [20]. Figure 14 shows a 

STEM-HAADF image of a single Au@Ag3.1 NP as well as the corresponding two dimensional 

maps for Au and Ag in the particle. The high degree of atomic number (Z) based contrast offered 

by the STEM-HAADF technique allows the relative position of Au and Ag in the NP to be 

directly observed. The Au core is observed as the bright central region of the particle while the 

Ag appears as a lighter uniform halo around the brighter core. In addition, the EDS mapping 

result shows the relative locations of Au and Ag within the particle. Mapping of the Au M region 

is shown in green while the Ag L region is shown in red. By overlapping the two maps it is 

observed that the Au is located in the center of the particle area (the core) while the Ag is found 

on the outside (the shell). The collective EDS mapping and STEM-HAADF results provide 

definitive evidence of the Au@Ag structure of the particles. 

2.4.1. Effect of Charge Transfer in the Galvanic Replacement Reaction. The galvanic 

replacement reaction is driven by the difference in the electrochemical potential between the two 

metals, with one serving as the cathode and the other as the anode. Regarding the general 

preparation of Ag@Au NPs, the reduction potential of AuCl4

/Au (0.99 V vs SHE) is more 

positive than that of AgCl/Ag (0.22 V vs SHE) [34]. Hence, Ag NPs serve as sacrificial templates 



 

being oxidized by HAuCl4 according to Equation (1). This reaction is initiated locally at a high-

energy site (e.g., surface step, point defect, or hole in the capping layer) [35] rather than over the 

entire surface. In the case that Au@Ag NPs are used as cores, however, the Ag shells are 

expected to have a higher electron density than Ag NPs due to electron transfer from the Au core 

to the Ag shell. The electron rich Ag shell results in a negative oxidation state, Ag
δ

, and thus, 

may lead to effectively suppress the galvanic replacement reaction. Xia and coworkers also 

claimed a similar result in which a higher potential was required to oxidize Ag atoms contained in 

a Ag-Au alloy [34]. It was also reported that when the molar ratio of Au to Ag is more than 0.17, 

the galvanic reaction was hindered, indicating that a higher Au content can protect Au-Ag alloy 

NPs against galvanic etching [36]. Very possibly, the addition of Au changes the Ag reduction 

potential and alters the oxidative relationship between Ag
0
 and AuCl4


. With respect to 

core@shell NPs, Liz Marzán and coworkers have synthesized Au@Ag, Au@Ag@Au and finally 

Au@Ag@Au@Ag multishell NPs using a similar synthetic approach to the present scheme [21]. 

In their approach however, the deposited intermediate Ag shell thickness was much greater than 

our own (ca. 32 nm), which resulted in the formation of hollow structures with partial alloying 

when the Au shell was deposited. In our own study, the intermediate Ag shell thickness is limited 

to the range where the charge transfer phenomenon takes place, allowing the ability to create 

Au@Ag@Au NPs without significant alloying or defects in the structure. 

 

3Ag(s) + HAuCl4(aq) → Au(s) + 3AgCl(s) + HCl(aq) (1) 

 

2.5 Synthesis of Au@Ag@Au Double Shell NPs 

This section describes the synthesis of Au@Ag@Au double shell NPs. The results illustrate the 

ability to control the thickness of the second Au shell deposited as well as the unusually uniform 

resulting particle structure. The uniform particle morphologies arise as a result of the suppression 



 

of galvanic replacement though electronic transfer in the Au-Ag system, which is more fully 

explained in the later sections. 

2.5.1. Synthesis of Au@Ag3.6@Au0.11 NPs. For the synthesis of (Au@Ag3.6)@Au0.11 

double shell NPs, a 20 ml as-synthesized Au@Ag3.6 core@shell NP dispersion is refluxed with 

stirring until boiling, and then HAuCl4·3H2O (0.1 ml, 15 mM and SC (5 ml, 13.5 mM) are 

simultaneously added dropwise. The reaction solution is refluxed for 10 minutes and then left to 

cool to room temperature. After being coated by the second Au shell (theoretical thickness 0.15 

nm), the LSPR peak is slightly redshifted by about 10 nm indicating the formation of a thin Au 

shell onto the Ag surface. In Figure 15A, a TEM image of Au@Ag3.6@Au0.11 double shell NPs is 

shown. The Au@Ag3.6@Au0.11 double shell NPs are more uniform in size and shape when 

compared to typical Ag@Au NPs [37]. Moreover, they have no observable gaps or defects in the 

particle structure. When comparing the optical properties of Ag, Au@Ag3.6 and 

Au@Ag3.6@Au0.11 NPs as shown in the UV-Vis spectra in Figure 15B, it can be observed that the 

spectral shape as well as the peak maxima changes. When Ag is coated onto the Au NPs, the SPR 

band maxima shifts to lower wavenumbers than that for pure Ag NPs. The band also becomes 

broadened at higher wavenumber values. When these Au@Ag3.6 NPs are further coated with the 

second Au shell, the peak again shifts towards higher wavenumbers and retains the broadened 

spectral shape.  

To further confirm the formation of the Au second shell, STEMHAADF imaging and 

EDS elemental mapping were carried out for the Au@Ag3.6@Au0.11 double shell NPs [15]. Figure 

16 shows the STEMHAADF image (high Z contrast) of the Au@Ag3.6@Au0.11 double shell NPs. 

Since the heavier Au atoms (atomic number, Z  79) give rise to a brighter image than the lighter 

Ag atoms (Z  47) in the dark field image, the Au core appears brighter than the Ag first shell. 

One can see a very bright eggshellthin layer on the Ag first shell. The thickness of the thin layer 

is 0.11 nm, which agrees well with the theoretical value (0.15 nm) calculated based on the 

amount of Au precursor added. This indicates that a thin continuous Au second shell was 



 

successfully formed on the Au@Ag3.6 NPs. The EDS mapping result also clearly indicates that 

the resulting NPs have a Au@Ag3.6@Au0.11 double shell structure. 

2.5.2. Synthesis of Au@Ag3.9@Au1.2 NPs. A thicker coating of Au onto a  Au@Ag3.9 NP 

surface was achieved by following the above procedure and adding HAuCl4·3H2O (0.625 ml, 15 

mM) and SC (5 ml, 13.5 mM) simultaneously dropwise [15]. Figure 17 shows a representative 

TEM image for the as-synthesized NPs. The NPs retain a sperical morphology with a size of 23.0 

 1.9 nm with an intermediate Ag layer of 3.9 nm thickness and 1.2 nm second shell thickness for 

Au.  

The particles display a clearly defined structure, which is elucidated using STEM images 

and the EDS elemental maps shown in Figure 18. The STEM image clearly shows the higher 

density Au in the particle center, with a less dense intermedaite layer from Ag, coated by a final 

second more dense layer of Au. The elemental maps further support the structural analysis with 

the Au L map showing Au existing in the NP center and the periphery, while the Ag L map shows 

a majority of the Ag in the intermediate space between the Au core and second Au shell. The 

overlay of these maps displays the relative positions for each metal in the NPs. Table 2 lists the 

size parameters of the double shell NPs. 

 

3. MIE MODELLING OF THE PLASMONIC PROPERTIES OF Ag@Au NPS 

Heterostructured Ag@Au core@shell NPs have been highly sought because of the expected 

enhanced plasmonic and reactivity properties, however, even for samples that seem to have a 

uniform structure, the optical properties do not always behave predictably. Mie Theory is a useful 

tool that can serve to clarify the resulting expected optical properties for this class of NP, 

enhancing the understanding of the particle structure and plasmonic properties relationship [14]. 

An important factor that must be considered is the parameters used in the calculation, which can 

have a large impact in the modeled results. The calculations here are based on Mie Theory for 

nanosized metallic spheres placed in water (dielectric constant = 1.77). In the theory, the metallic 



 

dielectric function p
2
/ifor the sphere is incorporated, where p is the plasmon 

frequency depending on the specific metal. This approach differs from other well established 

modeling efforts in that the dielectric constant of the materials is expressed by the Drude Model 

as opposed to calculated from bulk materials using Energy Electron Loss Spectroscopy (EELS) 

[33]. The Drude Model offers an alternate approximation of the dielectric constants for nanoscale 

particles and provides an alternate expression of the optical properties for Ag@Au NPs [14]. The 

results in this section elucidate the challenges associated with attaining the ideal Ag@Au NP 

structure and provides a foundation for seeking alternate ways to control the particle stability and 

electronic properties to attain core@shell NPs with more uniform structures.  

 

3.1 Mie Study of the Acrylate Capped Ag@Au NP Optical Properties 

Three different models were used in the Mie calculations to elucidate the fine structural properties 

of the NPs [14]. Scheme 1 shows the models used with Mie theory to study the optical properties 

of the acrylate coated Ag@Au NPs, the corresponding realistic structures associated with each 

ideal model are also shown. Three models were used to represent the particle structures. Model I 

represents a Ag core with a complete coating of Au at the surface that corresponds to a realistic 

structure with thin and potentially non-uniform thickness of Au shell. Model II represents a Ag 

core, surrounded by a void space (water medium) which is completely encapsulated by a Au shell, 

corresponding to a realistic structure with Ag core exposed to the outside environment (water) 

and incomplete Au shell. Finally Model III is for a void space encapsulated by a layer of Ag 

which is further encapsulated by a layer of Au.  This model corresponds to a realistic structure of 

a Ag core only partially in contact with the Au shell and a void space existing inside the particle.   

When model 1 is considered, a thin coating of Au on the Ag core, a single prominent 

peak is observed in the Mie Modeling that shifts in position as a function of the relative size of 

the Ag core and the thickness of the Au shell. Figure 19 shows a comparison between the Mie 

Modeled optical properties for the core@shell Model 1 structure and an alloy. Functionally 



 

speaking, the Mie results cannot solely be used to distinguish between the alloy and core@shell 

structured NPs because the spectral features of both types of NP are identical. This supports the 

notion that for very small dimensions (i.e. the nanoscale) there is a blurring of the lines between 

“phase segregated” and “alloy”. In this case, the relative Au shell is too thin to display the 

properties of bulk Au, resulting in plasmonic properties more akin to an alloy than for a phase-

segregated structure.  

 When Model II and III are considered, the UV-Vis spectra are significantly changed. 

Figure 20 shows the two sets of UV-Vis spectra calculated using Mie theory with the model II 

and III structures for the Ag@Au NPs. The insets to the spectra illustrate the structure used for 

the calculation as well as the structural parameters used. Model II represents Ag@Au NPs with 

an Ag core separated from the Au shell by a void space. These spectra show two primary peaks, 

the feature in the range of ~400-500 nm is attributed to the Ag core while the one at ~650-900 nm 

is attributed to the Au shell.  The weak shoulder peak ranging between ~200-350 nm is attributed 

to the SPR band arising from the inner surface of the Au shell. As the size of the isolated Ag 

particle at the center of the structure is increased, the spectral component from Ag becomes more 

predominant while the Au component decreases in intensity and shifts to higher wavelength.  

Model III represents Ag@Au NPs with a central void space, then a layer of Ag coated by a layer 

of Au. In this case, a single broad feature is observed in the range of ~500-700 nm with two low 

intensity peaks in the range of ~200-300 nm. These low intensity peaks arise from the Ag-Au 

interface and the inner surface of Ag, while the primary broad peak arises from the outer surface 

of Au. This primary peak shifts to higher wavelength and decreases in intensity as the void space 

is increased in size and the Au layer is decreased in thickness.   

 The variation in the spectral shape allows a diagnostic comparison between 

experimentally collected spectra for acrylate capped Ag@Au NPs and the Mie theory calculated 

spectra. By qualitatively matching the two types of spectra, the general structural quality of the 

as-synthesized NPs can be determined. Figure 21 shows the UV-Vis spectra for three different 



 

compositions of acrylate capped Ag@Au NPs along with the closest matching UV-Vis spectrum 

calculated using Mie theory. The insets to Figure 21 show the idealized structure used and a 

corresponding TEM image for an individual Ag@Au NP exhibiting the realistic core@shell 

structure. For the Ag@Au NPs synthesized with atomic feeding ratio of 5% Au (Figure 21A), 

Model I with parameters of R1=0.7 and R2=1 shows the best fit, which reflects a very thin and 

perhaps non-continuous Au shell. For the Ag@Au NPs with atomic feeding ratio of 15% Au 

(Figure 21B), Model II with parameters of R1=0.3, R2=0.45, and R3=1 provides the best fit 

(though the spectra do show significant deviation, it is the spectral features that the fitting is 

based on).  This reflects the fact that some particles display gaps in the Au coating, exposing the 

inner Ag, causing two peaks to be observed in the UV-Vis spectrum. Finally for the Ag@Au NPs 

with atomic feeding ratio of 25% Au (Figure 21C), Model III with parameters of R1=0.6, R2=0.8, 

and R3=1 shows the best fit. This reflects the action of Au etching away some of the Ag core 

leaving a void space within the particle, with Au eventually forming a continuous shell over the 

core area.  

The results indicate that when Au is coated onto pure Ag NP cores, inherently irregular 

structures result. The degree of imperfections in the structure can vary considerably by changing 

the reaction conditions such as amount of Au precursor added, temperature of reaction or addition 

of excess reducing agent, however the imperfections such as gaps in the Au shell or hollow 

spaces in the NP interior could never be eliminated because the galvanic replacement reaction 

could not be completely suppressed. The results illustrate the challenge associated with forming 

structurally controllable Ag@Au NPs. While the optical properties of these probes are potentially 

interesting and useful, the inability to eliminate the structural imperfections precludes the 

particles from practical use because the optical properties are inherently non-controllable and the 

NP stability in the presence of chloride ion would be poor. In response, the study inspires a new 

route towards Au/Ag based NPs with controllable optical/reactivity properties.   

 



 

4. ELECTRONIC PROPERTIES OF Au@Ag NPS 

The challenges associated in achieving a structurally ideal Ag@Au NP system led to a search for 

new strategies in creating Ag and Au based NPs with unique and controllable optical properties 

[15]. While the Ag@Au structure is popularly considered the “best” candidate to display strong 

optical/plasmonic properties as well as high chemical stability and bio-molecular reactivity, other 

less studied structures should also be considered. In addition, understanding of the interaction 

between Ag and Au in the NP synthesis procedure is important for controlling the resulting 

particle composition, structure, morphology, etc. With this in mind, it is known that a charge 

compensation mechanism occurs in the Au-Ag alloy system that leads to a depletion of d 

electrons at the Au site accompanied by an increase in d electrons at the Ag site [24,38]. In 

addition, a study on the Ag-Pt system where Ag adatoms were vapor-deposited onto a Pt(111) 

surface were found to increase d electron populations [39]. In light of these results, the electronic 

and chemical properties of the Ag component in an inverted Au@Ag particle structure could be 

tuned by taking advantage of the charge compensation mechanism. By increasing the electron 

density within the Ag shell, a negative Ag oxidation state would be achieved which could 

suppress the galvanic replacement reaction at the Ag shell surface and increase stability against 

oxidation. In order to probe the theory, Au@Ag NPs were synthesized, which inherently do not 

experience the galvanic replacement reaction. The NPs were studied using XPS and XANES 

techniques to explore the electronic properties of the Au and Ag particle components. The key to 

probing the charge compensation mechanism is to limit the Ag shell thickness to a range where 

the interfacial phenomenon can be observed.   

 

4.1 XPS Analysis of the Electronic Characteristics 

The electronic charge transfer phenomenon was studied in the citrate capped Au@Ag and 

Au@Ag3.6@Au0.11 NPs first by using XPS [15]. Figure 22 shows the high resolution XPS 

corelevel spectra of Ag, Au@Agx, and Au@Ag3.6@Au0.11 double shell NPs. The Ag 3d core 



 

levels are split into 3d3/2 and 3d5/2 spinorbit pairs. Taking a closer look at the asymmetrically 

broadened 3d5/2 component, the overlapping peaks can be deconvoluted by using two Gaussian 

functions corresponding to Ag
0
 and AgAu alloy (or Ag oxide) components. In the case of pure 

Ag NPs, the 3d5/2 component could be deconvoluted into Ag
0
 (peak at 368.26 eV) and Ag oxide 

(peak at 367.8 eV) as shown in Figure 22B. On the other hand, in the cases of Au@Agx NPs, the 

3d5/2 component could be divided into Ag
0
 (peak at 368.180.03 eV) and AgAu alloy (peak at 

368.50.03 eV) (Figure 22B). Importantly, no Ag oxide peak exists in the Au@Agx NPs even 

though the Ag first shell is exposed to the outside. The Au 4f area was also plotted as shown in 

Figure 22C. In support of the electronic transfer phenomenon, all of the Au@Agx NPs also 

exhibit a positive shift in the Au 4f BE (ca. 0.1 eV) compared to that of pure Au NPs which can 

be visualized by the addition of the vertical line in the Au 4f7/2 area in Figure 22D.  

The Ag
0
 3d5/2 peak energy is plotted as a function of x as shown in Figure 23. All 

Au@Agx NPs exhibit a negative shift in the Ag
0
 3d5/2 BE compared to that of pure Ag NPs 

(368.26 eV). Moreover, the Ag
0
 3d5/2 BE increases toward the value of pure Ag NPs with 

increasing x when x  1.0 suggesting that the charge transfer is an interfacial phenomenon. 

Interestingly, the deposition of the second Au shell onto the Ag surface again causes the reduction 

of Ag
0
 3d5/2 BE indicating further electron transfer between the Au second shell and the Ag first 

shell.  

The XPS analysis on Au@Agx and Au@Ag3.6@Au0.11 NPs clearly illustrates that the 

general electronic properties of the two metals are modified in the core@shell structure and gives 

a basis for enhanced resistance to oxidation of the Ag shell, or the ability to deposit a second shell 

of Au [15]. This enhancement in the properties arises from the idea that the Ag shell becomes 

electron rich, however to understand the phenomenon more deeply, the charge transfer 

mechanism should be more fully understood. In order to gain a more diagnostic assessment of the 

charge transfer mechanism, XANES analysis was used to study the Au@Ag type NPs, offering a 

more rigorous understanding of the electronic transfer phenomenon.  



 

 A more in depth study of the XPS spectral line shape revealed an asymmetric broadening 

to higher binding energy in the Ag3d peaks which is attributed to the screening of a core hole by 

metallic conduction electrons [40]. The peak tailing can be described by the Doniach-Sunjic line 

shape, providing a more accurate fitting of the spectral data than simple multiple Gaussian 

functions. The asymmetry of the spectral shape is dictated by the screening constant of the core 

holes by gapless metallic excitations. For the Au@Agx NPs, this asymmetry factor is dependent 

on the Ag shell thickness, being more pronounced for thin Ag layers, which reinforces the 

interfacial nature of the phenomenon [40].  

 

4.2 XANES Analysis of the Electronic Structure 

XANES has been increasingly used to study the electronic properties for a wide range of 

materials including NPs. The technique has been employed to study the relationship between 

oxidation state and catalytic activity in catalysts [41,42,43], redox behavior [44,45,46], and for 

following the formation mechanism of metal NPs [47,48,49]. In this section of the study on the 

electronic properties for heterostructured Au@Ag NPs, the L-edge XANES analysis provides 

critical information on the charge transfer effect. In particular, the Au@Ag and Au@Ag@Au NPs 

are revealed to possess a unique electronic configuration in the Au L2,3-edge XANES spectra.  

The citrate capped Au@Ag and Au@Ag@Au NPs were analyzed using the XANES 

technique [19]. Figure 24 shows the XANES spectra in the Au L2- and L3-edges for Au foil, Au 

NPs, Au@Ag1.0 NPs and Au@Ag3.9@Au1.2 NPs. All spectra showed the same resonance patterns 

as that of Au metal. In particular, the Au foil and Au NPs showed almost identical XANES 

spectra both in L2- and L3-edges. A gradual increase of the threshold resonance at the shoulder 

peak occurs in the order Au NPs < Au@Ag1.0 NPs < Au@Ag3.9@Au1.2 NPs in L2- and L3-edges. 

The increase in the WL area in the L2- and L3- edge XANES spectra can be attributed to the 

decrease in 5d occupancy [50]. 



 

To further investigate the unoccupied d states, all relevant parameters were derived and 

listed in Table 3. Although small differences were detected in the hole densities between Au NPs 

and Au foil, it is reasonable to assume that there is relatively no electronic difference between 

them because the Au NPs have a relatively large diameter (14.4 nm) which is too large to exhibit 

size-dependent effects [51,52,53,54]. The values of both ∆h3/2 and ∆h5/2 increased in the Au@Ag 

core-shell NPs when compared to the Au NPs. From Au@Ag1.0 core-shell NPs to the 

Au@Ag3.9@Au1.2 double-shell NPs, a further increase in both ∆h3/2 and ∆h5/2 was observed. This 

trend is a clear indication that the electron transfer from Au to Ag takes place in the 

heterostructured NPs. 

A visual representation of the change in both d-orbital vacancy (∆h3/2 + ∆h5/2) and energy 

shift of the Au 4f7/2 XPS peak is shown in Figure 25. In the cases of Au@Ag1.0 and 

Au@Ag3.9@Au1.2 NPs, an increase in the total d-orbital vacancies and a positive energy shift in 

the 4f7/2 peak were clearly observed. Importantly, both of them increase with increasing Ag-Au 

interfacial area. On the other hand, it has been previously observed that a negative shift in the Ag 

3d peak energy occurs for both Au@Ag1.0 and the Au@Ag3.9@Au1.2 NPs when compared to bare 

Ag NPs [15]. The collective results of XANES for Au and XPS for Au and Ag clearly illustrated 

that a unique charge transfer from Au to Ag occurs through the formation of a Au@Ag core-shell 

structure, and which is enhanced by Au outer-shell formation. It is expected that the electronic 

and chemical properties of the Ag shell can be tuned by coupling the Ag shell to the Au core due 

to a charge transfer that increases electron density within the Ag shell yielding a negative Ag 

oxidation state which suppresses the oxidation of the Ag shell [15].  

 

5. ASSESSMENT OF THE STABILITY OF NPs 

In this section, the relative stability of the various NPs are studied when exposed to a range of 

electrolytes. The ability to elucidate the stability properties of these NPs is vitally important in 

terms of oxidation and aggregation because these play a large role in affecting the sensing 



 

properties. For example, the detection of many biomolecules requires a salt concentration 

approaching that of biological levels, which typically induces aggregation of the NP sensing 

probes, or in the case of chloride containing electrolytes, oxidation of the Ag component of the 

particles. The relative stability of Ag@Au NPs is breifly appraised, followed by a more in-depth 

look at the stability for the Au@Ag type NPs.  

 

5.1 Stability of Ag and Ag@Au NPs Exposed to NaCl 

One of the main expected advantages of Ag@Au NPs is an enhanced chemical stability compared 

to Ag NPs. The chemical stability of Ag and Ag@Au NPs in the presence of NaCl was studied to 

illustrate the clear difference in particle stability between these two types of probe. Ag NPs were 

first exposed to three different types of chloride containing electrolytes to demonstrate the severe 

instability. Figure 26 shows the representative TEM images obtained after 24 hours for adding 

NaCl (Fig. 26A), CaCl2 (Fig. 26B) and HCl (Fig. 26C). The Cl

/NP concentration ratio is fixed at 

2.110
6
 for each sample to standardize the relative amount of Cl


 ions available to react with Ag 

in each system. Each sample experienced the oxidative etching effect as evidenced by the 

appearance of large aggregates, larger particle sizes and overall a loss of particle dispersity. In 

these cases, the Ag has been completely oxidized and converted to AgCl through the oxidative 

etching process.  

The understanding of the well known oxidative etching phenomenon that is responsible 

for the instability of Ag NPs exposed to chloride ions and atmospheric oxygen can give insight 

into how to limit the effect. In general, the oxidative etching process consists of three steps. First, 

metallic Ag becomes oxidized in the presence of oxygen as illustrated in Equation 2 [33,55]. Next, 

the silver oxide reaches an equilibrium state with the surrounding aqueous medium creating silver 

and hydroxide ions as shown in Equation 3 [33,56]. Finally, the Cl

 ions in the system react with 

the Ag ions to form insoluble AgCl, shown in Equation 4 [57]. In this way, as long as there is a 

sufficient supply of oxygen and Cl

 ions, a sample of Ag can be completely oxidatively etched 



 

away, leading to AgCl. For our Ag NP sample, this readily occurs in the presence of each Cl-

containing electrolyte system, leading to complete destruction of the original Ag NPs, forming 

non-disperse AgCl.  

 

 O(s)Ag→O
2

1
Ag2 22

0   (2) 

 －OH2Ag2↔OHO(s)Ag +
22    (3) 

 AgCl(s)→ClAg+ －  (4) 

 

To illustrate how the core@shell particle structure may protect Ag containing NPs from 

the oxidative etching phenomenon, a separate study was conducted where where 50 μL of NaCl 

solution (4.8 mM) was added to 1 mL of NP dispersion, then TEM images were taken after 1 

hour of reaction [18]. Figure 27 shows the TEM images of the Ag@Au NPs taken before and 1 

hour after adding the NaCl. The Ag@Au NPs retain the original morphology, qualititatively 

indicating that the Ag@Au NPs exhibit a superior stability as compared to the monometallic Ag 

NPs, despite the fact that gaps or holes exist in the Au shell. While the core@shell particle 

structure in this case is imperfect, the charge transfer effect is still operable, working to protect 

the remaining particle structure.  

 

5.2 Stability of Au@Ag NPs Exposed to Cl Containing Electrolytes 

The relative stability of the Au@Ag3.1 NP probes was tested more rigorously by exposing them to 

various electrolytes, including chloride containing salts and acid including NaCl, CaCl2 and HCl 

[20]. Addressing the stability of this class of NP probe in the presence of such electrolytes is 

essentially important, because the detection of many bio-molecules typically requires a buffer 

solution which contains significant amount of chloride containing electrolyte/salt including NaCl, 

KCl, CaCl2, MgCl2, and HCl [58], for example DNA will not denature without the presence of 

biological levels of salt. In addition, the exposure of Ag to the ambient atmosphere as well as 

chloride anions (Cl

) is well known to lead to oxidative dissolution of the Ag, destroying Ag 



 

based particles. The formation and ultimate understanding of how to manipulate the particle 

stability, optical, and electronic properties is expected to lead to more ready accessibility of 

highly active and robust NP probes for practical bio-molecular sensing and diagnostics 

applications.  

 The stability of the Au@Ag NPs was examined by exposing the NPs to NaCl, CaCl2 or 

HCl [20]. Figure 28 shows the TEM images acquired for Au@Ag NPs exposed to the three 

different electrolytes with a Cl

/NP concentration ratio of 2.110

6
. In each case it can be observed 

that the NPs maintained a spherical morphology. For NaCl the NPs remain well despersed while 

for CaCl2 or HCl, the particles appear to be partly aggregated, oftentimes forming chainlike 

structures. While the particle morphology remained spherical, the mean particle size decreased 

for each sample. For NaCl, the NP size decreased to 18.8 ± 1.6 nm (a Ag shell thickness of 2.3 

nm), CaCl2 showed a size of 16.1 ± 1.2 nm (a Ag shell thickness of 1.0 nm) while for HCl the 

particle size is about 15.6 ± 0.6 nm (a Ag shell thickness of 0.7 nm). While a sufficient amount of 

chloride was used to completely convert all of the Ag in the samples to AgCl (an order of 

magnitude more Cl

 than Ag for a ratio of 2.110

6
), a large amount of elemental Ag appears to 

remain at the particle surface. The fact that the Ag shell thickness could not be completely 

eliminated suggests that a critical Ag layer thickness exists where the electron transfer 

phenomenon inhibits all oxidative etching, despite the amount of Cl

 added. In the case for NaCl, 

the retained NP stability in terms of resistance to aggregation has implications to bio-molecular 

sensing, especially in cases where high amounts of salt are required, for example in DNA 

detection where hybridization only occurs at salt levels of at least 0.05 M [8].  

 While the TEM results indicate that the NPs retain the general morphology properties the 

structure cannot be directly observed. To elucidate how much Ag metal remains at the Au@Ag3.1 

particle surface after interaction with chloride containing electrolyte, STEM-HAADF and EDS 

elemental mapping were used. Figure 29 shows the STEM-HAADF image and the elemental 

mapping results for Au and Ag for the NPs exposed to NaCl. It can be observed in the STEM-



 

HAADF image that the Au core still exists at the center of the particle after exposure to NaCl and 

more significantly that the Ag shell is still observed as the less bright halo at the particle 

periphery. The elemental mapping shows that the Au is contained in the particle interior while the 

Ag remains at the particle surface. The results show that the Au@Ag NPs retain their structural 

and compositional integrity, even after exposure to relatively high levels of NaCl [20].  

 STEM-HAADF and EDS elemental mapping were also used used to study the Au@Ag 

NPs exposed to CaCl2 [20]. Figure 30 shows the morphology, structure and composition results 

for the Au@Ag NPs exposed to CaCl2. In the STEM-HAADF image, the Au particle cores 

retained their morphological integrity as evidenced by the observation of the brighter spheres in 

the image. Some Ag also remains as evidenced by the less bright material observed between the 

Au cores. The elemental mapping shows that the Au is still confined to the particle interior (the 

core) while the material between the particles is Ag. A small amount of Ag is also observed as a 

thin layer at the particle periphery exposed to the outside medium. The images suggest that the 

individual Au cores are fused together with the remaining Ag.  

 Finally, for the case of exposing the Au@Ag3.1 NPs to HCl, the STEM-HAADF and 

EDS elemental mapping analysis reveal a similar structure/morphlogy to the CaCl2 case [20]. 

Figure 31 shows the STEM-HAADF and elemental mapping images taken for the Au@Ag NPs 

exposed to HCl. In the STEM-HAADF image a chain of fused NPs is observed with the Au cores 

appearing as the brighter spheres and the remaining Ag appearing as the less bright material 

between the Au cores. Some smaller particles are also observed in this image indicating that some 

AgCl particles formed through the oxidative etching process. The elemental mapping images 

confirm that the Au remains in the particle center (the core) while the material between the fused 

particles is Ag, with a thin layer of Ag remaining on the outside of the particles exposed to the 

outside medium. Chlorine was not observed, but a faint blue color can be observed in the overlay 

image (Fig. 31D) in the area surrounding the NP chain which indicates the presence of a faint 

amount of adventitiously adsorbed oxygen (mapping of the oxygen K line).  



 

 In general, the Au@Ag NPs showed enhanced stability when exposed to each of the 

different types of Cl-containing electrolytes, mainly because the first step in the oxidative etching 

process (Equation 2) is suppressed due to the electron transfer from the Au core to the Ag shell 

leading to a negative oxidation state for Ag. For the case of NaCl, the NPs resisted both 

aggregation and oxidative etching. For CaCl2 and HCl cases, the particles displayed aggregation 

due to the de-protection of Au@Ag NP surfaces owing to the different effects of cations, but still 

resisted oxidative etching of the Ag shell. It is important to note that in all cases the Ag shell 

thickness was reduced after exposure to the different electrolytes, but a crital shell thickness 

exists where further etching appears to be suppressed, supporting the fact that the electron 

transfer effect is an interfacial phenomenon.  

 

5.3 Stability of Au@Ag3.6@Au0.11 Double Shell NPs 

The stability of Au@Ag3.6@Au0.11 double shell NPs was assessed in the presence of NaCl (0.5 

M). In this case, the morphology was completely preserved (Figure 32) as a result of both the 

more negative Ag oxidation state and the fact that the Au second shell effectively protects the Ag 

first shell from contact with Cl

 ions. This suggests that the chemical stability of the 

Au@Ag3.6@Au0.11 NPs is extremely high even under severe conditions. The mean size of 

Au@Ag3.6@Au0.11 NPs before exposure to NaCl was 21.9  1.2 nm as compared to 21.7  1.6 nm 

3 hours after exposure to NaCl, indicating that these NPs are highly stable in the presence of even 

very high levels of salt [15].  

 

6. ASSESSMENT OF THE MOLECULAR SENSING PROPERTIES 

In this section, the basic sensing properties for the core@shell NP probes is discussed. The results 

provide a preliminary assessment of the general plasmonic sensing properties. These sensing 

properties are probed primarily using the Raman analysis technique to identify well known 

reporter molecules. While the NPs used in these studies have not been optimized in terms of 



 

particle size, shape or structure for the analysis, they nevertheless illustrate the ability to 

manipulate the particle parameters to achieve enhanced Raman activity. Ag is often considered 

the best SERS substrate because it has the largest optical cross section for any metal [18,20].  

However, Ag NPs are often disadvantageous for use as sensing probes because of the propensity 

for oxidation, leading to non-reproducible sensing results [18,20]. To illustrate the enhanced 

properties of the heterostructured NPs (i.e. Ag@Au and Au@Ag NPs), the results in this section 

include the Ag NP sensing properties for comparison to the heterostructured NP results.  

 

6.1 Assembly of the NPs Using Raman Active Molecules 

The analysis relies on the assembly of the various NPs using two kinds of Raman active 

molecular linker systems with different chemical properties [18]. For the first linker system, 

rhodamine 6G dye (R6G) is used, relying on electrostatic interactions in the adsorption of the 

molecule to the NP surface. The second linker system used is a thiol containing molecule, 3-

amino-1,2,4-triazole-5-thiol (ATT), which adsorbs to the NP surface via the sulfur functionality. 

Figure 33 shows the structure of these two types of Raman active linker molecule. Both 

molecules lead to spontaneous assembly of the different NP systems, which can be manipulated 

by controlling the concentration of ionic electrolytes in the assembly solution. The resulting 

aggregates exhibit Raman activity which is used to assess the general sensing properties of the 

various NP probes.  

 

6.2 Molecular Sensing Properties of Citrate Capped Ag@Au NPs 

The citrate capped Ag@Au NP probes were assembled using either R6G or ATT molecules, then 

the assemblies were rinsed with pure water and were dropped onto an APTMS-coated glass 

substrate [18]. The deposited NP assemblies were dried in air overnight, then Raman 

measurements were conducted. Figures 34A and 34B show the Raman spectra of NP assemblies 



 

using R6G and ATT, respectively. In the case of R6G, primary and secondary peaks were 

observed at 1650 and 1357 cm
1

 (both of which correspond to the C-C stretching vibration of the 

benzene ring) with several other weak bands. In this case Ag NPs show the highest SERS 

intensity as compared to other NP probes. In the case of ATT, the SERS spectra showed an 

intense band at 1340 cm
1

 along with weak bands occurring at 1080, 1257 and 1417 cm
1

. 

  The SERS activities of these samples were quantified for direct comparison by 

calculating the relative enhancement factor for both samples [18]. In the case of R6G, the 

enhancement factor for Ag NPs (4957) was approximately 4 times higher than that of Ag@Au 

NPs (1157). This result suggests that the Au shell attenuates the Raman enhancement effect of the 

Ag core. On the other hand, in the case of ATT, Ag and Ag@Au NPs show nearly equal 

enhancement factors. The calculated enhancement factors for Ag and Ag@Au NPs are 23.5 and 

19.5, respectively. These results can be explained on the basis of the different chemical nature of 

the two reporter molecules and on the mechanism of interaction with the NP surfaces. In the R6G 

system, the screening of electrostatic repulsion is responsible for the aggregation. All NPs are 

capped by negatively-charged citrate ions, and thus, the interaction strength between NP surfaces 

and R6G are the same regardless of composition of the NPs. In the ATT system, however, the NP 

assembly occurs via metal-sulfur bonding on the surface of particles followed by the electrostatic 

interaction between the negatively-charged citrate ions on the NP surfaces and positively-charged 

amine groups in ATT molecules. Because the Au-S interaction is stronger than Ag-S interaction, 

the number of ATT molecules adsorbed on the surface of a single Ag@Au NP is expected to be 

larger than that on a Ag NP. In the calculation of enhancement factor, it is assumed that the 

surfaces of NPs are completely covered by ATT molecules regardless of the type of NP. In reality, 

however, the number of ATT molecules in the Ag@Au NP assembly would be much larger than 

that in the Ag NP assembly. That is, Ag NPs essentially have the highest Raman enhancement 

factor and Ag@Au NPs have a lower enhancement factor than Ag NPs likely due to the 

attenuation effect of the Au shell. Nevertheless, Ag@Au NPs exhibit nearly the same SERS 



 

intensity as Ag NPs when the linker molecule contains a thiol group. The most common means of 

the conjugation of biorelevant molecules onto metal NP surfaces is the utilization of metal-sulfur 

bonding, which is one reason why Ag@Au NP probes are competitive with Ag NP probes in 

terms of  sensitivity. 

 

6.3 Molecular Sensing Properties of Au@Agx and Au@Ag3.6@Au0.11 NPs  

The enhanced electronic properties observed for the Au@Ag NP structure make them intriguing 

as plasmonic probes for molecular/biomolecular sensing applications. In this section a breif 

assessment of the plasmonic sensing properties for the Au@Ag NP probes is presented. The 

sensing properties of these NP probes was tested with an experiment where Ag and Au@Ag NPs 

(1 mL of each) were exposed to NaCl (a Cl

/NP concentration ratio of 2.110

7
) and ATT (0.005 

mM total ATT concentration, a large excess) [18]. After 24 hours of exposure, the precipitated 

NPs were gently rinsed with pure water to remove excess reactants, and then were dropped onto 

an APTMS coated glass substrate. The samples were dried in ambient conditions and were 

analyzed using Raman spectroscopy. Five different sample areas were inspected for both Ag and 

Au@Ag NP samples. Figure 35 shows the resulting Raman spectra collected for each sample. For 

the Ag NPs, a single broad peak with varying intensity is observed centered at about 1345 cm
-1

 

while for the Au@Ag NPs, three distint peaks with relatively uniform intensity are observed at 

about 1270, 1355 and 1420 cm
-1

. The Raman spectra collected for the Au@Ag NPs is 

characteristic for ATT laying flat on a metal surface through bidentate bonding arising from the 

triazole ring vibrations [59,60]. Because of the tendency for Ag NPs to be oxidatively reduced 

towards AgCl, the band observed at about 1345 cm
-1

 for the Ag NP sample probably originates 

from ATT molecules weakly adsorbed onto AgCl surfaces having a perpendicular orientation. 

Despite this, if it is assumed that the bands observed at 1345 and 1355 cm
-1

 for Ag and Au@Ag 

NPs are characteristic for ATT, the standard deviation associated with the intensity at the maxima 

of the peaks in each sample can be assessed. For the Ag NP case the average intensity was found 



 

to be 93 ± 38 counts/sec while for the Au@Ag NPs the intensity is 207 ± 20 counts/sec. The Ag 

NPs show an intensity deviation of about 41% while the Au@Ag NPs have a deviation of only 

10%. The experimental results show that the Au@Ag NPs display a reliable and reproducible 

sensing capability in the presence of salt and demonstrates the feasibility of using these materials 

in applications such as biomolecular detection that demand the presence of a high amount of 

electrolytes such as NaCl.  

The Raman activity of the Au@Ag and Au@Ag3.6@Au0.11 NPs was further investigated 

using ATT [18,20]. It was found that the SERS activity dramatically increases with increasing x 

in the case of the Au@Agx NPs [20]. Figure 36 shows the increasing Raman activity of the 

Au@Agx NPs as well as the comparatively high activity of the Au@Ag3.6@Au0.11 NPs. The 

results illustrate the effect of increasing the Ag content in the particles which possess a high 

extinction coefficient and extremely high field enhancement. Moreover, the Au@Ag3.6@Au0.11 

NPs exhibited a SERS activity as high as that for Au@Ag3.6 NPs, indicating that the Au shell is 

operable in creating a strong reaction with the reporter molecule through the thiol functionality.
 

 

7. FUTURE OUTLOOK 

The realization that heterostructuring in multicomponent NP systems offers an effective route for 

more closely controlling the resulting enhanced properties has led to a surge in interest in these 

materials. The ability to understand and manipulate the nanoscale phenomena through the NP 

structure will be an important advancement in integrating nanotechnology to the mainstream. In 

particular, the observation of the electronic transfer phenomenon in Au/Ag core@shell NPs is an 

important step in enhancing our ability to manipulate the novel properties of NPs for other 

important applications. The charge transfer effect has been demonstrated to be operable in the 

Au/Ag NP system, the plasmonic and stability properties of which can be greatly strengthened 

through careful manipulation of the NP structure, yet the true value of electronic transfer will be 

delineated in studies of other heterostructured systems. The phenomenon has the potential to 



 

impact and lead to great advancements in the fields of catalysis, thermoelectrics, solar materials, 

magnetics and many other areas of high technology that stand to benefit from the incorporation of 

nanotechnology. As our understanding of how nanoscale phenomena operate, the drive to tailor 

or control the resulting NP properties will be a key necessity. The electronic transfer phenomenon 

will be one important tool for the future materials scientist in achieving that goal.  
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TABLES: 

Table 1. Metallic Feeding Ratio, Moles of Ag and Au, TEM Determined Size and EDS/XPS 

Determined Compositions for Ag@Au NP samples. (Reproduced from reference 14). 

 
Metallic 

Feeding Ratio 
Moles Ag Moles Au 

TEM Size 

(nm) 
EDS XPS 

Ag95Au5 1.25×10
5

 6.25×10
7

 17.5 ± 3.7 Ag93.0Au7.0 Ag94.8Au5.2 

Ag85Au15 1.25×10
5

 1.88×10
6

 16.3 ± 2.7 Ag60.6Au39.4 Ag57.7Au42.3 

Ag75Au25 1.25×10
5

 3.13×10
6

 17.5 ± 5.1 Ag50.8Au49.2 Ag60.6Au39.4 

 

Table 2. Mean diameter and shell thicknesses of NPs. (Adapted from reference 15). 

Type of NPs x (nm) y (nm) D (nm) 

Au − − 14.4  0.7 

Au@Ag0.4 0.4  0.3 − 15.2  0.7 

Au@Ag1.0 1.0  0.6 − 16.4  1.2 

Au@Ag2.2 2.2  0.4 − 18.8  0.8 

Au@Ag3.1 3.1  0.4 − 20.6  1.2 

Au@Ag3.6 3.6  0.4 − 21.6  0.9 

Au@Ag3.6@Au0.11 3.6  0.4 0.11 21.8  1.2 

Au@Ag3.9@Au1.2 3.9  0.7 1.2 23.0  1.9 

x: Ag first shell thickness, y: Au second shell thickness 

 

 

Table 3. Derived parameters for the unoccupied d states. (Reproduced from reference 19). 

Samples ∆A2 
(eV·cm1) 

∆A3 
(eV·cm1) 

∆h3/2 h3/2 ∆h5/2 h5/2 ∆h3/2+∆h5/2 

Au foil* 0 0 0 0.118 0 0.283 0 

Au NPs 157.1 148.5 6.3×103 0.124 5.5×103 0.278 7.8×104 

Au@Ag1.0 NPs 383.0 617.2 1.5×102 0.133 1.6×102 0.299 3.1×102 

Au@Ag3.9@Au1.2 

NPs 
516.0 1340.6 2.1×102 0.139 3.7×102 0.320 5.7×102 

*
Data from Ref. 27. 

 

FIGURE CAPTIONS: 

 

Scheme 1. The Mie Theory Modeled and Realistic Ag@Au Structures. (Reproduced from 

reference 14, Copyright 2011 Japan Society of Applied Physics). 

 

Figure 1. (A) Schematic illustration of the Au L2,3-edge XANES spectra and the corresponding 

electronic transitions. (B) Au L2,3-edge XANES spectra and the difference spectrum in the case of 

Au foil. (Reproduced from reference 19, Copyright 2012 the American Chemical Society). 

 
Figure 2. TEM (A) and UV-Vis spectrum (B) of as-synthesized Ag NPs capped with acrylate. 

(Adapted from reference 5). 



 

 

Figure 3. TEM (A) and UV-Vis spectrum (B) of larger sized as-synthesized Ag NPs capped 

with citrate. (Adapted from reference 18, Copyright 2011 American Institute of Physics). 

 

Figure 4. TEM (A) and UV-Vis spectrum (B) of as-synthesized smaller sized Au NPs capped 

with citrate. (Adapted from reference 20, Copyright 2012 IOP Publishing). 

 

Figure 5. TEM image (A) and UV-Vis spectrum (B) of as-synthesized larger sized Au NPs 

capped with citrate. (Adapted from reference 18, Copyright 2011 American Institute of 

Physics). 

 

Figure 6. TEM images of Ag@Au NPs with atomic feeding ratio of: 5% Au (A), 15% Au (B), 

and 25% Au (C). (Reproduced from reference 5). 

 

Figure 7. Additional TEM images for Ag@Au NPs synthesized with an atomic feeding ratio of 

15% Au showing NPs with gaps or holes in the Au shell of the nanostructures (indicated with 

arrows). 

 

Figure 8. TEM electron beam radiation study for a single Ag@Au NP synthesized with atomic 

feeding ratio of 15% Au revealing the core@shell structure. (Reproduced from reference 5). 

 

Figure 9. UV-Vis spectra for Ag and Ag@Au NPs prepared with increasing Au content, as-

synthesized Ag NPs (black spectrum), 5% Au atomic feeding ratio (red), 15% Au atomic feeding 

ratio (blue) and 25% Au atomic feeding ratio (green). The inset shows photographs of the Ag and 

Ag@Au NPs with increasing shell thickness from left to right. (Adapted from reference 14, 

Copyright 2011 Japan Society of Applied Physics). 

 

Figure 10. TEM image (A) and UV-Vis spectrum (B) of as-synthesized Ag@Au NPs capped in 

citrate with relatively larger size. (Adapted from reference 18, Copyright 2011 American Institute 

of Physics). 
 

Figure 11. STEM-HAADF (A) and EDS elemental mapping images of citrate capped Ag@Au 

NPs for Au M map (B), Ag L map (C) and an overlay of the Au and Ag maps (D). The scale bar 

in (A) applies to all images. (Adapted from reference 18, Copyright 2011 American Institute of 

Physics). 
 

Figure 12. TEM images for Au@Ag NPs synthesized with increasing Ag shell thickness: 0.4 (A), 

1.0 (B), 2.2 (C), 3.1 (D) and 3.6 (E) nm. (Adapted from reference 15 and 20, Copyright 2011 

American Institute of Physics and 2012 IOP Publishing). 

 

Figure 13. UV-Vis spectra for as-synthesized Au@Ag NPs with varying Ag shell thickness, the 

arrows represent the dampening of the Au SPR band with a concurrent increase in the SPR band 

intensity for Ag as the Ag shell thickness is increased. The inset to the figure shows a photograph 

of the Au, and Au@Agx NPs with Ag shell thicknesses of 0.4, 1.0, 2.2, and 3.6 nm, from left to 

right. The data for Au NPs is included for comparison. (Adapted from reference 15 and 20, 

Copyright 2011 American Institute of Physics and 2012 IOP Publishing). 

 

Figure 14. STEM-HAADF (A) and EDS elemental mapping images of Au@Ag NPs for Au M 

map (B), Ag L map (C) and an overlay of the Au and Ag maps (D). The scale bar in (A) applies 

to all images. (Reproduced from reference 20, Copyright 2012 IOP Publishing). 

 



 

Figure 15. TEM image for Au@Ag3.6@Au0.11 NPs (A) and UV-Visible spectra (B) for Ag (black 

curve), Au@Ag3.6 (red curve) and Au@Ag3.6@Au0.11 (blue curve). (Adapted from reference 15, 

Copyright 2011 American Institute of Physics). 

 

Figure 16. STEM-HAADF (A) and EDS elemental mapping images of Au@Ag3.6@Au0.11 NPs 

for Au M map (B), Ag L map (C) and an overlay of the Au and Ag maps (D). The scale bar in 

(A) applies to all images. (Reproduced from reference 15, Copyright 2011 American Institute of 

Physics). 

 

Figure 17. TEM image of Au@Ag3.9@Au1.2 NPs. 

 

Figure 18. STEM-HAADF (A) and EDS elemental mapping images of Au@Ag3.9@Au1.2 NPs for 

Au L map (B), Ag L map (C) and an overlay of the Au and Ag maps (D). The scale bar in (A) 

applies to all images. (Reproduced from reference 15, Copyright 2011 American Institute of 

Physics). 

 

Figure 19.  UV-Visible spectra calculated using Mie theory for alloy AgAu NPs (A), and for 

Ag@Au NPs with the Model I structure (B). (Reproduced from reference 14, Copyright 2011 

Japan Society of Applied Physics). 

 

Figure 20.  UV-Visible spectra calculated using Mie theory for Ag@Au NPs using Model II (A), 

and Model III (B). (Reproduced from reference 14, Copyright 2011 Japan Society of Applied 

Physics). 

 

Figure 21. UV-Visible spectra for the three different types of Ag@Au NPs synthesized along 

with the corresponding best fit spectra calculated using Mie theory for atomic feeding ratio of 5% 

Au and Model I (A), atomic feeding ratio of 15% Au and Model II (B), and atomic feeding ratio 

of 25% Au and Model III (C), respectively. (Reproduced from reference 14, Copyright 2011 

Japan Society of Applied Physics). 

 

Figure 22. XPS spectra of Ag, Au@Agx (x  0.4, 1.0, 2.2 and 3.6), and Au@Ag3.6@Au0.11 double 

shell NPs in the Ag3d (A) area with an expanded view of the Ag3d5/2 component (B). XPS spectra 

in the Au4f area are shown in (C) with an expanded view of the Au4f7/2 area (D). The 

deconvolution shown for the Ag3d5/2 area corresponds to Ag
0
 (blue curves) and Ag@Au alloy 

(red curves) [or Ag oxide (red dashed curve)] components. The blue line in (D) aids in visualizing 

the subtle peak shift. (Adapted from reference 15, Copyright 2011 American Institute of Physics). 

 
Figure 23. Plot of the Ag3d5/2 Peak Energy for the Au@Agx and Au@Ag3.6@Au0.11 double shell 

NPs. (Adapted from reference 15, Copyright 2011 American Institute of Physics). 

 

Figure 24. (A) Au L2-edge and (B) Au L3-edge XANES spectra of Au foil, Au NPs, Au@Ag1.0 

NPs and Au@Ag3.9@Au1.2 NPs. The insets show an expanded view. (Adapted from reference 19, 

Copyright 2012 the American Chemical Society). 

 
Figure 25. Differences of the d-orbital vacancies from bulk Au and XPS energy shift in the 4f7/2 

peak from bulk Au. 

 
Figure 26. TEM images for Ag NPs (A) exposed to NaCl (B), CaCl2 (C) and HCl (D) after 24 

hours when the Cl
-
/NP concentration ratio is 2.110

6
. (Adapted from reference 20, Copyright 

2012 IOP Publishing). 

 



 

Figure 27. TEM images of Ag@Au NPs before (A) and 1 hour after (B) adding NaCl. (Adapted 

from reference 18, Copyright 2011 American Institute of Physics). 
 

Figure 28. TEM images of Au@Ag NPs for NaCl (A), CaCl2 (B) and HCl (C) after 24 hours 

when the Cl
-
/NP concentration ratio is 2.110

6
. (Adapted from reference 20, Copyright 2012 IOP 

Publishing). 

 

Figure 29. STEM-HAADF image (A), and EDS elemental mapping of Au@Ag NPs in NaCl 

after 24 h when the Cl
-
/NP ratio is 2.110

6
 for Au M map (B), Ag L map (C) and an overlay of 

the Au and Ag maps (D). The scale bar in (A) applies to all images. (Reproduced from reference 

20, Copyright 2012 IOP Publishing). 

 

Figure 30. STEM-HAADF image (A), and EDS elemental mapping images of Au@Ag NPs for 

CaCl2. after 24 hours when the Cl
-
/NP concentration ratio is 2.110

6 
for Au M map (B), Ag L 

map (C) and an overlay of the Au and Ag maps (D). The scale bar in (A) applies to all images. 

(Reproduced from reference 20, Copyright 2012 IOP Publishing). 

 

Figure 31. STEM-HAADF image (A), and EDS elemental mapping images of Au@Ag NPs for 

HCl after 24 hours when the Cl
-
/NP concentration ratio is 2.110

6
 for Au M map (B), Ag L map 

(C) and an overlay of the Au and Ag maps (D). The scale bar in (A) applies to all images. 

(Reproduced from reference 20, Copyright 2012 IOP Publishing). 

 

Figure 32. TEM image of Au@Ag3.6@Au0.11 NPs 3 hours after adding NaCl. (Adapted from 

reference 15, Copyright 2011 American Institute of Physics). 

 
Figure 33. Chemical structures of (a) R6G and (b) ATT. 
 

Figure 34. Raman spectra of NP assemblies created by using (A) R6G and (B) ATT. Bottom, 

middle and top curves represent the spectra of Ag, Ag@Au and Au NP assemblies, respectively. 

The labelled peaks are used for calculation of enhancement factor. (Adapted from reference 18, 

Copyright 2011 American Institute of Physics). 
 

Figure 35. Raman spectra taken for Ag NPs (A) and Au@Ag NPs (B) exposed to ATT and NaCl 

with a Cl
-
/NP concentration ratio of 2.110

7
. (Reproduced from reference 20, Copyright 2012 

IOP Publishing). 

 

Figure 36. Raman spectra of Au@Agx (from bottom to top, x = 0.4, 1, 2.2, and 3.6 nm) and 

Au@Ag3.6@Au0.11 (top curve) NP assemblies created by using ATT. (Adapted from reference 15, 

Copyright 2011 American Institute of Physics). 
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