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Abstract—To more adequately describe human decision mak- It is therefore desirable to take this uncertainty into acto
ing, V.-N. Huynh, Y. Nakamori, and others proposed a special when we describe decision making.
semi-heuristic target-based fuzzy decision procedure. A sual
justification for this procedure is based on the selection othe Fuzzy target approach.To describe actual decision making,
simplest possible membership functions and “and’- and “or~ the authors of [3], [4], [5], [6], [7], [15], [16] proposed
operations; if we use more complex membership functions and an alternative approach. In this approach, to properly take
“and”- and “or"-operations, we get different results. Inte rest- . . ’ . .
ingly, in practical applications, the procedure based on te uncerta_unty |ntc_> _account, for each numerical characterit
simplest choices most adequately describes human preferegs. It @ possible decision, we form two fuzzy sets:
is therefore desirable to come up with a justification that eplains « first, we form a fuzzy set;(x) describing the users’ ideal
this empirical fact. Such a justification is proposed in thispaper. value:

« then, we form the fuzzy sei,(x) describing the users’

|. FORMULATION OF THE PROBLEM impression of the actual value.

" . i . For example, a person wants a well done steak, and the steak
Traditional approach to decision making. Traditional de- ., o< out as medium well done. In this case, we form a fuzzy

cision making techniques (see, e.g., [1, [2], [9], [11IA4DL get,,. (2) corresponding to “well done”, and we form a fuzzy
deal with the problems in which the quality of each posmb@em () corresponding to “medium well done”
alternative is characterized by the values of several dpiesmnt Holi/v can we estimate to what extent the'actual result

For example,_ vyhen we buy a car, we are |nter§§ted In its CcE‘[’sa\tisfactory? All we know is the membership functions
its energy efficiency, its power, size, etc. Specifically,dach ., oshonding to ideal (desired) and actual. If these sets w
of Ithese quantities, we usually have some desirable rangecﬂgp, then we could say that it is possible that the proposed
values. . ) .. solution is satisfactory if some of the possibly actual eslu
Sometimes, there is only one alternative that satisfies llysq gesired. In the fuzzy case, when we only have degrees
these requirements. In other real-life situations, there &joqcribing to what exact each value is possible and to what
several different alternatives all of which satisfy all $Be o iant each value is desired. we can only talk about the
requirements. In such cases, the traditional decision m@akiyeyree to which the proposed solution can be desired. To find

approach usually assumes that there is an objective fnCliis jegree, we can use the fact that a possible decision is
that describes the user’s preferences; the corresponelmhg tsatisfactory if:

nigues then enable us to select an alternative with the sarge . . . . .
N 9 « either the actual value i8,, and this value is desired,

ossible value of this objective function. . . ) X
P ) « or the actual value ig5, and this value is desired,
Traditional approach to decision making: limitations. The o ..

traditional approach to decision making assumes: wherezy, z9, ..., go over all possible values of the desired
« that the user knows exactly what he or she wants — i.guantity.
knows the objective function — and We know the membership functiops(z) and i, (z). This
« that the user also knows exactly what he or she will géteans that for each valug,, we know the the degree, ()
as a result of each possible decision. with which this value is actual, and the degregi(xy) to

which this value is desired. If we usain(a,b) to describe
“and” (the simplest possible choice of an “and”-operatibd][

« the user is often uncertain about his or her own prefe[rIB])’ then we can estimate the degree to which the vajue

ences, and is goth actuabnd desired as

« the user is often uncertain about possible consequence
of different decisions. min(pe (2 ), ti(2k))-

In practice, the user is often uncertain:



If we now usemax(a,b) to describe “or” (the simplest The fact that the existing approach works well in practice
possible choice of an “or"-operation [10], [13]), then wencaindicates that there should be a justification for this mdtho
estimate the degre#to which the two fuzzy sets match as which goes beyond simplicity. Such a justification wouldegiv
us more confidence in using these techniques.
d = max min(u, (), ;i (x)).
* What we do in this paper. In this paper, we provide a
How can we elicit the corresponding membership functiongfstification for the above semi-heuristic target-basezizyu
In principle, membership functions can have different €isap decision procedure.
It is known, however, that in many applications (e.g., irellit
gent control), the actual shape of a membership functioss doe Il. SOLUTION TO THE PROBLEM

possible membership functions — symmetric triangular onggjle the procedure that we want to justify uses fuzzy tech-

[10], [13]. o o ~ niques, all we know is two intervals:
To describe a symmetric triangular function, it is suffitien an intervalla, @) = [d — Au,a + A,] describing the set

tohl'(nr?\;\;]'thef sue_port_ ozt.?fis fur:(;tion,(i).e_.llr'][he.ir:ter‘{@ijf] onI of all desired values, and _
\t/)v 'g '.T) l:jnc on 'Z |~ere2 rorr;] s Interval casal - an intervallb, 5] = [b — Ay, b+ Ay) describing the set of
e described 8 — Aq, 7 + A,], where: all the values which are possible for a given decision.

-~ T+
o I

is the interval’s midpoint, and o )
2 The formula that we need to justify. Let us describe an

T~ 2 is the interval’s half-width. explicit expression for the formula that we need to justify —
the formula describing the degrekto which the proposed
ecision leads to the desired result.

o« Ay =
The corresponding membership function:

* ITeaZy mcr?]zetsh;?m 0 to 1 on the first half-interva The above procedure is symmetric with respect to changing
[.“T — A, 1, . a andb. So, if necessary, we can swa@ndb. Thus, without

« linearly decreases from 1 to 0 on the second half-lntervl%lSing generality, we can assume that b
[x’x—i_A:”]'_ . . One can prove that the maximumd of the func-
As we have just mentioned, once we know the intervajon min(y, (), si;(z)) is attained when the valueg, (x)

we can uniquely determine the corresponding membershiRq ,,(z) are equal, i.e., at a point;,, for which

function. So, to elicit the membership function from theruse,, (,, ) (zm). Indeed, if, €.0.4a(2m) > pi(zm), then

L = iy o = M

it is sufficient to elicit the corresponding interval. Hownca min(ua(a?m)jm(fcm)) = pi(zm). In this case, we cannot have

we elicit the interval from the user? To elicit this intervale (zm) = 1, SO we must havey (z,,) < 1. In this case, by

can simply ask the users which values are possible, and thghgifying =, a little bit, we can increase the valyg (z)

take the smallest of these possible valueg: @hd the largest gnq thus, achieve a larger value of then (g (2), pi(z)) —

of these possible values as . - which contradicts to our assumption that the function attai
59, to get tlhe membership functign(z) describing the maximum atz,,. Similarly, the maximum cannot be attained

desired situation, we can ask the user for all the valuggen fta(Zm) < pi(zm), SO it has to be attained when

ai,...,an Which, in their opinion, satisfy the requirement,, () = p;(z.).
and then take the smallest of these values asd the largest | this case, the desired maximuthis equal tod =
of these values as. — .

Na(xm) Nl(%m)-

Similarly, to get the membership function,(x) describing  gincew < b, the equalitype (2) = pi(zm) is attained
the result of a proposed decision, we can ask the user {pken:
all the valueshy, ..., b, which, in their opinion, satisfy the
corresponding property (like “medium well done”), and then
take the smallest of these valuesbaand the largest of these
values a9.

« the value on the decreasing part of thenembership
function p,(z) (that linearly goes from 1 a& to O at
a+ A,) coincides with

« the value on the increasing part of tihemembership

Fuzzy target approach: successesThe above approach  function u(z) (that linearly goes from 0 ai — A, to

works well, e.g., in predicting how the customers buyingdian 1 for b).

crafted souvenirs select among “almost-desirable” sousenBy applying the general formula

when their “ideal” souvenir is not available.
= +7y2_y1~(aj—x)
Fuzzy target approach: the remaining problem. it is y=n Lo — X !

somewhat heuristic: it is based on selecting the simplergﬁ, a straight line that takes valug at z = z; and valuey
possible membership function and the simplest possibld™an atz — 2o, we conclude that

and “or"-operations. If we use more complex membership '

functions and “and”- and “or"-operations, we will get diféat r—a T — (Z —Ay)
results. pa(z) =1~ A, and uip(z) = A




Thus, the conditionu, (z,,) = p;(x.,) takes the form

1 T — @ Ty — (E—Ab)
A, JAVS '
By opening the parentheses, we get
1_xm—?i_:vm—g—|—Ab 1_5—:6,”
A, Ay N Ay

or, equivalently, N
Tm—a b—xy
A, Ay
Multiplying both side byA, and A,, we get

(Tm — @) - Ap = (b—x,) - Aq.

Moving all the terms containing the unknowt, into the left-

Thus, it is reasonable to use the difference
|[Prob(a > b) — Prob(b > a)
as the degree to whictaandb may be different.

How we can estimate the probabilitiesProb(a > b) and
Prob(b > a). If we know the exact values af andb, then we
can check the inequality > b by computing the difference
a — b and comparing this difference to 0.

In real life, as we have mentioned, we only knavwandb
with interval uncertainty, i.e., we only know that

a€fa—Ag,a+ A andb e [b— Ay b+ Ay

In this case, we do not know the exact value of the difference
a — b, we only know the range of possible values of this
difference.

Such a range can be computed by using interval arithmetic;

hand side and all the other terms into the right-hand side, WBe, e.g., [12]. Namely:

get N
xm-(Aa—l—Ab):a-Ab—l—b-Aa,
hence _
- _a-Ap+b-A,
me Ay + Ay '

Substituting this value into the formula fpr, («), we conclude
that the desired maximum valukis equal to

T — G

A,

d:Ma(xm) =1-

« the smallest possible value of the differenee- b is
attained whem attains its smallest possible valde- A,
andb attains its largest possible valte A;; the resulting
difference is equal to

=D —(b+20p) = (@—0) — (Aa + Ap);

« the largest possible value of the differenceb is attained
when ¢ attains its largest possible value+ A, and b
attains its smallest possible valbe- A;; the resulting
difference is equal to

Here, N A+ D — (b—Ap) = (a—Db) + (A + Ay).
L — G = a-Ap+b-Ag i Thus, the only thing we know about the difference- b is
A+ Ay that this difference belongs to the interval
By moving both terms in the right-hand side to the common [(@ = D) — (Ag + Ay), (@ — D) + (Da + A)].

denominator, we conclude that
A Ay +b Ay =G A=Ay
Tm — a4 = —
Aa + Ab

b-A, —a-A,
Au,'i_Ab

Thus, B
__b-a

Aa + Ab .
This is the formula that we need to justify.

d=1 1)

Our main idea. If we knew the exact values af andb, then
we would be able to conclude that eithee= b, ora < b, or
b < a.

In reality, we know the values and b with uncertainty.

So, even if the actual values and b are the same, we may

get approximate values which are different; it is reasomadl

assume that if the actual values are the same, then we have

same probabilityProb(a > b) and Prob(b > a) of observing

a > banda < b are the same, i.e., that both these probabilitigﬁe must maxim

are equal to 1/2. If the probabilities that> b and thata < b
differ, this is an indication that the actual valaeand b are
different.

We do not have any reason to assume that some values from
this interval are more probable and some are less probable.
It is therefore reasonable to assume that all the values from
this interval are equally probable, i.e., that the corresiing
probability distribution isuniform on this interval.

Comment.This argument is widely used in data processing;
it is called Laplace principle of indifferencer Laplace prin-
ciple of insufficient reasanlts most adequate mathematical
description is the Maximum Entropy approach (see, e.g, [8])
— widely used in statistics — according to which, if several
different probability distributiong(z) are consistent with our
knowledge, we should select theast informativeone, i.e.,
the one for which the entropy = — [ p(z) - In(p(x)) dz

is the largest possible. In our case, all we know about the
corresponding probability density functigr(z) is that it is
located on a given intervdk, ], i.e., thatp(z) = 0 outside
this interval. Thus, in all integrations containipgz), we can

K 3 the parts where this function is 0 and only considereslu
from the intervallc, ¢|. So, to find the appropriate distribution,
ize the entropy

S=- /C p(x) - In(p(x)) dz — max



under the constraints thafz) > 0 and

A%@mz_L

By using Lagrange multiplier method, we can reduce this
constraint optimization to unconstrained optimizatiookhdem

—/cp(x)-ln(p(x))dgc—i—/\- </Cp(x)dx—1> — max.

Differentiating the objective function with respect ), we
conclude that

i.e., thatln(p(x)) = A — 1 and thusp(z) = exp(A — 1). This
value is the same for all € [¢,¢], so we indeed get a uniform
distribution.

(Aa+Ab)_(&_ )
2-(Aa+Ab)

Prob(a < b) =

So, the desired differendrob(a > b) — Prob(b > a) takes
the form

Prob(a > b) — Prob(b > a) =
(AU: _E) + (Aa + Ab)

C(Aat Ay —(@-b)
2-(Aa—|—Ab) 2-(Aa—|—Ab)
2-@—b _ a-b
2-(Ag+Ay)  Ag+ Ay

Sinced > b, we can conclude that

a-b

|Pr0b(a > b) — Prob(b > CL)| = m.

)

How we can estimate the probabilitiesProb(a > b) and Conclusion. By comparing:

Prob(b > a) (cont-d). In our approach:

« as an estimate for the probabiliBrob(a > b), we take
the probabilityProb(a — b > 0) that the difference — b
is positive, and

« as an estimate for the probabiliBrob(a < b), we take
the probabilityProb(a — b < 0) that the differences — b
is negative.

« the above formula (1) for the degrekto which the

alternativeq fits the fuzzy targeb

« with the formula (2) for the probability

|Prob(a > b) — Prob(b > a)

with which the alternatives and the fuzzy targetb are
different,

Now that we have assumed that the probability distribution ove can see that

the set of all the values — b is uniformly distributed on the
interval

[(@=0) = (Aa + Ap), (@ —b) + (Aa + Ap)],

we can find the numerical values for both probabilities.
Namely,

d + |Prob(a > b) — Prob(b > a)| = 1.

Thus, the degreé can be described, in reasonable probabilistic
terms, as

d =1 — |Prob(a > b) — Prob(b > a)|.

We have therefore produced a new justification for the above
complex formula ford, the justification that does not use any
simplifying assumptions and which is, therefore, applieab

¢ valuesa — b > 0 form a subinterval

(0,(@—b) + (Aa + Ay);

¢ valuesa — b < 0 form a subinterval

[(@—b) — (A + Ayp),0).
In a uniform distribution, the probability to be in a subirnal
is proportional to the width of this subinterval. The coeaéitt
of proportionality can be found from the condition that the
overall probability to be in the entire interval is equal to 1j1
Thus, when we have a uniform distribution on an arbitrar
interval [c, €], the probabilityp to be in a subintervald, d] C
[c, €] is equal to the ratio of the widths of these intervals:
d—d
p =

(3]

c—c¢

In our case, the width of the big interval is equal to

(@=0)+ (Aq+20)) — ((@=0) — (Mg +Ap)) = 2-(Ag +Ay),

and thus, the probabilitieBrob(a > b) andProb(a < b) are
equal to

@@=+ (Aa+ Ay
Prob(a > b) = RN

the general case.
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