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Abstract—To more adequately describe human decision mak-
ing, V.-N. Huynh, Y. Nakamori, and others proposed a special
semi-heuristic target-based fuzzy decision procedure. A usual
justification for this procedure is based on the selection ofthe
simplest possible membership functions and “and”- and “or”-
operations; if we use more complex membership functions and
“and”- and “or”-operations, we get different results. Inte rest-
ingly, in practical applications, the procedure based on the
simplest choices most adequately describes human preferences. It
is therefore desirable to come up with a justification that explains
this empirical fact. Such a justification is proposed in thispaper.

I. FORMULATION OF THE PROBLEM

Traditional approach to decision making. Traditional de-
cision making techniques (see, e.g., [1], [2], [9], [11], [14])
deal with the problems in which the quality of each possible
alternative is characterized by the values of several quantities.
For example, when we buy a car, we are interested in its cost,
its energy efficiency, its power, size, etc. Specifically, for each
of these quantities, we usually have some desirable range of
values.

Sometimes, there is only one alternative that satisfies all
these requirements. In other real-life situations, there are
several different alternatives all of which satisfy all these
requirements. In such cases, the traditional decision making
approach usually assumes that there is an objective function
that describes the user’s preferences; the corresponding tech-
niques then enable us to select an alternative with the largest
possible value of this objective function.

Traditional approach to decision making: limitations. The
traditional approach to decision making assumes:

• that the user knows exactly what he or she wants — i.e.,
knows the objective function – and

• that the user also knows exactly what he or she will get
as a result of each possible decision.

In practice, the user is often uncertain:

• the user is often uncertain about his or her own prefer-
ences, and

• the user is often uncertain about possible consequences
of different decisions.

It is therefore desirable to take this uncertainty into account
when we describe decision making.

Fuzzy target approach.To describe actual decision making,
the authors of [3], [4], [5], [6], [7], [15], [16] proposed
an alternative approach. In this approach, to properly take
uncertainty into account, for each numerical characteristic of
a possible decision, we form two fuzzy sets:

• first, we form a fuzzy setµi(x) describing the users’ ideal
value;

• then, we form the fuzzy setµa(x) describing the users’
impression of the actual value.

For example, a person wants a well done steak, and the steak
comes out as medium well done. In this case, we form a fuzzy
setµi(x) corresponding to “well done”, and we form a fuzzy
setµa(x) corresponding to “medium well done”.

How can we estimate to what extent the actual result
is satisfactory? All we know is the membership functions
corresponding to ideal (desired) and actual. If these sets were
crisp, then we could say that it is possible that the proposed
solution is satisfactory if some of the possibly actual values
is also desired. In the fuzzy case, when we only have degrees
describing to what exact each value is possible and to what
extent each value is desired, we can only talk about the
degree to which the proposed solution can be desired. To find
this degree, we can use the fact that a possible decision is
satisfactory if:

• either the actual value isx1, and this value is desired,
• or the actual value isx2, and this value is desired,
• . . .,

wherex1, x2, . . . , go over all possible values of the desired
quantity.

We know the membership functionsµi(x) andµa(x). This
means that for each valuexk, we know the the degreeµa(xk)
with which this value is actual, and the degreeµai(xk) to
which this value is desired. If we usemin(a, b) to describe
“and” (the simplest possible choice of an “and”-operation [10],
[13]), then we can estimate the degree to which the valuexk

is both actualand desired as

min(µa(xk), µi(xk)).



If we now use max(a, b) to describe “or” (the simplest
possible choice of an “or”-operation [10], [13]), then we can
estimate the degreed to which the two fuzzy sets match as

d = max
x

min(µa(x), µi(x)).

How can we elicit the corresponding membership functions?
In principle, membership functions can have different shapes.
It is known, however, that in many applications (e.g., in intelli-
gent control), the actual shape of a membership function does
not affect the result. Thus, it is reasonable to use the simplest
possible membership functions – symmetric triangular ones
[10], [13].

To describe a symmetric triangular function, it is sufficient
to know the support of this function, i.e., the interval[x, x] on
which this function is different from 0. This interval can also
be described as[x̃−∆x, x̃+∆x], where:

• x̃ =
x+ x

2
is the interval’s midpoint, and

• ∆x =
x− x

2
is the interval’s half-width.

The corresponding membership function:

• linearly increases from 0 to 1 on the first half-interval
[x̃−∆x, x̃], and then

• linearly decreases from 1 to 0 on the second half-interval
[x̃, x̃+∆x].

As we have just mentioned, once we know the interval,
we can uniquely determine the corresponding membership
function. So, to elicit the membership function from the user,
it is sufficient to elicit the corresponding interval. How can
we elicit the interval from the user? To elicit this interval, we
can simply ask the users which values are possible, and then
take the smallest of these possible values asx and the largest
of these possible values asx.

So, to get the membership functionµi(x) describing the
desired situation, we can ask the user for all the values
a1, . . . , an which, in their opinion, satisfy the requirement,
and then take the smallest of these values asa and the largest
of these values asa.

Similarly, to get the membership functionµa(x) describing
the result of a proposed decision, we can ask the user for
all the valuesb1, . . . , bm which, in their opinion, satisfy the
corresponding property (like “medium well done”), and then
take the smallest of these values asb and the largest of these
values asb.

Fuzzy target approach: successes.The above approach
works well, e.g., in predicting how the customers buying hand-
crafted souvenirs select among “almost-desirable” souvenirs
when their “ideal” souvenir is not available.

Fuzzy target approach: the remaining problem. it is
somewhat heuristic: it is based on selecting the simplest
possible membership function and the simplest possible “and”-
and “or”-operations. If we use more complex membership
functions and “and”- and “or”-operations, we will get different
results.

The fact that the existing approach works well in practice
indicates that there should be a justification for this method
which goes beyond simplicity. Such a justification would give
us more confidence in using these techniques.

What we do in this paper. In this paper, we provide a
justification for the above semi-heuristic target-based fuzzy
decision procedure.

II. SOLUTION TO THE PROBLEM

What we know: reminder. As we have mentioned earlier,
while the procedure that we want to justify uses fuzzy tech-
niques, all we know is two intervals:

• an interval[a, a] = [ã −∆a, ã + ∆a] describing the set
of all desired values, and

• an interval[b, b] = [̃b−∆b, b̃+∆b] describing the set of
all the values which are possible for a given decision.

The formula that we need to justify. Let us describe an
explicit expression for the formula that we need to justify –
the formula describing the degreed to which the proposed
decision leads to the desired result.

The above procedure is symmetric with respect to changing
a andb. So, if necessary, we can swapa andb. Thus, without
losing generality, we can assume thatã ≤ b̃.

One can prove that the maximumd of the func-
tion min(µa(x), µi(x)) is attained when the valuesµa(x)
and µi(x) are equal, i.e., at a pointxm for which
µa(xm) = µi(xm). Indeed, if, e.g.,µa(xm) > µi(xm), then
min(µa(xm), µi(xm)) = µi(xm). In this case, we cannot have
µi(xm) = 1, so we must haveµi(xm) < 1. In this case, by
modifying xm a little bit, we can increase the valueµi(x)
and thus, achieve a larger value of themin(µa(x), µi(x)) –
which contradicts to our assumption that the function attains
maximum atxm. Similarly, the maximum cannot be attained
when µa(xm) < µi(xm), so it has to be attained when
µa(xm) = µi(xm).

In this case, the desired maximumd is equal to d =
µa(xm) = µi(xm).

Since ã ≤ b̃, the equalityµa(xm) = µi(xm) is attained
when:

• the value on the decreasing part of thea-membership
function µa(x) (that linearly goes from 1 at̃a to 0 at
ã+∆a) coincides with

• the value on the increasing part of theb-membership
function µb(x) (that linearly goes from 0 at̃b − ∆b to
1 for b̃).

By applying the general formula

y = y1 +
y2 − y1

x2 − x2

· (x− x1)

for a straight line that takes valuey1 at x = x1 and valuey2
at x = x2, we conclude that

µa(x) = 1−
x− ã

∆a

andµb(x) =
x− (̃b−∆b)

∆b

.



Thus, the conditionµa(xm) = µi(xm) takes the form

1−
xm − ã

∆a

=
xm − (̃b −∆b)

∆b

.

By opening the parentheses, we get

1−
xm − ã

∆a

=
xm − b̃+∆b

∆b

= 1−
b̃− xm

∆b

,

or, equivalently,
xm − ã

∆a

=
b̃− xm

∆b

.

Multiplying both side by∆a and∆b, we get

(xm − ã) ·∆b = (̃b− xm) ·∆a.

Moving all the terms containing the unknownxm into the left-
hand side and all the other terms into the right-hand side, we
get

xm · (∆a +∆b) = ã ·∆b + b̃ ·∆a,

hence

xm =
ã ·∆b + b̃ ·∆a

∆a +∆b

.

Substituting this value into the formula forµa(x), we conclude
that the desired maximum valued is equal to

d = µa(xm) = 1−
xm − ã

∆a

.

Here,

xm − ã =
ã ·∆b + b̃ ·∆a

∆a +∆b

− ã.

By moving both terms in the right-hand side to the common
denominator, we conclude that

xm − ã =
ã ·∆b + b̃ ·∆a − ã ·∆a − ã ·∆b

∆a +∆b

=

b̃ ·∆a − ã ·∆a

∆a +∆b

.

Thus,

d = 1−
b̃ − ã

∆a +∆b

. (1)

This is the formula that we need to justify.

Our main idea. If we knew the exact values ofa andb, then
we would be able to conclude that eithera = b, or a < b, or
b < a.

In reality, we know the valuesa and b with uncertainty.
So, even if the actual valuesa and b are the same, we may
get approximate values which are different; it is reasonable to
assume that if the actual values are the same, then we have the
same probabilityProb(a > b) andProb(b > a) of observing
a > b anda < b are the same, i.e., that both these probabilities
are equal to 1/2. If the probabilities thata > b and thata < b

differ, this is an indication that the actual valuea and b are
different.

Thus, it is reasonable to use the difference

|Prob(a > b)− Prob(b > a)|

as the degree to whicha andb may be different.

How we can estimate the probabilitiesProb(a > b) and
Prob(b > a). If we know the exact values ofa andb, then we
can check the inequalitya > b by computing the difference
a− b and comparing this difference to 0.

In real life, as we have mentioned, we only knowa and b
with interval uncertainty, i.e., we only know that

a ∈ [ã−∆a, ã+∆a] andb ∈ [̃b−∆b, b̃+∆b].

In this case, we do not know the exact value of the difference
a − b, we only know the range of possible values of this
difference.

Such a range can be computed by using interval arithmetic;
see, e.g., [12]. Namely:

• the smallest possible value of the differencea − b is
attained whena attains its smallest possible valueã−∆a

andb attains its largest possible valueb̃+∆b; the resulting
difference is equal to

ã−∆a − (̃b+∆b) = (ã− b̃)− (∆a +∆b);

• the largest possible value of the differencea−b is attained
when a attains its largest possible valuẽa + ∆a and b

attains its smallest possible valueb̃ − ∆b; the resulting
difference is equal to

ã+∆a − (̃b−∆b) = (ã− b̃) + (∆a +∆b).

Thus, the only thing we know about the differencea − b is
that this difference belongs to the interval

[(ã− b̃)− (∆a +∆b), (ã− b̃) + (∆a +∆b)].

We do not have any reason to assume that some values from
this interval are more probable and some are less probable.
It is therefore reasonable to assume that all the values from
this interval are equally probable, i.e., that the corresponding
probability distribution isuniform on this interval.

Comment.This argument is widely used in data processing;
it is calledLaplace principle of indifferenceor Laplace prin-
ciple of insufficient reason. Its most adequate mathematical
description is the Maximum Entropy approach (see, e.g, [8])
– widely used in statistics – according to which, if several
different probability distributionsρ(x) are consistent with our
knowledge, we should select theleast informativeone, i.e.,
the one for which the entropyS = −

∫
ρ(x) · ln(ρ(x)) dx

is the largest possible. In our case, all we know about the
corresponding probability density functionρ(x) is that it is
located on a given interval[c, c], i.e., thatρ(x) = 0 outside
this interval. Thus, in all integrations containingρ(x), we can
skip the parts where this function is 0 and only consider values
from the interval[c, c]. So, to find the appropriate distribution,
we must maximize the entropy

S = −

∫
c

c

ρ(x) · ln(ρ(x)) dx → max



under the constraints thatρ(x) ≥ 0 and
∫ c

c

ρ(x) dx = 1.

By using Lagrange multiplier method, we can reduce this
constraint optimization to unconstrained optimization problem

−

∫
c

c

ρ(x) · ln(ρ(x)) dx + λ ·

(∫
c

c

ρ(x) dx − 1

)
→ max .

Differentiating the objective function with respect toρ(x), we
conclude that

−ρ(x)− 1 + λ = 0,

i.e., thatln(ρ(x)) = λ− 1 and thus,ρ(x) = exp(λ− 1). This
value is the same for allx ∈ [c, c], so we indeed get a uniform
distribution.

How we can estimate the probabilitiesProb(a > b) and
Prob(b > a) (cont-d). In our approach:

• as an estimate for the probabilityProb(a > b), we take
the probabilityProb(a− b > 0) that the differencea− b

is positive, and
• as an estimate for the probabilityProb(a < b), we take

the probabilityProb(a− b < 0) that the differencea− b

is negative.

Now that we have assumed that the probability distribution on
the set of all the valuesa− b is uniformly distributed on the
interval

[(ã− b̃)− (∆a +∆b), (ã− b̃) + (∆a +∆b)],

we can find the numerical values for both probabilities.
Namely,

• valuesa− b > 0 form a subinterval

(0, (ã− b̃) + (∆a +∆b)];

• valuesa− b < 0 form a subinterval

[(ã− b̃)− (∆a +∆b), 0).

In a uniform distribution, the probability to be in a subinterval
is proportional to the width of this subinterval. The coefficient
of proportionality can be found from the condition that the
overall probability to be in the entire interval is equal to 1.
Thus, when we have a uniform distribution on an arbitrary
interval [c, c], the probabilityp to be in a subinterval[d, d] ⊆
[c, c] is equal to the ratio of the widths of these intervals:

p =
d− d

c− c
.

In our case, the width of the big interval is equal to

((ã− b̃)+(∆a+∆b))−((ã− b̃)−(∆a+∆b)) = 2 ·(∆a+∆b),

and thus, the probabilitiesProb(a > b) andProb(a < b) are
equal to

Prob(a > b) =
(ã− b̃) + (∆a +∆b)

2 · (∆a +∆b)
;

Prob(a < b) =
(∆a +∆b)− (ã− b̃)

2 · (∆a +∆b)
.

So, the desired differenceProb(a > b) − Prob(b > a) takes
the form

Prob(a > b)− Prob(b > a) =

(ã− b̃) + (∆a +∆b)

2 · (∆a +∆b)
−

(∆a +∆b)− (ã− b̃)

2 · (∆a +∆b)
=

2 · (ã− b̃)

2 · (∆a +∆b)
=

ã− b̃

∆a +∆b

.

Sinceã ≥ b, we can conclude that

|Prob(a > b)− Prob(b > a)| =
ã− b̃

∆a +∆b

. (2)

Conclusion. By comparing:
• the above formula (1) for the degreed to which the

alternativea fits the fuzzy targetb
• with the formula (2) for the probability

|Prob(a > b)− Prob(b > a)|

with which the alternativea and the fuzzy targetb are
different,

we can see that

d+ |Prob(a > b)− Prob(b > a)| = 1.

Thus, the degreed can be described, in reasonable probabilistic
terms, as

d = 1− |Prob(a > b)− Prob(b > a)|.

We have therefore produced a new justification for the above
complex formula ford, the justification that does not use any
simplifying assumptions and which is, therefore, applicable in
the general case.
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