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Abstract—Single carrier frequency domain multiple access
(SC-FDMA) system achieves better spectral efficiency when cyclic
prefix (CP) is not transmitted. However, the chained turbo
equalization (CHATUE) algorithm, an equalizer required to both
equalize the multipath fading effect and cancel the inter-block in-
terference of SC-FDMA without CP, requires high computational
complexity due to the non-circulant structure of the past and
the future interference matrices. This paper proposes efficient
hardware architecture based on systolic architecture for practical
implementation. The main idea is to minimize the number
of required processing elements by utilizing efficient resources
sharing method while exploiting concurrency of the processing.
A new computation method using masking matrices is introduced
to obtain interference matrix from its corresponding circulant
channel matrix. The results with fixed point computation show
that the computational complexity can be significantly reduced
up to 96% for practical implementation without significant
degradation in bit-error-rate (BER) performances.

I. INTRODUCTION

The need for a wireless transmission system with more
efficient spectrum rises along with the significant growth in
the number of wireless communication users. Transmission
system without cyclic prefix (CP) or guard interval (GI) is
one of the solutions to achieve a better efficiency in spectrum.
However, the absence of CP or GI causes additional interfer-
ence, i.e., inter-block interference (IBI) from past and future
blocks, beside the inter-symbol interference (ISI) due to the
multipath fading effect.

Chained turbo equalization (CHATUE) algorithm offers a
low computational complexity method to equalize the both
ISI and IBI in block transmission systems without CP or GI
[1]. The detail analysis and advantages over the standard block
transmission systems with CP as well as its impact due to the
Doppler effect has also been investigated in [2]. Furthermore,
for practical broadband application, CHATUE algorithm is
applied to SC-FDMA systems in [3] and [4]. In order to
minimize the computational complexity, CHATUE algorithm
utilizes matrix J to form a circulant structure of the (current)
channel matrix. However, the introduction of matrix J is still
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Fig. 1. Transceiver structure for CHATUE-SC-FDMA systems

limited only to the current channel matrix, while the past and
the future matrix, referred to as interference matrices, are
still with non-circulant structure which cause the computation
complexity is still high.

Ref. [4] proposes a new method of approximation for the
covariance matrix inversion X−1, however, the non-circular
structute of the past and the future matrices still make the
computational complexity high in the calculation of matrix X
itself. The computation of matrix X requires frequency domain
covariances of the matrices, where the fast Fourier transform
(FFT) may be required. In addition, non-diagonal matrix-and-
matrix multiplications are required to obtain the covariance
values.

In this paper, we propose a semi-optimal CHATUE-SC-
FDMA algorithm, as shown in Fig. 1, with reduced compu-
tational complexity and optimal hardware resource sharing.
The proposed algorithm can obtain the frequency response
of the past and the future interference matrix without FFT
operations. We design CHATUE-SC-FDMA systems based on
systolic architecture [5] to significantly reduce the computa-
tional complexity in hardware implementation. The optimal
resource sharing and sinc function approximation for systolic
coefficient are utilized to suppress the number of required
processing elements. Performances of the proposed hardware
architecture are assessed in fixed-point simulations in terms of
average bit-error-rate (BER).



II. SYSTEM MODEL

In this paper, we assume CHATUE-SC-FDMA systems
without doped-accumulator (DA) [3] with a block diagram
as shown in Fig. 1. At the transmitter, the information bits
for the i-th user at t-th block are encoded by Ci,t, interleaved
by Πi,t, and modulated through K-points FFT (FK), sub-
carrier mapped and M -point inverse FFT (FH

M ) to produce
vector signal si,t, s′i,t−1, and s′′i,t+1. The notations (•)′ and
(•)′′ indicate the past and the future blocks relative to current
block, respectively.

The SC-FDMA blocks is transmitted without CP over the
multi-path block Rayleigh fading channel.1 At the receiver,
the received signal is affected by three channel matrices
and four interference matrices. For the current block, the
computation involves the current channel matrix (Hi,t), the
past interference matrix from past block (H′i,t−1), and future
interference matrix from future block (H′′i,t+1). The details
structure of the channel and interference matrices are discussed
in [2].

We assume a perfect user sub-carrier mapping such that
the interference from other users is negligible and hence, the
received signal for the i-th user can be expressed as

ri,t = FH
KDT

i FMJHi,tF
H
MDiFKsi,t

+FH
KDT

i FMJH′i,t−1F
H
MDiFKs

′
i,t−1

+FH
KDT

i FMJH′′i,t+1F
H
MDiFKs

′′
i,t+1 + n, (1)

where Di represents the sub-carrier mapping matrix, DT
i

represents sub-carrier de-mapping matrix with (•)T denotes
a matrix transpose operation and n is the additive white
Gaussian noise vector with variance of σ2

n.
In this paper, Di is assumed to be the same over the current,

the past and the future blocks for each user. si,t is Binary
phase shift keying (BPSK) modulated block with in total of 4
users and M = 512.2 The total number of path is 20 and 64
with equal average power. The encoder Ci,t is a very simple
memory 1 convolutional code with generator polynomial of
G = [3, 2]8.3 A fixed point model is used to observe the bit-
width required by each variable in the CHATUE-SC-FDMA
computation. The results are used as the baseline to define the
hardware’s bit specification.

III. OPTIMIZED CHATUE-SC-FDMA ALGORITHM

The computations of CHATUE-SC-FDMA algorithm can
be divided into three parts: soft cancellation, SC-MMSE
coefficients computation, and SC-MMSE filtering. As noted in
Section I, the circulant structure of interference matrices is not
achieved even with matrix J multiplication. As the solution,
we introduce the use of column and row masking matrix MC

and MR, respectively, to retrieve interference matrix from its

1The channel gains remain the same in a block.
2Extension to higher order modulations such as QPSK or 64-QAM is

straightforward.
3The decoder is Bahl-Cocke-Jelinek-Raviv (BCJR) algorithm with log-max

operation (the exponent is taken into account) [6].
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Fig. 2. Structure of column and row masking matrices

corresponding channel matrix. The mathematical derivation for
past interference matrix is described as

JH′i,t−1 = M′
RJHi,t−1M

′
C , (2)

and for the future interference matrix as

JH′′i,t+1 = M′′
RJHi,t+1M

′′
C . (3)

The structure of column and row masking matrices are
shown in Fig. 2, where L is the number of path in the channel.
From the figure it can be noted that M′

R, M′
C and M′′

R are
having the same structure.

A. Soft Cancellation

Soft cancellation takes a major part in ISI and IBI compo-
nents removal. The equalizer creates replica of the received
signal based on a priori information provided by the decoder
as well from its neighbouring decoders in the form of log-
likelihood ratio (LLR). In total, there are three LLR are
involved in the soft cancellation computation, a posteriori LLR
L′
p,c−1

i,t−1

from the past decoder, a posteriori LLR L′′
p,c−1

i,t+1

from future decoder, and extrinsic LLR Le,c−1
i,t

from the current
decoder. The details of soft-estimate ŝi,t for CHATUE-SC-
FDMA have been described in [4].

By using the channel matrices (from the channel estimator),
the soft replica r̂i,t of the received signal ri,t is obtained as

r̂i,t = FH
KDT

i FMJHi,tF
H
MDiFK ŝi,t +

FH
KDT

i FMJH′i,t−1F
H
MDiFK ŝ

′
i,t−1 +

FH
KDT

i FMJH′′i,t+1F
H
MDiFK ŝ

′′
i,t+1. (4)

Since JHi,t is circulant, the matrix Ḧi,t, the frequency
response or current channel matrix,

Ḧi,t = FMJHi,tF
H
M . (5)

is a diagonal matrix. Computational complexity for this matrix
is as simple as FFT vector problem for h[1]t , where h

[1]
t is

the first column vector of the circulant current channel matrix
JHi,t [7].

Because the channel frequency response of the past and
future interference matrices do not reduce the computation



complexity, we apply the masking matrices technique in (2)
and (3) to compute the past and future parts in (4). For the
past block, we can modify as

FH
KDT

i FMJH′i,t−1F
H
MDiFK

= FH
KDT

i FMM′
RJHi,t−1M

′
CFH

MDiFK

= FH
KDT

i FMM′
RFH

MFMJHi,t−1F
H
MFMM′

CFH
MDiFK

= FH
KDT

i M̈′
RḦ′i,t−1M̈

′
CDiFK , (6)

where M̈′
C and M̈′

R are the response frequency of masking
matrix as

M̈′
R = FMM′

RFH
M , (7)

and
M̈′

C = FMM′
CFH

M , (8)

respectively.4

Eqs. (7) and (8) can be considered as filter operator by
observing the structure of masking matrices from Fig. 2.
Furthermore, it can also be noted that M̈

′

R, M̈′
C , and M̈′′

R act
as high-pass filter, while M̈′′

C as low-pass filter. The diagonal
and real property of the masking matrices provides a circulant
and hermitian structure of its frequency response. Finally, (4)
for soft replica computation can be re-expressed as

r̂i,t = FH
KDT

i Ḧi,tDiFK ŝi,t +

FH
KDT

i M̈′
RḦi,t−1M̈

′
CDiFK ŝ

′
i,t−1 +

FH
KDT

i M̈′′
RḦi,t+1M̈

′′
CDiFK ŝ

′′
i,t+1. (9)

Here, the matrices Ḧi,t−1 and Ḧi,t+1 can be get from
equalizer past or equalizer future when computing their current
block. Hence, we obtain the benefit that the M points FFT
computation can be avoided for past and future part compu-
tation by replacing them with two filter operation from the
masking matrix. Finally, the soft cancellation is performed by
subtracting the received data with the its soft replica as

r̃i,t = ri,t − r̂i,t, (10)

where residue r̃i,t is further minimized using SC-MMSE filter.

B. SC-MMSE Filters Coefficients

The SC-MMSE filter should update the coefficients accord-
ing its data input, where coefficients is

X ≈ Λi,tΦi,tΦ
H
i,t + Λ′i,t−1

1

K
tr(Φ′i,t−1Φ

′H
i,t−1)IK

+Λ′′i,t+1

1

K
tr(Φ′′i,t+1Φ

′′H
i,t+1)IK

+σ2
i

1

K
tr(DT

i JJTDi)IK . (11)

where, σi is the noise variance for the i-th user as

σ2
i =

K

M
σ2
n. (12)

The covariance matrix of modulation level is defined as

Λi,t = diag{(1− |ŝi,t|2)I}, (13)

4Modification for future block is not shown here due to the space limitation.

and the equivalent frequency domain channel matrix is

Φi,t = DT
i FMJHi,tF

H
MDi. (14)

To minimize the computational complexity for the covari-
ance of interenference matrices, similarly we apply (2) and (3)
to Φ′i,t−1 and Φ′′i,t+1 as

Φ′i,t−1 = DT
i FMJHi,tF

H
MDi

= DT
i M̈′

RḦi,tM̈
′
CDi. (15)

By carefully observing (15), the covariance matrix computa-
tion for the past and the future interference matrix still requires
heavy matrix-matrix multiplications. However, we found that
only the diagonal parts of the covariance matrix that makes
effect to matrix X due to trace operator. Here, we exploit
the cyclic shifts property of trace operation to minimize the
required computation by modifying

tr(Φ′i,t−1Φ
′H
i,t−1)

= tr(DT
i M̈′

RḦi,t−1M̈
′
CDiD

T
i M̈′

RḦH
i,t−1M̈

′
CDi)

= tr(M̈′
CDiD

T
i M̈′

RḦi,t−1M̈
′
CDiD

T
i M̈′

RḦH
i,t−1)

= tr(PḦi,t−1PḦH
i,t−1)

= tr(diag(PḦi,t−1P)ḦH
i,t−1), (16)

where
P = M̈′

CDiD
T
i M̈′

R. (17)

Using P, let’s define

W = diag(PḦi,t−1P). (18)

Matrix P can be pre-computed, the element of which is
a constant that varies depends on the sub-carrier mapping
matrix, because matrix P inherits Hermitian and circulant
structure from matrix M̈′

C and M̈′
R. Consequently, diagonal

elements of matrix W can be derived as

W(k, k) =

M∑
i=1

P(i, k)P(k, i)Ḧi,t−1(i, i)

=

M∑
i=1

|P(i, k)|2Ḧi,t−1(i, i)

=

M∑
i=1

|P([i−K+1] mod M, 1)|2Ḧi,t−1(i, i).(19)

Eq. (19) shows that the computation for diagonal matrix W
can be performed by circular convolution of vector p which
is a vector taken from the first column of matrix P.

C. SC-MMSE Filtering
The final output of SC-MMSE filter is [2]

zi,t = (IK + Γi,tSi,t)
−1[Γi,tŝi,t + FH

KΦH
i,tX

−1FK r̃i,t] (20)

with Γi,t

Γi,t = diag[FH
KΦH

i,tX
−1Φi,tFK ], (21)

and matrix Si,t of

Si,t = diag|ŝi,t|2 × IK , (22)

where IK is the K ×K size identity matrix.
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IV. HARDWARE ARCHITECTURE

The proposed algorithm presented in section III contributes
very efficient computation where only diagonal and circulant
matrix are involved. Furthermore, the circulant matrices can
be further simplified by performing cyclic convolution, while
the diagonal matrices can be implemented with point wise
multiplications.

A. Hardware Architecture for Soft Cancellation

Based on the results in (9) and (10), the block diagram for
soft cancellation can be designed as in Fig. 3. The channels
frequency response is assumed unchanged in each iteration,
and hence it can be pre-computed. The computation of the
current block consists only the diagonal matrix multiplication,
which can be implemented with a single multiplier, as the
FFTK’s output data in series. On the other hand, the compu-
tations for the past and the future parts consist of two cyclic
convolution from row/column filters and one diagonal matrix
multiplication from the channel matrices.

A column filter is a combination of sub-carrier mapping ma-
trix multiplication with a column masking frequency response
matrix, denoted as M̈′

CDi or M̈′′
CDi. Sub-carrier mapping

matrix affect the matrix’s size reduction to K × M , which
means the column filter can be done in K time iterations as
one iteration for one column. The structure of column filter
matrix for user 1 is shown in Fig. 4(a).5 The flow of column
filter matrix can be mapped into systolic architecture where
the data flow is shown by the systolic space and time diagram.
Fig. 4(b) shows the systolic architecture type applied which
broadcast inputs, move results and weights stay.

A row filter is a result of row masking matrix multiplication
with the sub-carrier de-mapping matrix, DT

i M̈′
R or DT

i M̈′′
R.

These matrices have M ×K size as shown Fig. 5(a). For total
of K iterations, in each iteration a complete row computation
should performed. Thus, we select the systolic type with fan-
in results, move inputs, and weight stays, where the space and

5Note that user 1 in this figure is just for an example to show the systolic
space time representation of column filter. The same assumption applies for
row filter.
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time diagram is shown in Fig. 5(b). While the parallel com-
putation for input data is processed for each row computation,
the input data should be stored in registers. Those registers is
implemented as a circular buffer due to the merit of circulant
masking matrix frequency response. The buffer has size of
K +N , where N is the number of filter’s coefficients.

Finally, the hardware architecture for the past/future blocks
computation can be designed as in Fig. 6. One processing ele-
ment (PE) is implemented as: one register for filter coefficient,
one adder, and one multiplier. In details, Section V investigates
the effect of reducing the PE.

B. Hardware Architecture for matrix X computation

As shown in (11), matrix X comprises the noise, frequency
domain components of interferences form the past and the
future blocks and the frequency domain componenents of the
current block [4]. The computation of its inversion is shown
in the block diagram of Fig. 7. It should be noted here that
since the computation for noise term can be considered as
multiplication of two scalars, we use only a single multiplier,
while the variable tr(DT

i JJTDi) can be pre-computed as a
constant. Similarly, the diagonal matrix-by-matrix multiplica-
tion for the current channel covariance computation can also
be implemented using a single multiplier because the output
data are in series.
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The past and future covariance computations are imple-
mented based on (16), where one circular convolution and
one diagonal matrix multiplication are needed. The circular
convolution can be performed in K iterations because matrix
P has K non-zero columns and K non-zero rows as plotted
in Fig. 8.

We apply the same systolic architecture type as for row filter
to this vector p circular convolution, which is fan-in results,
move inputs, and weights stay, as shown in Fig. 9. However,
the number of processing element required for this circular
convolution is 2N , because matrix P is resulted from the
column filter with row filter, as N is the number of processing
elements in those masking filters.

The diagonal matrix multiplication for the past/future co-
variance computation can be realized with a single multiplier,
since the output data from circular convolution are in series.
The trace operator is implemented with one accumulator and
log(K) right shifter for 1/K operation. It results in hardware
architecture for the past/future covariance matrix computation
as shown in Fig. 10.

V. SIMULATION RESULTS

To investigate the effect of bit-width reduction, we conduct
fixed point simulations to find the minimum required bit-width
for hardware implementation. We assume the channel is 64-
path block Rayleigh fading channels (the channel gains do
not change within a block) with average equal power. The
performance is presented in Fig. 11 in terms of average BER
(over the fading channel realizations) vs. average energy bit
per noise, Eb/N0 (dB). From the figure, we found that the
minimum bit-width is 9 bits since the BER degradation is
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large when the bit-width is set less than 8 bits, which finally
fails at bit-width of 6 bits.

In Fig. 12, we evaluate the effect of coefficient reductions
since the row and column filters, including the vector p
contains elements of sinc function. The sinc has center energy
in the middle, but very small at the beginning and at the
end. Thus, the reduction of coefficients number may not effect
significantly as long the center part of the sinc is kept. Our
results of this investigation is shown in Fig. 12, where the BER
degraded slightly with 32 or even with 16 coefficients.6 In this
section, we may conclude that the row and column filters can
be implemented with simply 16 processing elements, and 32
processing element for matrix W with degradation in BER
performance of only 1 dB (in maximum) compare with the
computation using M numbers processing elements.

VI. CONCLUSIONS

In this paper, we have proposed an efficient hardware
architecture so that the CHATUE-SC-FDMA algorithm can
be implemented with very simple computation by applying the
proposed masking matrices technique, which can be mapped

6In Fig. 12, BER is performed over 64-path block Rayleigh fading channels
so that the maximum performance is better than BER with floating point in
Fig. 11, which was performed over 20-path block Rayleigh fading channels.
However, this difference does not cancel the conclusion about effect of number
of coefficients.
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directly to the systolic architecture. Heavy computational
complexity such as FFT for matrix-by-matrix multiplications
can be avoided by row filter, column filter, and vector p
convolution. Furthermore, the proposing architecture has also
been evaluated for fixed point model, which show that 9 bits
quantization is enough to achieve as good performance as
floating point model. Finally, we conclude that required com-
putation for CHATUE-SC-FDMA technique can be reduced up
to 96% (with acceptable degradation, less than 1 dB) which
is very significant for spectral efficient SC-FDMA system
without CP.
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