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Chapter VII: Gödel-Dummett Logics
MATTHIAS BAAZ AND NORBERT PREINING

1 Introduction and History

The logics we present in this chapter, Gödel logics, can be characterized in a rough-
and-ready way as follows: The language is a standard (propositional, quantified propo-
sitional, first-order) language. The logics are many-valued, and the sets of truth values
considered are (closed) subsets of [0, 1] which contain both 0 and 1. 1 is the ‘designated
value,’ i.e., a formula is valid if it receives the value 1 in every interpretation. The truth
functions of conjunction and disjunction are minimum and maximum, respectively, and
in the first-order case quantifiers are defined by infimum and supremum over subsets of
the set of truth values. The characteristic operator of Gödel logics, the Gödel condi-
tional, is defined by a → b = 1 if a ≤ b and = b if a > b. Because the truth values
are ordered (indeed, in many cases, densely ordered), the semantics of Gödel logics
is suitable for formalizing comparisons. It is related in this respect to a more widely
known many-valued logic, Łukasiewicz (or ‘fuzzy’) logic (see Chapter V– although the
truth function of the Łukasiewicz conditional is defined not just using comparison, but
also addition. In contrast to Łukasiewicz logic, which might be considered a logic of
absolute or metric comparison, Gödel logics are logics of relative comparison.

There are other reasons why the study of Gödel logics is important. As noted,
Gödel logics are related to other many-valued logics of recognized importance. Indeed,
Gödel logic is one of the three basic t-norm based logics which have received increasing
attention in the last 15 or so years (the others are Łukasiewicz and product logic; see
[27]). Yet Gödel logic is also closely related to intuitionistic logic: it is the logic of
linearly-ordered Heyting algebras. In the propositional case, infinite-valued Gödel logic
can be axiomatized by the intuitionistic propositional calculus extended by the axiom
schema (A → B) ∨ (B → A). This connection extends also to Kripke semantics
for intuitionistic logic: Gödel logics can also be characterized as logics of (classes of)
linearly ordered and countable intuitionistic Kripke structures with constant domains
[19]. Furthermore, the infinitely valued propositional Gödel logic can be embedded into
the box fragment of LTL in the same way as intuitionistic propositional logic can be
embedded into S4.

We want to start here with an observation concerning implications for many-valued
logics, that spotlights why Gödel logics behave well in some cases in contrast to other
many-valued logics, namely that they are based on the only implication that admits both
modus ponens and the deduction theorem, as can be seen from the following observation
of Gaisi Takeuti.
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1.1 The Gödel conditional

LEMMA 1.1.1. Suppose we have a standard language containing a ‘conditional’ �
interpreted by a truth-function into [0, 1], and some entailment relation |=. Suppose
further that

1. a conditional evaluates to 1 if the truth value of the antecedent is less or equal to
the truth value of the consequent, i.e., if I(A) ≤ I(B), then I(A� B) = 1;

2. if Γ |= B, then I(Γ) ≤ I(B);

3. the deduction theorem holds, i.e., Γ ∪ {A} |= B ⇔ Γ |= A� B.

Then� is the Gödel conditional.

Proof. From (1), we have that I(A � B) = 1 if I(A) ≤ I(B). Since |= is reflexive,
B |= B. Since it is monotonic, B,A |= B. By the deduction theorem, B |= A � B.
By (2),

I(B) ≤ I(A� B).

From A� B |= A� B and the deduction theorem, we get A� B,A |= B. By (2),

min{I(A� B), I(A)} ≤ I(B).

Thus, if I(A) > I(B), I(A� B) ≤ I(B).

A large class of many-valued logics can be developed from the theory of t-norms
[27]. The class of t-norm based logics includes not only (standard) Gödel logic, but
also Łukasiewicz and product logic. In these logics, the conditional is defined as the
residuum of the respective t-norm, and the logics differ only in the definition of their
t-norm and the respective residuum, i.e., the conditional (see Chapter VII). The truth
function for the Gödel conditional is of particular interest as it can be ‘deduced’ from
simple properties of the evaluation and the entailment relation, as shown above.

Note that all usual conditionals (Gödel, Łukasiewicz, product conditionals) satisfy
condition (1). So, in some sense, the Gödel conditional is the only many-valued condi-
tional which validates both directions of the deduction theorem for |=. For instance, for
the Łukasiewicz conditional→Ł the right-to-left direction fails: A →Ł B |= A →Ł B,
but A →Ł B,A 2 B. (With respect to 
, the left-to-right direction of the deduction
theorem fails for→Ł.)

One of the surprising facts about Gödel logics is that whereas there is only one
infinite-valued propositional Gödel logic, and already uncountably many different logics
when considering propositional entailments [17] or quantification over propositions
[16], there are only countably many different infinite-valued first-order Gödel logics
depending on the choice of the set of truth values (Theorem 3.5.1). For both quantified
propositional and first-order Gödel logics, different sets of truth values with different
order-theoretic properties in general result in different sets of valid formulas.

Besides the logical and computational interest in Gödel logics, they also provide an
interesting playground for various areas of more traditional mathematics, like topology,
esp. Polish spaces and Order theory.
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1.2 History of Gödel logics

Gödel logics are one of the oldest families of many-valued logics. Propositional
finite-valued Gödel logics were introduced by G¨ödel [26] to show that there are in-
finitely many logics between intuitionistic and classical logic. They provide the first
examples of intermediate logics (intermediate, that is, in strength between classical
and intuitionistic logics). Dummett [23] was the first to study infinite-valued propo-
sitional Gödel logics, axiomatizing the set of tautologies over infinite truth-value sets
by intuitionistic logic extended by the linearity axiom (A → B) ∨ (B → A). Hence,
infinite-valued propositional Gödel logic is also sometimes called Gödel-Dummett logic
or Dummett’s LC. In terms of Kripke semantics, the characteristic linearity axiom
picks out those accessibility relations which are linear orders. The entailment relation
in propositional Gödel logics was investigated in [17] and Gödel logics with quantifiers
over propositions in [8].

Standard first-order Gödel logic GR – the one based on the full interval [0, 1] – has
been discovered and studied by several people independently. Alfred Horn [28] was
probably the first: He discussed this logic under the name logic with truth values in a
linearly ordered Heyting algebra, and gave an axiomatization and the first completeness
proof. [39] called GR intuitionistic fuzzy logic and gave a sequent calculus axiomatiza-
tion for which they proved completeness. This system incorporates the density rule

Γ ` A ∨ (C → p) ∨ (p→ B)

Γ ` A ∨ (C → B)

(where p is any propositional variable not occurring in the lower sequent.) The rule
is redundant for an axiomatization of GR, as was shown by Takano [37], who gave a
streamlined completeness proof of Takeuti-Titani’s system without the rule. A syntac-
tical proof of the elimination of the density rule was later given in [18]. Other proof-
theoretic investigations of Gödel logics can be found in [3] and [4]. The density rule is
nevertheless interesting: It forces the truth value set to be dense in itself (in the sense
that, if the truth value set is not dense in itself, the rule does not preserve validity). This
contrasts with the expressive power of formulas: no formula is valid only for truth value
sets which are dense in themselves.

Recent developments have clarified many long standing questions, like the classi-
fication of axiomatizability, the relation to Kripke frames, status of satisfiability of the
monadic class.

1.3 Syntax and semantics for propositional Gödel logics

When considering propositional Gödel logics we fix a standard propositional lan-
guage L 0 with countably many propostional variables pi, and the connectives ∧, ∨,
→ and the constant ⊥ (for ‘false’); negation is introduced as an abbreviation: we let
¬p ≡ (p → ⊥). For convenience, we also define > ≡ ⊥ → ⊥. We will sometimes
use the unary connective 4, introduced in [2]. Furthermore we will use p ≺ q as an
abbreviation for (q → p)→ q.

DEFINITION 1.3.1. Let V ⊆ [0, 1] be some set of truth values which contains 0 and 1.
A propositional Gödel valuation I0 (short valuation) based on V is a function from the
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set of propositional variables into V with I0(⊥) = 0. This valuation can be extended
to a function mapping formulas from Frm(L 0) into V as follows:

I0(A ∧B) = min{I0(A), I0(B)}
I0(A ∨B) = max{I0(A), I0(B)}

I0(4A) =

{
1 I0(A) = 1

0 I0(A) < 1

I0(A→ B) =

{
I0(B) if I0(A) > I0(B)

1 if I0(A) ≤ I0(B).

A formula is called valid with respect to V if it is mapped to 1 for all valuations
based on V . The set of all formulas which are valid with respect to V will be called the
propositional Gödel logic based on V and will be denoted by G0

V .
The validity of a formula A with respect to V will be denoted by

|=0
V A or |=G0

V
A.

REMARK 1.3.2. The extension of the valuation I0 to formulas provides the following
truth functions:

I0(¬A) =

{
0 if I0(A) > 0

1 otherwise

I0(A ≺ B) =

{
1 if I0(A) < I0(B) or I0(A) = I0(B) = 1

I(B) otherwise

Thus, the intuition behind A ≺ B is that A is strictly less than B, or both are equal to 1.

1.4 Syntax and semantics for first-order Gödel logics

When considering first-order Gödel logics we fix a standard first-order language L
with finitely or countably many predicate symbols P and finitely or countably many
function symbols f for every finite arity k. In addition to the connectives of propositional
Gödel logics the two quantifiers ∀ and ∃ are used.

In the first order case, where quantifiers will be interpreted as infima and suprema,
we require the truth value set to be a closed subset of [0, 1] (and as before 0, 1 ∈ V ).

DEFINITION 1.4.1 (Gödel set). A Gödel set is a closed set V ⊆ [0, 1] which contains
0 and 1.

The semantics of Gödel logics, with respect to a fixed Gödel set as set of truth
values and a fixed language L of predicate logic, is defined using the extended language
L U , where U is the universe of the interpretation I. L U is L extended with constant
symbols for each element of U .

DEFINITION 1.4.2 (Semantics of Gödel logic). Let V be a Gödel set. An interpretation
I into V , or a V -interpretation, consists of
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1. a nonempty set U = UI , the ‘universe’ of I,

2. for each k-ary predicate symbol P , a function P I : Uk → V ,

3. for each k-ary function symbol f , a function fI : Uk → U .

4. for each variable v, a value vI ∈ U .

Given an interpretation I, we can naturally define a value tI for any term t and a
truth value I(A) for any formula A of L U . For a term t = f(u1, . . . , uk) we define
I(t) = fI(uI1 , . . . , u

I
k ). For atomic formulas A ≡ P (t1, . . . , tn), we define I(A) =

P I(tI1 , . . . , t
I
n). For composite formulas A we extend the truth definitions from the

propositonal case for the new syntactic elements by:

I(∀xA(x)) = inf{I(A(u)) : u ∈ U}
I(∃xA(x)) = sup{I(A(u)) : u ∈ U}

If I(A) = 1, we say that I satisfies A, and write I |= A. If I(A) = 1 for every
V -interpretation I, we say A is valid in GV and write GV |= A.

If Γ is a set of sentences, we define I(Γ) = inf{I(A) : A ∈ Γ}.

Abusing notation slightly, we will often define interpretations simply be defining
the truth values of atomic formulas in L U .

DEFINITION 1.4.3. If Γ is a set of formulas (possibly infinite), we say that Γ entails A
in GV , Γ |=V A iff for all I into V , I(Γ) ≤ I(A).

Γ 1-entails A in GV , Γ 
V A, iff, for all I into V , whenever I(B) = 1 for all
B ∈ Γ, then I(A) = 1.

We will write Γ |= A instead of Γ |=V A in case it is obvious which truth value set
V is meant.

DEFINITION 1.4.4. For a Gödel set V we define the first order Gödel logic GV as the
set of all pairs (Γ, A) such that Γ |=V A.

One might wonder whether a different definition of the entailment relation in Gödel
logic might give different results. But as the following proposition shows, the above two
definitions yield the same result, allowing us to use the characterization of |= or 
 as
convenient.

PROPOSITION 1.4.5. Π |=V A iff Π 
V A

Proof. See [17, Proposition 2.2]

Note that in the presence of4, Proposition 1.4.5 does not hold and we will use the
1-entailment. Furthermore, it is important to mention that the (1-)satisfiability in the
case without4 does not define the entailment, which changes when adding4.
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1.5 Axioms and deduction systems for Gödel logics

In this section we introduce deduction systems for Gödel logics, and we show
soundness and completeness.

Most of the time we concentrate on Hilbert-style deduction systems, for proof theory
and Gentzen style systems see Chapter IV. The only time a Gentzen style proof system
will be used in this chapter is when proving the strong completeness. In this proof
system the notion of sequent, written as

A1, . . . , An⇒B

is introduced which we will consider as an abbreviation for

A1 → A2 → . . .→ An → B,

and A1, . . . , An⇒ as an abbreviation for A1, . . . , An⇒⊥.
We will denote by IL the following complete axiom system for intuitionistic logic,

where B(x) means that x is not free in B:

I1 ⊥ → A I8 (A→ B)→ [(C → A)→ (C → B)]

I2 A→ (B → A) I9 [A→ (C → B)]→ [C → (A→ B)]

I3 (A ∧B)→ A I10 (A→ C) ∧ (B → C)→ ((A ∨B)→ C)

I4 (A ∧B)→ B I11 (C → A) ∧ (C → B)→ (C → (A ∧B))

I5 A→ (B → (A ∧B)) I12 (A→ (B → C))→ (A ∧B → C)

I6 A→ (A ∨B) I13 [A→ (A→ B)]→ (A→ B)

I7 B → (A ∨B)

IQ1
B(x) → A(x)

B(x) → ∀xA(x)
IQ2 ∀xA(x)→ A(t)

IQ3 A(t)→ ∃xA(x) IQ4
A(x)→ B(x)

∃xA(x)→ B(x)

MP A A→ B
B

The following formulas will play an important rôle when axiomatizing Gödel log-
ics, their names can be explained as follows: QS stands for ‘quantifier shift’, LIN for
‘linearity’, ISO0 for ‘isolation axiom of 0’, ISO1 for ‘isolation axiom of 1’, and FIN(n)
for ‘finite with n elements’.

QS ∀x(C(x) ∨A(x))→ (C(x) ∨ ∀xA(x))

LIN (A→ B) ∨ (B → A)

ISO0 ∀x¬¬A(x)→ ¬¬∀xA(x)

ISO1 ∀x4A(x)→ det ∃xA(x)

FIN(n) (> → p1) ∨ (p1 → p2) ∨ . . . ∨ (pn−2 → pn−1) ∨ (pn−1 → ⊥)
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We will use aditionally, referred to as AX∆

∆1 4A ∨ detA

∆2 4(A ∨B)→ (detA ∨ detB)

∆3 4A→ A

∆4 4A→ det detA

∆5 4(A→ B)→ (detA→ detB)

∆6
A
4A

DEFINITION 1.5.1. If A is an axiom system, we denote by A0 the propositional part
of A, i.e. all the axioms which do not contain quantifiers.

With A∆ we denote the axiom system obtained from A by adding the axioms AX∆.
With An we denote the axiom system obtained from A by adding the axiom FIN(n).
We denote by H the axiom system IL + QS + LIN.

EXAMPLE 1.5.2. IL0 is IPL. H0 is Dummett’s LC.

For all these axiom systems the general notion of deducability can be defined:

DEFINITION 1.5.3. If a formula/sequent Γ can be deduced from an axiom system A
we denote this by

`A Γ

PROPOSITION 1.5.4 (Soundness). Suppose Γ contains only closed formulas, and all
axioms of A are valid in GV . Then, if Γ `A A then Γ |=V A. In particular, H is sound
for |=V for any Gödel set V ; Hn is sound for |=V if |V | = n; H + ISO0 is sound for
|=V if 0 is isolated in V ; and H4+ ISO1 is sound for |=V with4.

1.6 Topologic and order

In the following we will recall some definitions and facts from topology and order
theory which will be used later on in many places.

1.6.1 Perfect sets
All the following notations, lemmas, theorems are carried out within the framework

of Polish spaces, which are separable, completely metrizable topological spaces. For
our discussion it is only necessary to know that R and all its closed subsets are Polish
spaces (hence, every Gödel set is a Polish space). For a detailed exposition see [29, 31].

DEFINITION 1.6.1 (Limit point, perfect space, perfect set). A limit point of a topolog-
ical space is a point that is not isolated, i.e. for every open neighborhood U of x there
is a point y ∈ U with y 6= x. A space is perfect if all its points are limit points. A
set P ⊆ R is perfect if it is closed and together with the topology induced from R is a
perfect space.

It is obvious that all (non-trivial) closed intervals are perfect sets, as well as all
countable unions of (non-trivial) intervals. But all these sets generated from closed
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intervals have the property that they are ‘everywhere dense,’ i.e., contained in the closure
of their inner component. There is a well-known example of a perfect set that is nowhere
dense, the Cantor set:

EXAMPLE 1.6.2 (Cantor Set). The set of all numbers in the unit interval which can be
expressed in triadic notation only by digits 0 and 2 is called the Cantor set D.

A more intuitive way to obtain this set is to start with the unit interval, take out the
open middle third and restart this process with the lower and the upper third. Repeating
this you get exactly the Cantor set because the middle third always contains the numbers
which contain the digit 1 in their triadic notation.

This set has a lot of interesting properties, the most important one for our purposes
is that it is a perfect set:

PROPOSITION 1.6.3. The Cantor set is perfect.

It is possible to embed the Cauchy space into any perfect space, yielding the follow-
ing proposition:

PROPOSITION 1.6.4 ( [29], Corollary 6.3). If X is a nonempty perfect Polish space,
then |X| = 2ℵ0 . All nonempty perfect subsets of [0, 1] have cardinality 2ℵ0 .

It is possible to obtain the following characterization of perfect sets (see [41]):

PROPOSITION 1.6.5 (Characterization of perfect sets in R). For any perfect subset of
R there is a unique partition of the real line into countably many intervals such that the
intersections of the perfect set with these intervals are either empty, the full interval or
isomorphic to the Cantor set.

So we see that intervals and Cantor sets are prototypical for perfect sets and the
basic building blocks of more complex perfect sets.

Every Polish space can be partitioned into a perfect kernel and a countable rest. This
is the well known Cantor-Bendixon Theorem:

THEOREM 1.6.6 (Cantor-Bendixon). LetX be a Polish space. ThenX can be uniquely
written as X = P ∪ C, with P a perfect subset of X and C countable and open. The
subset P is called the perfect kernel of X (denoted by X∞).

As a corollary we obtain that any uncountable Polish space contains a perfect set,
and therefore, has cardinality 2ℵ0 .

2 Propositional Gödel Logics

As already mentioned Gödel introduced this family of logics on the propositional
level to analyze Intuitionistic logic. This allows the approach to Gödel logics via re-
stricting the possible accessibility relations of Kripke models of intuitionistic logic. Two
somehow reasonable restrictions of the Kripke structures are the restriction to constant
domains and the restriction that the Kripke worlds are linearly ordered and of order
type ω. One can now ask what sentences are valid in this restricted class of Kripke
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models. This question has been settled by Dummett [23] for the propositional case by
adding to a complete axiomatization of intuitionistic logic the axiom of linearity

LIN (p→ q) ∨ (q → p)

It is interesting to note that p and q in the linearity scheme are propositional formulas. It
is not enough to add this axiom for atomic p and q. For an axiom scheme only necessary
for atomic formulas we have to use

((p→ q)→ p) ∨ (p→ (p→ q))

to obtain completeness [16].
Another interesting distinction between LC, which is G0

↓, and other propositional
Gödel logics is the fact that while G0

↓ and G0
R have the same set of tautologies, the en-

tailment relation of the former is not compact, while the one of the latter is. The logic
Dummett discussed, the logic of linearly ordered Kripke frames of order type ω, corre-
sponds to G0

↓. Therefore, Dummett proved only weak completeness (see Section 4.4).
One of the important properties of propositional Gödel logics is that the set of tau-

tologies for any infinitely valued propositional Gödel logic coincides with the intersec-
tion of the sets of tautologies of all finitely valued propositional Gödel logics. There-
fore, there is, with respect to the set of tautologies, only one infinite valued propositional
Gödel logic, in contrast to entailment, quantified propositional logics, and first order.

2.1 Completeness of H0 for LC

[23] proved that a formula of propositional Gödel logic is valid in any infinite truth
value set if it is valid in one infinite truth value set. Moreover, all the formulas valid
in these sets are axiomatized by any axiomatization of intuitionistic propositional logic
extended with the linearity axiom scheme (p → q) ∨ (q → p). The proof given here is
a simplified proof of the completeness of H0 taken from [28].

DEFINITION 2.1.1. An algebra P = 〈P, ·,+,→,0,1〉 is a Heyting algebra if the
reduct 〈P, ·,+,0,1〉 is a lattice with least element 0, largest element 1 and x · y ≤ z iff
x ≤ (y → z).

DEFINITION 2.1.2. An L-algebra is a Heyting algebra in which

(x→ y) + (y → x) = 1

is valid for all x, y.

It is obvious that if we take L-algebras as our reference models for completeness,
the proof of completeness is trivial. Generally, it is not very interesting to define algebras
fitting to logics like a second skin, and then proving completeness with respect to this
class (Ł-algebras, . . . ), without giving any connection to well known algebraic structures
or already accepted reference models. In our case we want to show completeness with
respect to the real interval [0, 1] or one of its sub-orderings. More generally we aim at
completeness with respect to chains, which are special Heyting algebras:
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DEFINITION 2.1.3. A chain is a linearly ordered Heyting algebra.

Chains are exactly what we are looking for as every chain (with cardinality less or
equal to the continuum) is isomorphic to a sub-ordering of the [0, 1] interval, and vice
versa. Our aim is now to show completeness of the above axiomatization with respect to
chains. Furthermore we will exhibit that the length of the chains for a specific formula
can be bounded by the number of propositional variables in the formula. More precisely:

THEOREM 2.1.4. A formula α is provable in H0 = LC if and only if it is valid in all
chains with at most n + 2 elements, where n is the number of propositional variables
in α.

Proof. As usual we define the relation α � β equivalent to ` α → β and α ≡ β as
α � β and β � α. It is easy to verify that ≡ is an equivalence relation. We denote
α/≡ with |α|. It is also easy to show that with |α|+ |β| = |α ∨ β|, |α| · |β| = |α ∧ β|,
|α| → |β| = |α → β| the set F/≡ becomes a Heyting algebra, and due to the linearity
axiom it is also an L-algebra. Furthermore note that |α| = 1 if and only if α is provable
in H0 (1 = |p→ p|, |α| = |p→ p| gives ` (p→ p)→ α which in turn gives ` α).

If our aim would be completeness with respect to L-algebras the proof would be
finished here, but we aim at completeness with respect to chains, therefore, we will take
a close look at the structure of F/≡ as L-algebra. Assume that a formula α is given,
which is not provable, we want to give a chain where α is not valid. We already have an
L-algebra where α is not valid, but how to obtain a chain?

We could use the general result from [28], Theorem 1.2, that a Heyting algebra is an
L-algebra if and only if it is a subalgebra of a direct product of chains, but we will exhibit
how to find explicitly a suitable chain. The idea is that the L-algebra F/≡ describes all
possible truth values for all possible orderings of the propositional variables in α. We
want to make this more explicit:

DEFINITION 2.1.5. We denote with

C(⊥, pi1 , . . . , pin ,>)

the chain with these elements and the ordering

⊥ ≤ pi1 < . . . < pin ≤ >.

If C is a chain we denote with |α|C the evaluation of the formula in the chain C.

LEMMA 2.1.6. The L-algebra F/≡ is a subalgebra of the following direct product of
chains

X =
n!∏

i=1

C(⊥, πi(p1, . . . , pn),>)

where πi ranges over the set of permutations of n elements. We will use Ci to denote
C(⊥, πi(p1, . . . , pn),>).
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Proof. Define φ : F/≡ → X as follows:

φ(|α|) = (|α|C1 , . . . , |α|Cn!
).

We have to show that φ is well defined, is a homomorphism and is injective. First assume
that β ∈ |α| but φ(|α|) 6= φ(|β|), i.e.

(|α|C1 , . . . , |α|Cn!
) 6= (|β|C1 , . . . , |β|Cn!

)

but then there must be an i such that

|α|Ci 6= |β|Ci .

Without loss of generality, assume that |α|Ci < |β|Ci . From the fact that |α| = |β| we
get ` β → α. From this we get that |β → α|Ci < 1 and from ` β → α we get that
|β → α|Ci = 1, which is a contradiction. This proves the well-definedness.

To show that φ is a homomorphism we have to prove that

φ(|α| · |β|) = φ(|α|) · φ(|β|)
φ(|α|+ |β|) = φ(|α|) + φ(|β|)
φ(|α| → |β|) = φ(|α|)→ φ(|β|).

This is a straightforward computation using |α ∧ β|C = φ(|α|C) · φ(|β|C).
Finally we have to prove that φ is injective. Assume that φ(|α|) = φ(|β|) and that

|α| 6= |β|. From the former we obtain that |α|Ci = |β|Ci for all 1 ≤ i ≤ n!, which
means that

ICi(α) = ICi(β) for all 1 ≤ i ≤ n!.

On the other hand we know from the latter that there is an interpretation I such that
I(α) 6= I(β). Without loss of generality assume that

⊥ ≤ I(pi1) < . . . < I(pin) ≤ >.

There is an index k such that the Ck is exactly the above ordering with

ICk(α) 6= ICk(β),

this is a contradiction.
This completes the proof that F/≡ is a subalgebra of the given direct product of

chains.

EXAMPLE 2.1.7. For n = 2 the chains are C(⊥, p, q,>) and C(⊥, q, p,>). The prod-
uct of these two chains looks as given in Figure 1, p. 142. The labels below the nodes
are the products, the formulas above the nodes are representatives for the class α/≡.

Now the proof of Theorem 2.1.4 is trivial since, if |α| 6= 1, there is a chain Ci where
|α|Ci 6= 1.

This yields the following theorem:
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⊥,⊥
⊥

p,⊥ ⊥, q

q,⊥ ⊥, pp, q

p ∧ q
>,⊥ ⊥,>q, q

q

p, p

p
>, q

p→ q

p,>
q → p

>, p
(p→ q) ∨ q

q,>
(q → p) ∨ p

>,>
>

Figure 1. L-algebra of C(⊥, p, q,>) × C(⊥, q, p,>). Labels below the nodes are the ele-
ments of the direct product, formulas above the node are representatives for the class α/≡.

THEOREM 2.1.8. A propositional formula is valid in any infinite chain iff it is derivable
in LC = H0.

Going on to finite truth value set we can give the following theorem:

THEOREM 2.1.9. A formula is valid in any chain with at most n elements iff it is
provable in LCn.

Proof. Assuming that H0
n 0 α and using the deduction theorem we can proceed as

follows:

H0
n 0 α

H0 + FIN(n) 0 α
H0 0 FIN(n)→ α

From this we know that there is an interpretation I such that

I(FIN(n)→ α) < 1

which is equivalent to
I(FIN(n)) = 1 and I(α) < 1.

The first formula ensures that the domain has at most n elements. Therefore, I is an
interpretation with a domain with at most n elements and which evaluates α to a value
less than 1.
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As a simple consequence of these result the following corollaries settle the number
of propositional Gödel logics and their relation:

COROLLARY 2.1.10. The propositional Gödel logics G0
n and G0

R are all different, thus
there are countable many different propositional Gödel logics, and

⋂

n∈N
G0
n = G0

R

2.2 The Delta operator

For Gödel logics there is an asymmetry between 0 and 1 because 0 can be dis-
tinguished from other values (by using the negation), while 1 cannot be distinguished.
The reason is that all connectives and quantifiers are continuous at 1. To overcome this
assymetry the operator4 has been introduced in [2] with the following truth function:

φ(4A) =

{
1 if φ(A) = 1

0 o.w.

THEOREM 2.2.1. There is only one infinitely valued Gödel logic with 4, and it is
axiomatized by H04 (see page 137), and this logic is the intersection of the finitely
valued logics.

It is important to note that adding4 to the language is an actual extension, i.e., the
4 operator cannot be defined.

3 First Order Gödel Logics

After some preliminaries we discuss the relationships between different Gödel log-
ics in Section 3.2, characterize the axiomatizable first-order Gödel logics in Sections 3.3.1,
3.3.2, and 3.3.3, followed by the characterization of those logics that are not recursively
enumerable in Sections 3.3.4 and 3.3.5.

Following this complete characterization of axiomatizability we explicate the rela-
tion between (linear) Kripke frames based logics and Gödel logics in Section 3.4, and
briefly discuss the very surprising result on the number of different first-order Gödel
logics in Section 3.5.

All the result in the following sections are from [4, 15, 17–20].

3.1 Preliminaries

We will be concerned below with the relationships between Gödel logics, here con-
sidered as entailment relations. Note that GV |= A iff (∅, A) ∈ GV , so in particular,
showing that GV ⊆ GW also shows that every valid formula of GV is also valid in
GW . On the other hand, to show that GV * GW it suffices to show that for some A,
GV |= A but GW 2 A.

REMARK 3.1.1. The case that a formula A evaluates to 1 under a certain interpreta-
tion I depends only on the relative ordering of the truth values of the atomic formulas
(in L I), and not directly on the set V or on the specific values of the atomic formulas.



144 Matthias Baaz and Norbert Preining

If V ⊆W are both Gödel sets, and I is a V -interpretation, then I can be seen also as a
W -interpretation, and the values generated during the computation of I(A) do not de-
pend on whether we view I as a V -interpretation or a W -interpretation. Consequently,
if V ⊆ W , there are more interpretations into W than into V . Hence, if Γ |=W A, then
also Γ |=V A and GW ⊆ GV .

This can be generalized to embeddings between Gödel sets other than inclusion.
First, we make precise which formulas are involved in the computation of the truth-
value of a formula A in an interpretation I:

DEFINITION 3.1.2. The only subformula of an atomic formula A in L U is A itself.
The subformulas ofA?B for ? ∈ {→,∧,∨} are the subformulas ofA and ofB, together
with A ? B itself. The subformulas of ∀xA(x) and ∃xA(x) with respect to a universe
U are all subformulas of all A(u) for u ∈ U , together with ∀xA(x) (or, ∃xA(x),
respectively) itself.

The set of truth-values of subformulas ofA under a given interpretation I is denoted
by

Val(I, A) = {I(B) : B subformula of A w.r.t. UI} ∪ {0, 1}

If Γ is a set of formulas, then Val(I,Γ) =
⋃{Val(I, A) : A ∈ Γ}.

LEMMA 3.1.3. Let I be a V -interpretation, and let h : Val(I,Γ) → W be a mapping
satisfying the following properties:

1. h(0) = 0, h(1) = 1;

2. h is strictly monotonic, i.e., if a < b, then h(a) < h(b);

3. for every X ⊆ Val(I,Γ), h(inf X) = inf h(X) and h(supX) = suph(X)
(provided inf X , supX ∈ Val(I,Γ)).

Then the W -interpretation Ih with universe UI , fIh = fI , and for atomic B ∈ L I ,

Ih(B) =

{
h(I(B)) if I(B) ∈ domh

1 otherwise

satisfies Ih(A) = h(I(A)) for all A ∈ Γ.

Proof. By induction on the complexity of A. If A ≡ ⊥, the claim follows from (1). If
A is atomic, it follows from the definition of Ih. For the propositional connectives the
claim follows from the strict monotonicity of h (2). For the quantifiers, it follows from
property (3).

PROPOSITION 3.1.4 (Downward Löwenheim-Skolem). For any interpretation I with
UI infinite, there is an interpretation I ′ ≺ I with a countable universe UI

′
.
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LEMMA 3.1.5. Let I be an interpretation into V , w ∈ [0, 1], and let Iw be defined by

Iw(B) =

{
I(B) if I(B) < w

1 otherwise

for atomic formulas B in L I . Then Iw is an interpretation into V . If w /∈ Val(I, A),
then Iw(A) = I(A) if I(A) < w, and Iw(A) = 1 otherwise.

Proof. By induction on the complexity of formulas A in L I . The condition that w /∈
Val(I, A) is needed to prove the case of A ≡ ∃xB(x), since if I(∃xB(x)) = w and
I(B(d)) < w for all d, we would have Iw(∃xB(x)) = w and not = 1.

Using this lemma we can obtain the following observation.

LEMMA 3.1.6. If for all interpretations I(A) = 1 iff I(B) = 1, then already A ↔ B
is valid.1

Proof. If A ↔ B is not valid, then there is a real number w strictly between the valua-
tions of A and B, such that either w is not a truth value, or w does not occur in the set
of valuations of all sub-formulas of A and B. Assuming w.l.o.g. that I(A) > I(B) we
obtain that Iw(A) = 1 while Iw(B) = I(B) < 1.

The following lemma was originally proved in [34], where it was used to extend
the proof of recursive axiomatizability of the ‘standard’ Gödel logic GR to Gödel logics
with a truth value set containing a perfect set in the general case. The following simpler
proof is inspired by [20]:

LEMMA 3.1.7. Suppose that M ⊆ [0, 1] is countable and P ⊆ [0, 1] is perfect. Then
there is a strictly monotone continuous map h : M → P (i.e., infima and suprema al-
ready existing in M are preserved). Furthermore, if inf M ∈M , then one can choose h
such that h(inf M) = inf P .

Proof. Let σ be the mapping which scales and shifts M into [0, 1], i.e. the mapping
x 7→ (x − inf M)/(supM − inf M) (assuming that M contains more than one point).
Let w be an injective monotone map from σ(M) into 2ω , i.e. w(m) is a fixed binary
representation of m. For dyadic rational numbers (i.e. those with different binary repre-
sentations) we fix one possible.

Let i be the natural bijection from 2ω (the set of infinite {0, 1}-sequences, ordered
lexicographically) onto D, the Cantor set. i is an order preserving homeomorphism.
Since P is perfect, we can find a continuous strictly monotone map c from the Cantor
set D ⊆ [0, 1] into P , and c can be chosen so that c(0) = inf P . Now h = c ◦ i ◦ w ◦ σ
is also a strictly monotone map from M into P , and h(inf M) = inf P , if inf M ∈ M .
Since c is continuous, existing infima and suprema are preserved.

COROLLARY 3.1.8. A Gödel set V is uncountable iff it contains a non-trivial dense
linear subordering.

1Vincenzo Mara: oral communication
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Proof. If: Every countable non-trivial dense linear order has order type η, 1 + η, η+ 1,
or 1 + η + 1 [36, Corollary 2.9], where η is the order type of Q. The completion of any
ordering of order type η has order type λ, the order type of R [36, Theorem 2.30], thus
the truth value set must be uncountable. Only if: By Theorem 1.6.6, V∞ is non-empty.
Take M = Q ∩ [0, 1] and P = V∞ in Lemma 3.1.7. The image of M under h is a
non-trivial dense linear subordering in V .

THEOREM 3.1.9. Suppose V is a truth value set with non-empty perfect kernel P , and
let W = V ∪ [inf P, 1]. Then Γ |=V A iff Γ |=W A, i.e., GV = GW .

Proof. As V ⊆ W we have GW ⊆ GV (cf. Remark 3.1.1). Now assume that I
is a W -interpretation which shows that Γ |=W A does not hold, i.e., I(Γ) > I(A).
By Proposition 3.1.4, we may assume that UI is countable. The set Val(I,Γ ∪ A) has
cardinality at most ℵ0, thus there is aw ∈ [0, 1] such thatw /∈ Val(I,Γ∪A) and I(A) <
w < 1. By Lemma 3.1.5, Iw(A) < w < 1. Now consider M = Val(Iw,Γ ∪ A):
these are all the truth values from W = V ∪ [inf P, 1] required to compute Iw(A) and
Iw(B) for all B ∈ Γ. We have to find some way to map them to V so that the induced
interpretation is a counterexample to Γ |=V A.

Let M0 = M ∩ [0, inf P ) and M1 = (M ∩ [inf P,w]) ∪ {inf P}. By Lemma 3.1.7
there is a strictly monotone continuous (i.e. preserving all existing infima and suprema)
map h from M1 into P . Furthermore, we can choose h such that h(inf M1) = inf P .

We define a function g from Val(Iw,Γ ∪A) to V as follows:

g(x) =





x 0 ≤ x ≤ inf P

h(x) inf P ≤ x ≤ w
1 x = 1

Note that there is no x ∈ Val(Iw,Γ ∪ A) with w < x < 1. This function has the
following properties: g(0) = 0, g(1) = 1, g is strictly monotonic and preserves existing
infima and suprema. Using Lemma 3.1.3 we obtain that Ig is a V -interpretation with
Ig(C) = g(Iw(C)) for all C ∈ Γ ∪A, thus also Ig(Γ) > Ig(A).

3.2 Relationships between Gödel logics

We now establish some results regarding the relationships between various first-
order Gödel logics. For this, it is useful to consider several ‘prototypical’ Gödel sets.

VR = [0, 1] V0 = {0} ∪ [1/2, 1]

V↓ = {1/k : k ≥ 1} ∪ {0}
V↑ = {1− 1/k : k ≥ 1} ∪ {1}
Vn = {1− 1/k : 1 ≤ k ≤ m− 1} ∪ {1}

The corresponding Gödel logics are GR, G0, G↓, G↑, and Gn. GR is the standard
Gödel logic.

The logic G↓ also turns out to be closely related to some temporal logics [1, 11]. G↑
is the intersection of all finite-valued first-order Gödel logics as shown in Theorem 3.2.4.
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PROPOSITION 3.2.1. Intuitionistic predicate logic IL is contained in all first-order
Gödel logics.

Proof. The axioms and rules of IL are sound for the Gödel truth functions.

As a consequence of this proposition, we will be able to use any intuitionistically
sound rule and intuitionistically valid formula when working in any of the Gödel logics.

PROPOSITION 3.2.2. GR =
⋂
V GV , where V ranges over all Gödel sets.

Proof. If Γ |=V A for every Gödel set V , then it does so in particular for V = [0, 1].
Conversely, if Γ 2V A for a Gödel set V , there is a V -interpretation I with I(Γ) >
I(A). Since I is also a [0, 1]-interpretation, Γ 2R A.

PROPOSITION 3.2.3. The following strict containment relationships hold:

1. Gn ) Gn+1,

2. Gn ) G↑ ) GR,

3. Gn ) G↓ ) GR,

4. G0 ) GR.

Proof. The only non-trivial part is proving that the containments are strict. For this note
that

FIN(n) ≡ (> → A1) ∨ . . . ∨ (An−1 → ⊥)

is valid in Gn but not in Gn+1. Furthermore, let

C↑ = ∃x(A(x)→ ∀y A(y)) and

C↓ = ∃x(∃y A(y)→ A(x)).

C↓ is valid in all Gn and in G↑ and G↓; C↑ is valid in all Gn and in G↑, but not in G↓;
neither is valid in G0 or GR [11, Corollary 2.9].

G0 |= ISO0 but GR 2 ISO0.

The formulas C↑ and C↓ are of some importance in the study of first-order infinite-
valued Gödel logics. C↑ expresses the fact that the infimum of any subset of the set of
truth values is contained in the subset (every infimum is a minimum), and C↓ states that
every supremum (except possibly 1) is a maximum. The intuitionistically admissible
quantifier shifting rules are given by the following implications and equivalences:

(∀xA(x) ∧B)↔ ∀x(A(x) ∧B) (1)
(∃xA(x) ∧B)↔ ∃x(A(x) ∧B) (2)
(∀xA(x) ∨B)→ ∀x(A(x) ∨B) (3)
(∃xA(x) ∨B)↔ ∃x(A(x) ∨B) (4)

(B → ∀xA(x))↔ ∀x(B → A(x)) (5)
(B → ∃xA(x))← ∃x(B → A(x)) (6)
(∀xA(x)→ B)← ∃x(A(x)→ B) (7)
(∃xA(x)→ B)↔ ∀x(A(x)→ B) (8)
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The remaining three are:

(∀xA(x) ∨B)← ∀x(A(x) ∨B) (S1)
(B → ∃xA(x))→ ∃x(B → A(x)) (S2)
(∀xA(x)→ B)→ ∃x(A(x)→ B) (S3)

Of these, S1 is valid in any Gödel logic. S2 and S3 imply and are implied by C↓ and
C↑, respectively (take ∃y A(y) and ∀y A(y), respectively, for B). S2 and S3 are, respec-
tively, both valid in G↑, invalid and valid in G↓, and both invalid in GR.

Note that since we defined ¬A ≡ A → ⊥, the quantifier shifts for→ (7, 8, S3) in-
clude the various directions of De Morgan’s laws as special cases. Specifically, the only
direction of De Morgan’s laws which is not valid in all Gödel logics is the one corre-
sponding to (S3), i.e., ¬∀xA(x) → ∃x¬A(x). This formula is equivalent to ISO0. For,
GV |= ∀x¬¬A(x)↔ ¬∃¬A(x) by (8). We get ISO0 using ¬∃x¬A(x)→ ¬¬∀xA(x),
which is an instance of (S3). The other direction is given in Lemma 3.3.6.

We now also know that G↑ 6= G↓. In fact, we have G↓ ( G↑; this follows from
the following theorem.

THEOREM 3.2.4 ( [15], Theorem 23).

G↑ =
⋂

n≥2

Gn

Proof. By Proposition 3.2.3, G↑ ⊆
⋂
n≥2 Gn. We now prove the reverse inclusion.

Suppose Γ 2V↑ A, i.e., there is a V↑-interpretation I such that I(Γ) > I(A). Let
I(A) = 1− 1/k, and pick w somewhere between 1− 1/k and 1− 1/(k+ 1). Then the
interpretation Iw given by Lemma 3.1.5 is so that I(Γ) = 1 and I(A) = 1−1/k. Since
there are only finitely many truth values below w in V↑, Iw is also a Gk+1 interpretation
which shows that Γ 2Vk+1

A. Hence, (Γ, A) /∈ ⋂n≥2 Gn.

COROLLARY 3.2.5. Gn )
⋂
n Gn = G↑ ) G↓ ) GR =

⋂
V GV

Note that also G↑ ) G0 ) GR by the above, and that neither G0 ⊆ G↓ nor
G↓ ⊆ G0 (counterexamples are ISO0 or ¬∀xA(x)→ ∃¬A(x), and C↓, respectively).

LEMMA 3.2.6. If all infima in the truth value set are minima or A contains no quanti-
fiers, and A evaluates to some v < 1 in I, then A also evaluates to v in Iv where

Iv(P ) =

{
1 if I(P ) > v

I(P ) otherwise

for P atomic sub-formula of A.

Proof. We prove by induction on the complexity of formulas that any sub-formula F
of A with I(F ) ≤ v has I ′(F ) = I(F ). This is clear for atomic sub-formulas. We
distinguish cases according to the logical form of F :

F ≡ D ∧ E. If I(F ) ≤ v, then, without loss of generality, assume I(F ) =
I(D) ≤ I(E). By induction hypothesis, I ′(D) = I(D) and I ′(E) ≥ I(E), so
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I ′(F ) = I(F ). If I(F ) > v, then I(D) > v and I(E) > v, by induction hypothesis
I ′(D) = I ′(E) = 1, thus, I ′(F ) = 1.

F ≡ D∨E. If I(F ) ≤ v, then, without loss of generality, assume I(F ) = I(D) ≥
I(E). By induction hypothesis, I ′(D) = I(D) and I ′(E) = I(E), so I ′(F ) = I(F ).
If I(F ) > v, then, again without loss of generality, I(F ) = I(D) > v, by induction
hypothesis I ′(D) = 1, thus, I ′(F ) = 1.

F ≡ D → E. Since v < 1, we must have I(D) > I(E) = I(F ). By induction
hypothesis, I ′(D) ≥ I(D) and I ′(E) = I(E), so I ′(F ) = I(F ). If I(F ) > v, then
I(D) ≥ I(E) = I(F ) > v, by induction hypothesis I ′(D) = I ′(E) = I ′(F ) = 1.

F ≡ ∃xD(x). First assume that I(F ) ≤ v. Since D(c) evaluates to a value less or
equal to v in I and, by induction hypothesis, in I ′ also the supremum of these values is
less or equal to v in I ′, thus I ′(F ) = I(F ). If I(F ) > v, then there is a c such that
I(D(c)) > v, by induction hypothesis I ′(D(c)) = 1, thus, I ′(F ) = 1.

F ≡ ∀xD(x). This is the crucial part. First assume that I(F ) < v. Then there is a
witness c such that I(F ) ≤ I(D(c)) < v and, by induction hypothesis, also I ′(D(c)) <
v and therefore, I ′(F ) = I(F ). For I(F ) > v it is obvious that I ′(F ) = I(F ) = 1.
Finally assume that I(F ) = v. If this infimum would be proper, i.e. no minimum, then
the value of all witnesses under I ′ would be 1, but the value of F under I ′ would be v,
which would contradict the definition of the semantic of the ∀ quantifier. Since all infima
are minima, there is a witness c such that I(D(c)) = v and therefore, also I ′(D(c)) = v
and thus I ′(F ) = I(F ).

As we will see later, the axioms FIN(n) axiomatize exactly the finite-valued Gödel
logics. In these logics the quantifier shift axiom QS is not necessary. Furthermore, all
quantifier shift rules are valid in the finite valued logics. Since G↑ is the intersection of
all the finite ones, all quantifier shift rules are valid in G↑. Moreover, any infinite-valued
Gödel logic other than G↑ is defined by some V which either contains an infimum which
is not a minimum, or a supremum (other than 1) which is not a maximum. Hence, in V
either C↑ or C↓ will be invalid, and therewith either S3 or S2. We have:

COROLLARY 3.2.7. In GV all quantifier shift rules are valid iff there is a strictly
monotone and continuous embedding from V to V↑, i.e., V is either finite or order iso-
morphic to V↑.

This means that it is in general not possible to transform formulas to equivalent
prenex formulas in the usual way. Moreover, in general there is not even a recursive
procedure for mapping formulas to equivalent, or even just validity-equivalent formulas
in prenex form, since for some V , GV is not r.e. whereas the corresponding prenex
fragment is r.e., V = {0} ∪ {1/n : n ∈ N} ∪ [0.5, 1] is such an example.

3.3 Axiomatizability results

3.3.1 Axiomatizable case 1: 0 is contained in the perfect kernel
If V is uncountable, and 0 is contained in V∞, then GV is axiomatizable. Indeed,

Theorem 3.1.9 showed that all such logics GV coincide. Thus, it is only necessary to
establish completeness of the axioms system H with respect to GR. This result has been
shown by several researchers over the years. We give here a generalization of the proof
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of [37]. Alternative proofs can be found in [27, 28, 39]. The proof of [28], however, does
not give strong completeness, while the proof of [39] is specific to the Gödel set [0, 1].
Our proof is self-contained and applies to Gödel logics directly, making an extension of
the result easier.

THEOREM 3.3.1 ( [37], [15] Theorem 37, Strong completeness of Gödel logic). If
Γ |=R A, then Γ `H A.

Proof. Assume that Γ 0 A, we construct an interpretation I in which I(A) = 1 for all
B ∈ Γ and I(A) < 1. Let y1, y2, . . . be a sequence of free variables which do not
occur in Γ ∪4, let T be the set of all terms in the language of Γ ∪∆ together with the
new variables y1, y2, . . . , and let F = {F1, F2, . . .} be an enumeration of the formulas
in this language in which yi does not appear in F1, . . . , Fi and in which each formula
appears infinitely often.

If ∆ is a set of formulas, we write Γ ⇒ ∆ if for some A1, . . . , An ∈ Γ, and some
B1, . . . , Bm ∈ ∆, `H (A1 ∧ . . . ∧ An) → (B1 ∨ . . . ∨ Bm) (and ; if this is not
the case). We define a sequence of sets of formulas Γn, ∆n such that Γn ; ∆n by
induction. First, Γ0 = Γ and ∆0 = {A}. By the assumption of the theorem, Γ0 ; ∆0.

If Γn ⇒ ∆n ∪ {Fn}, then Γn+1 = Γn ∪ {Fn} and ∆n+1 = ∆n. In this case,
Γn+1 ; ∆n+1, since otherwise we would have Γn ⇒ ∆n∪{Fn} and Γn∪{Fn} ⇒ ∆n.
But then, we’d have that Γn ⇒ ∆n, which contradicts the induction hypothesis (note
that `H (A→ B ∨ F )→ ((A ∧ F → B)→ (A→ B))).

If Γn ; ∆n ∪ {Fn}, then Γn+1 = Γn and ∆n+1 = ∆n ∪ {Fn, B(yn)} if
Fn ≡ ∀xB(x), and ∆n+1 = ∆n ∪ {Fn} otherwise. In the latter case, it is ob-
vious that Γn+1 ; ∆n+1. In the former, observe that by I10 and QS, if Γn ⇒
∆n ∪ {∀xB(x), B(yn)} then also Γn ⇒ ∆n ∪ {∀xB(x)} (note that yn does not occur
in Γn or ∆n).

Let Γ∗ =
⋃∞
i=0 Γi and ∆∗ =

⋃∞
i=0 ∆i. We have:

1. Γ∗ ; ∆∗, for otherwise there would be a k so that Γk ⇒ ∆k.

2. Γ ⊆ Γ∗ and ∆ ⊆ ∆∗ (by construction).

3. Γ∗ = F \ ∆∗, since each Fn is either in Γn+1 or ∆n+1, and if for some n,
Fn ∈ Γ∗ ∩ ∆∗, there would be a k so that Fn ∈ Γk ∩ ∆k, which is impossible
since Γk ; ∆k.

4. If Γ∗ ⇒ B1 ∨ . . . ∨ Bn, then Bi ∈ Γ∗ for some i. For suppose not, then for
i = 1, . . . , n, Bi /∈ Γ∗, and hence, by (3), Bi ∈ ∆∗. But then Γ∗ ⇒ ∆∗,
contradicting (1).

5. If B(t) ∈ Γ∗ for every t ∈ T , then ∀xB(x) ∈ Γ∗. Otherwise, by (3), ∀xB(x) ∈
∆∗ and so there is some n so that ∀xB(x) = Fn and ∆n+1 contains ∀xB(x) and
B(yn). But, again by (3), then B(yn) /∈ Γ∗.

6. Γ∗ is closed under provable implication, since if Γ∗ ⇒ A, then A /∈ ∆∗ and so,
again by (3), A ∈ Γ∗. In particular, if `H A, then A ∈ Γ∗.
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Define relations � and ≡ on F by

B � C ⇔ B → C ∈ Γ∗ and B ≡ C ⇔ B � C ∧ C � B.

Then � is reflexive and transitive, since for every B, `H B → B and so B → B ∈ Γ∗,
and if B → C ∈ Γ∗ and C → D ∈ Γ∗ then B → D ∈ Γ∗, since B → C,C → D ⇒
B → D (recall (6) above). Hence, ≡ is an equivalence relation on F . For every B in F
we let |B| be the equivalence class under ≡ to which B belongs, and F/≡ the set of all
equivalence classes. Next we define the relation ≤ on F/≡ by

|B| ≤ |C| ⇔ B � C ⇔ B → C ∈ Γ∗.

Obviously, ≤ is independent of the choice of representatives A, B.

LEMMA 3.3.2. 〈F/≡,≤〉 is a countably linearly ordered structure with distinct maxi-
mal element |>| and minimal element |⊥|.

Proof. Since F is countably infinite, F/≡ is countable. For every B and C, `H (B →
C) ∨ (C → B) by LIN, and so either B → C ∈ Γ∗ or C → B ∈ Γ∗ (by (4)), hence ≤
is linear. For every B, `H B → > and `H ⊥ → B, and so B → > ∈ Γ∗ and
⊥ → B ∈ Γ∗, hence |>| and |⊥| are the maximal and minimal elements, respectively.
Pick any A in ∆∗. Since > → ⊥ ⇒ A, and A /∈ Γ∗, > → ⊥ /∈ Γ∗, so |>| 6= |⊥|.

We abbreviate |>| by 1 and |⊥| by 0.

LEMMA 3.3.3. The following properties hold in 〈F/≡,≤〉:
1. |B| = 1⇔ B ∈ Γ∗.

2. |B ∧ C| = min{|B|, |C|}.

3. |B ∨ C| = max{|B|, |C|}.

4. |B → C| = 1 if |B| ≤ |C|, |B → C| = |C| otherwise.

5. |¬B| = 1 if |B| = 0; |¬B| = 0 otherwise.

6. |∃xB(x)| = sup{|B(t)| : t ∈ T }.

7. |∀xB(x)| = inf{|B(t)| : t ∈ T }.
Proof. (1) If |B| = 1, then > → B ∈ Γ∗, and hence B ∈ Γ∗. And if B ∈ Γ∗, then
> → B ∈ Γ∗ since B ⇒ > → B. So |>| ≤ |B|. It follows that |>| = |B| as also
|B| ≤ |>|.

(2) From⇒ B ∧ C → B,⇒ B ∧ C → C and D → B,D → C ⇒ D → B ∧ C
for every D, it follows that |B ∧ C| = inf{|B|, |C|}, from which (2) follows since ≤ is
linear. (3) is proved analogously.

(4) If |B| ≤ |C|, then B → C ∈ Γ∗, and since > ∈ Γ∗ as well, |B → C| = 1.
Now suppose that |B| � |C|. From B ∧ (B → C)⇒ C it follows that min{|B|, |B →
C|} ≤ |C|. Because |B| � |C|, min{|B|, |B → C|} 6= |B|, hence |B → C| ≤ |C|. On
the other hand, ` C → (B → C), so |C| ≤ |B → C|.
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(5) If |B| = 0, ¬B = B → ⊥ ∈ Γ∗, and hence |¬B| = 1 by (1). Otherwise,
|B| � |⊥|, and so by (4), |¬B| = |B → ⊥| = 0.

(6) Since `H B(t) → ∃xB(x), |B(t)| ≤ |∃xB(x)| for every t ∈ T . On the other
hand, for every D without x free,

|B(t)| ≤ |D| for every t ∈ T
⇔ B(t)→ D ∈ Γ∗ for every t ∈ T
⇒ ∀x(B(x)→ D) ∈ Γ∗ by property (5) of Γ∗

⇒ ∃xB(x)→ D ∈ Γ∗ since ∀x(B(x)→ D)⇒ ∃xB(x)→ D

⇔ |∃xB(x)| ≤ |D|.

(7) is proved analogously.

〈F/≡,≤〉 is countable, let 0 = a0,1 = a1, a2, . . . be an enumeration. Define
h(0) = 0, h(1) = 1, and define h(an) inductively for n > 1: Let a−n = max{ai : i <
n and ai < an} and a+

n = min{ai : i < n and ai > an}, and define h(an) = (h(a−n )+
h(a+

n ))/2 (thus, a−2 = 0 and a+
2 = 1 as 0 = a0 < a2 < a1 = 1, hence h(a2) = 1

2 ).
Then h : 〈F/≡,≤〉 → Q ∩ [0, 1] is a strictly monotone map which preserves infs and
sups. By Lemma 3.1.7 there exists a G-embedding h′ from Q ∩ [0, 1] into 〈[0, 1],≤〉
which is also strictly monotone and preserves infs and sups. Put I(B) = h′(h(|B|)) for
every atomic B ∈ F and we obtain a VR-interpretation.

Note that for every B, I(B) = 1 iff |B| = 1 iff B ∈ Γ∗. Hence, we have I(B) = 1
for all B ∈ Γ while if A /∈ Γ∗, then I(A) < 1, so Γ 2 A. Thus we have proven that on
the assumption that if Γ 0 A, then Γ 2 A

This completeness proof can be adapted to hypersequent calculi for Gödel logics
(Chapter IV, [4, 21]), even including the

a
projection operator [14].

As already mentioned we obtain from this completeness proof together with the
soundness theorem (Theorem 1.5.4) and Theorem 3.1.9 the characterization of recursive
axiomatizability:

THEOREM 3.3.4 ( [15], Theorem 40). Let V be a Gödel set with 0 contained in the
perfect kernel of V . Suppose that Γ is a set of closed formulas. Then Γ |=V A iff
Γ `H A.

COROLLARY 3.3.5 (Deduction theorem for Gödel logics). Suppose that Γ is a set of
formulas, and A is a closed formula. Then

Γ, A `H B iff Γ `H A→ B.

Proof. Use the soundness and completeness theorems (Theorem 1.5.4 and 3.3.4, resp.)
and a straight-forward semantic deduction. Another proof would be by induction on the
length of the proof. See [27, Theorem 2.2.18].
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3.3.2 Axiomatizable case 2: 0 is isolated
In the case where 0 is isolated in V , and thus also not contained in the perfect kernel,

we will transform a counter example in GR for Γ,Π |= A, where Π is a set of sentences
stating that every infimum is a minimum, into a counterexample in GV to Γ |= A.

LEMMA 3.3.6. Let x, ȳ be the free variables in A.

`H0
∀ȳ(¬∀xA(x, ȳ)→ ∃x¬A(x, ȳ))

Proof. It is easy to see that in all Gödel logics the following weak form of the law of
excluded middle is valid: ¬¬A(x) ∨ ¬A(x). By quantification we obtain ∀x¬¬A(x) ∨
∃x¬A(x) and, by ISO0, ¬¬∀xA(x)∨∃¬A(x). Using the intuitionistically valid schema
(¬A ∨B)→ (A→ B) we can prove ¬∀xA(x)→ ∃x¬A(x). A final quantification of
the free variables concludes the proof.

THEOREM 3.3.7 ( [15], Theorem 43). Let V be an uncountable Gödel set where 0 is
isolated. Suppose Γ is a set of closed formulas. Then Γ |=V A iff Γ `H0 A.

Proof. If: Follows from soundness (Theorem 1.5.4) and the observation that ISO0 is
valid for any V where 0 is isolated.

Only if: We already know from Theorem 3.1.9 that the entailment relations of V and
V ∪ [inf P, 1] coincide, where P is the perfect kernel of V . So we may assume without
loss of generality that V already is of this form, i.e., that w = inf P and V ∩ [w, 1] =
[w, 1]. Let V ′ = [0, 1]. Define

Π = {∀ȳ(¬∀xA(x, ȳ)→ ∃x¬A(x, ȳ)) : A(x, ȳ) has x, ȳ free}

where A(x, ȳ) ranges over all formulas with free variables x and ȳ. We consider the
entailment relation in V ′. Either Π,Γ |=V ′ A or Π,Γ 2V ′ A. In the former case we
know from the strong completeness of H for GR that there are finite subsets Π′ and
Γ′ of Π and Γ, respectively, such that Π′,Γ′ `H A. Since all the sentences in Π are
provable in H0 (see Lemma 3.3.6) we obtain that Γ′ `H0

A. In the latter case there is
an interpretation I ′ such that I ′(Π ∪ Γ) > I ′(A).

It is obvious from the structure of the formulas in Π that their truth value will always
be either 0 or 1. Combined with the above we know that for all B ∈ Π, I ′(B) = 1.
Next we define a function h(x) which maps values from Val(I ′,Γ ∪Π ∪ {A}) into V :

h(x) =

{
0 x = 0

w + x/(1− w) x > 0

We see that h satisfies conditions (1) and (2) of Lemma 3.1.3, but we cannot use this
Lemma directly, as not all existing infima and suprema are necessarily preserved.

Consider as in Lemma 3.1.3 the interpretation Ih(B) = h(I ′(B)) for atomic sub-
formulas of Γ∪Π∪{A}. We want to show that the identity Ih(B) = h(I ′(B)) extends
to all subformulas of Γ ∪ Π ∪ {A}. For propositional connectives and the existentially
quantified formulas this is obvious. The important case is ∀xA(x). First assume that
I ′(∀xA(x)) > 0. Then it is obvious that Ih(∀xA(x)) = h(I ′(∀xA(x))). In the case
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where I ′(∀xA(x)) = 0 we observe that A(x) contains a free variable and therefore
¬∀xA(x) → ∃x¬A(x) ∈ Π, thus I ′(¬∀xA(x) → ∃x¬A(x)) = 1. This implies that
there is a witness u such that I ′(A(u)) = 0. Using the induction hypothesis we know
that Ih(A(u)) = 0, too. We obtain that Ih(∀xA(x)) = 0, concluding the proof.

Thus we have shown that Ih is a counterexample to Γ |=V A.

3.3.3 Axiomatizable case 3: Finite Gödel sets
In this section we show that entailment over finite truth value sets are axiomatized

by Hn.

THEOREM 3.3.8 ( [15], Theorem 45). Suppose Γ contains only closed formulas. Then
Γ |=Vn

A iff Γ `Hn A.

Proof. If: By Theorem 1.5.4, since every instance of FIN(n) is valid in Gn.
Only if: Suppose Γ 0Hn

A, and consider the set Π of closed formulas of the form

∀x̄1 . . . x̄n−1((A0(x̄0)→ A1(x̄1)) ∨ · · · ∨ (An−1(x̄n−1)→ An(x̄n)))),

where A0, . . . , An ranges over all sequences (with repetitions) of length n + 1 where
each Ai is P (x̄) for some predicate symbol P occurring in Γ or A. Each formula in Π
follows from an instance of FIN(n) by generalization. Hence, Γ,Π 0H A. From the
(strong) completeness (Theorem 3.3.4) of H for GR we know there is an interpretation
IR (into [0, 1]) such that IR(B) = 1 for all B ∈ Γ ∪Π and IR(A) < 1.

For sake of brevity let Vala(IR,∆) for a set of formulas ∆ be the set of all truth
values of atomic subformulas of formulas in ∆, i.e., Vala(IR,∆) = {IR(P (ū)) :
ū constants from L I}. We claim that Vala(IR,Γ ∪ {A}) contains at most n elements.
To see this, assume that it contains more than n elements. Then there exist atomic sub-
formulas (w.r.t. I) B0, . . . , Bn of A or of formulas in Γ such that IR(Bi) > IR(Bi+1)
for i = 0, . . . , n−1. Thus, IR((B0 → B1)∨. . .∨(Bn−1 → Bn)) < 1. But this formula
is an instance of a formula in Π, and so we have a contradiction with IR(B) = 1.

Now let Vala(IR,Γ ∪ {A}) = {0, v1, . . . , vk, 1} be sorted in increasing order, and
let h(0) = 0, h(1) = 1, and h(vi) = 1− 1/(i+ 1). Note that any truth value occurring
in Val(IR,Γ ∪ {A}) must be one of the elements of Vala(IR,Γ ∪ {A}). This is easily
seen by induction on the complexity of subformulas of Γ ∪ {A} w.r.t. IR, as the inf and
sup of any subset of the finite set Vala(IR,Γ ∪ {A}) is a member of the finite set. By
Lemma 3.1.3, Ih is a Vn-interpretation with Ih(B) = h(IR) = 1 for all B ∈ Γ and
Ih(A) = h(IR) < 1.

3.3.4 Not recursively enumerable case 1: Countable Gödel sets
In this section we show that the first-order Gödel logics where the set of truth values

does not contain a dense subset are not r.e. We establish this result by reducing the
classical validity of a formula in all finite models to the validity of a formula in Gödel
logic (the set of these formulas is not r.e. by Trakhtenbrot’s Theorem).

DEFINITION 3.3.9. A formula is called crisp if all its atomic subformulas occur either
negated or double-negated in it.
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LEMMA 3.3.10. IfA andB are crisp and classically equivalent, then also GV |= A↔
B, for any Gödel set V . Specifically, if A(x) and B(x) are crisp, then

GV |= (∀xA(x)→ B(x))↔ ∃x(A(x)→ B(x)) and

GV |= (B(x) → ∃xA(x))↔ ∃x(B(x) → A(x)).

Proof. Given an interpretation I, define I ′(C) = 1 if I(C) > 0 and = 0 if I(C) = 0
for atomic C. It is easily seen that if A, B are crisp, then I(A) = I ′(A) and I(B) =
I ′(B). But I ′ is a classical interpretation, so by assumption I ′(A) = I ′(B).

THEOREM 3.3.11 ( [15], Theorem 36). If V is countably infinite, then the set of validi-
ties of GV is not r.e.

Proof. By Theorem 3.1.8, V is countably infinite iff it is infinite and does not contain a
non-trivial densely ordered subset. We show that for every sentenceA there is a sentence
Ag s.t. Ag is valid in GV iff A is true in every finite (classical) first-order structure.

We define Ag as follows: Let P be a unary and L be a binary predicate symbol
not occurring in A and let Q1, . . . , Qn be all the predicate symbols in A. We use the
abbreviations x ∈ y ≡ ¬¬L(x, y) and x ≺ y ≡ (P (y) → P (x)) → P (y). Note that
for any interpretation I, I(x ∈ y) is either 0 or 1, and as long as I(P (x)) < 1 for all x
(in particular, if I(∃z P (z)) < 1), we have I(x ≺ y) = 1 iff I(P (x)) < I(P (y)). Let
Ag ≡

{
S ∧ c1 ∈ 0 ∧ c2 ∈ 0 ∧ c2 ≺ c1 ∧
∀i
[
∀x, y∀j∀k∃z D ∨ ∀x¬(x ∈ s(i))

]
}
→ (A′ ∨ ∃uP (u))

where S is the conjunction of the standard axioms for 0, successor and ≤, with double
negations in front of atomic formulas,

D ≡ (j ≤ i ∧ x ∈ j ∧ k ≤ i ∧ y ∈ k ∧ x ≺ y)→
→ (z ∈ s(i) ∧ x ≺ z ∧ z ≺ y)

and A′ is A where every atomic formula is replaced by its double negation, and all
quantifiers are relativized to the predicate R(i) ≡ ∃x(x ∈ i).

Intuitively, L is a predicate that divides a subset of the domain into levels, and x ∈ i
means that x is an element of level i. If the antecendent is true, then the true standard
axioms S force the domain to be a model of the reduct of PA to the language without
+ and ×, which could be either a standard model (isomorphic to N) or a non-standard
model (N followed by copies of Z). P orders the elements of the domain which fall into
one of the levels in a subordering of the truth values.

The idea is that for any two elements in a level ≤ i there is an element in a not-
empty level j ≥ i which lies strictly between those two elements in the ordering given
by ≺. If this condition cannot be satisfied, the levels above i are empty. Clearly, this
condition can be satisfied in an interpretation I only for finitely many levels if V does
not contain a dense subset, since if more than finitely many levels are non-empty, then⋃
i{I(P (d)) : I |= d ∈ i} gives a dense subset. By relativizing the quantifiers in

A to the indices of non-empty levels, we in effect relativize to a finite subset of the
domain.
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This shows that no infinite-valued Gödel logic whose set of truth values does not
contain a dense subset, i.e., no countably infinite Gödel logic, is r.e.

3.3.5 Not recursively enumerable case 2: 0 not isolated but not in the perfect
kernel

In the preceding sections, we gave axiomatizations for the logics based on those
uncountably infinite Gödel sets V where 0 is either isolated or in the perfect kernel
of V . It remains to determine whether logics based on uncountable Gödel sets where 0
is neither isolated nor in the perfect kernel are axiomatizable. The answer in this case is
negative. If 0 is not isolated in V , 0 has a countably infinite neighborhood. Furthermore,
any sequence (an)n∈N → 0 is so that, for sufficiently large n, V ∩ [0, an] is countable
and hence, by (the proof of) Theorem 3.1.8, contains no densely ordered subset. This
fact is the basis for the following non-axiomatizability proof, which is a variation on the
proof of Theorem 3.3.11.

THEOREM 3.3.12 ( [15], Theorem 48). If V is uncountable, 0 is not isolated in V , but
not in the perfect kernel of V , then the set of validities of GV is not r.e.

Proof. We show that for every sentence A there is a sentence Ah s.t. Ah is valid in GV

iff A is true in every finite (classical) first-order structure.
The definition of Ah mirrors the definition of Ag in the proof of Theorem 3.3.11,

except that the construction there is carried out infinitely many times for V ∩ [0, an],
where (an)n∈N is a strictly descending sequence, 0 < an < 1 for all n, which converges
to 0. Let P be a binary and L be a ternary predicate symbol not occurring in A and let
R1, . . . , Rn be all the predicate symbols in A. We use the abbreviations x ∈n y ≡
¬¬L(x, y, n) and x ≺n y ≡ (P (y, n) → P (x, n)) → P (y, n). As before, for a fixed
n, provided I(∃xP (x, n)) < 1, I(x ≺n y) = 1 iff I(P (x, n)) < I(P (y, n)), and
I(x ∈n y) is always either 0 or 1. We also need a unary predicate symbol Q(n) to give
us the descending sequence (an)n∈N: Note that I(¬∀nQ(n)) = 1 iff inf{I(Q(d)) :
d ∈ UI} = 0 and I(∀n¬¬Q(n)) = 1 iff 0 /∈ {I(Q(d)) : d ∈ UI}.

Let Ah ≡




S ∧ ∀n((Q(n)→ Q(s(n)))→ Q(n)) ∧
¬∀nQ(n) ∧ ∀n¬¬Q(n) ∧
∀n∀x((Q(n)→ P (x, n))→ Q(n)) ∧
∀n∃x∃y(x ∈n 0 ∧ y ∈n 0 ∧ x ≺n y) ∧
∀n∀i

[
∀x, y∀j∀k∃z E ∨ ∀x¬(x ∈n s(i))

]




→ (A′∨∃n∃uP (u, n)∨∃nQ(n))

where S is the conjunction of the standard axioms for 0, successor and ≤, with double
negations in front of atomic formulas,

E ≡ (j ≤ i ∧ x ∈n j ∧ k ≤ i ∧ y ∈n k ∧ x ≺n y)→
→ (z ∈n s(i) ∧ x ≺n z ∧ z ≺n y)

and A′ is A where every atomic formula is replaced by its double negation, and all
quantifiers are relativized to the predicate R(n) ≡ ∀i∃x(x ∈n i).

The idea here is that an interpretation I will define a sequence (an)n∈N → 0 by
an = I(Q(n)) where an > an+1, and 0 < an < 1 for all n. Let Lin = {x : I(x ∈n i)}
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be the i-th n-level. P (x, n) orders the set
⋃
i L

i
n = {x : I(∃i x ∈n i) = 1} in a

subordering of V ∩ [0, an]: x ≺n y iff I(x ≺n y) = 1. Again we force that whenever
x, y ∈ Lin with x ≺n y, there is a z ∈ Li+1

n with x ≺n z ≺n y, or, if no possible
such z exists, Li+1

n = ∅. Let r(n) be the least i so that Lin is empty, or ∞ otherwise.
If r(n) = ∞ then there is a densely ordered subset of V ∩ [0, an]. So if 0 is not in the
perfect kernel, for some sufficiently large L, r(n) <∞ for all n > L. I(R(n)) = 1 iff
r(n) =∞ hence {n : I(R(n)) = 1} is finite whenever the interpretations of P , L, and
Q are as intended.

Now if A is classically false in some finite structure I, we can again choose a GV -
interpretation Ih so that there are as many n with Ih(R(n)) = 1 as there are elements
in the domain of I, and the predicates of A behave on {n : I(R(n)) = 1} just as they
do on I.

For instance, we can define Ih as follows. We may assume that the domain of
I = {0, . . . ,m}. Let UI

h

= N, and Ih(B) = I(B) for B an atomic subformula
of A in the language L I . Pick a strictly monotone descending sequence (an)n∈N in
V with lim an = 0 so that a0, . . . , am+1 ∈ V∞, a0 < 1, am+1 = inf V∞, and let
Ih(Q(n)) = an. This guarantees that Ih(∀n((Q(n) → Q(s(n))) → Q(n))) = 1
(because an > an+1), Ih(¬∀nQ(n)) = 1 (because inf an = 0), Ih(∀n¬¬Q(n)) = 1
(because an > 0), and Ih(∃nQ(n)) < 1 (because a0 < 1). Then V ∩ [0, an] is
uncountable if n ≤ m, and countable if n > m. For n ≤ m, let Dn ⊆ V ∩ [0, an) be
countable and densely ordered, and let jn : N→ Dn be bijective.

For n > m, let jn(0) = an+1, and jn(i) = 0 for i > 0. Define Ih(P (i, n)) =
jn(i). Then, since jn(i) < an for all i, Ih(∀n∀x((Q(n) → P (x, n)) → Q(n))) = 1,
and, since jn(i) < a0 < 1, Ih(∃n∃uP (u, n)) < 1. Finally, let Ih(L(x, y, n)) =
1 for all x, y ∈ N if n ≤ m (i.e., Lin = N), and if n > m let Ih(L(0, 0, n)) =
Ih(L(1, 0, n)) = 1 and Ih(L(x, y, n)) = 0 if x > 1 and y ∈ N, and if x ∈ N and y > 0
(i.e., L0

n = {0, 1}, Lin = ∅ for i > m). This makes the rest of the antecedent of Ah

true and ensures that Ih(R(n)) = Ih(∀i∃x(x ∈n i)) = 1 if n ≤ m and = 0 otherwise.
Hence Ih(A′) = 0 and Ih 2 Ah.

On the other hand, if I 2 Ah, then the value of the consequent is < 1. Then
as required, for all x, n, I(P (x, n)) < 1 and I(Q(n)) < 1. Since the antecedent,
as before, must be = 1, this means that x ≺n y expresses a strict ordering of the
elements of Lin and I((Q(n) → Q(s(n))) → Q(n)) = 1 for all n guarantees that
I(Q(s(n))) = an+1 < an = I(Q(n)). The other conditions are likewise seen to hold
as intended, so that we can extract a finite countermodel forA based on the interpretation
of the predicate symbols of A on {n : I(R(n)) = 1}, which must be finite.

3.4 Relation to Kripke frames

For propositional logic the truth value sets on which Gödel logics are based can
be considered as linear Heyting algebras (or pseudo-Boolean algebras). By taking the
prime filters of a Heyting algebra as the Kripke frame it is easy to see that the induced
logics coincide (cf. [24, 32]). This direct method does not work for first order logics as
the structure of the prime filters does not coincide with the possible evaluations in the
first order case.
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[19] showed that the class of logics defined by countable linear Kripke frames on
constant domains and the class of all Gödel logics coincide. More precisely, for every
countable Kripke frame we will construct a truth value set such that the logic induced
by the Kripke frame and the one induced by the truth value set coincide, and vice versa
(Theorems 3.4.1 and 3.4.6). As corollaries a complete characterisation of axiomatis-
ability of logics based on countable linear Kripke frames with constant domains (Corol-
laries 3.4.7 and 3.4.8) have been obtained. Furthermore, we obtain that there are only
countable many different logics based on countable linear Kripke frames with constant
domains (Corollary 3.4.9). This is especially surprising for at least two reasons: Due to
a result obtained in [17] there are uncountably many different propositional quantified
Gödel logics, and thus also uncountably many propositional quantified logics based on
countable linear Kripke frames. Furthermore, the number of all intermediate (predicate)
logics extending the basic linear logic with constant domains is uncountable.

In the following we will state the central results and give proof ideas and sketches
for these results.

THEOREM 3.4.1 ( [19], Theorem 18). For every countable linear Kripke frameK there
is a Gödel set VK such that L(K) = GVK .

Proof. Let K = (W,�) be a countable linear Kripke frame. The construction of VK
will be in three steps: First, we will enlargeK by doubling all limit worlds; then we will
apply the Horn monomorphism (Lemma 3.1.7) to embed the enlarged Kripke frame to
Q ∩ [0, 1]; finally, VK will be the completion of the range of this embedding.

Let W ∗ be a disjoint copy of W whose elements can be accessed by the bijection
∗ : W → W ∗. Elements of W ∗ serve as names for points which we may have to add.
We extend � to a total order �∗ on W ∪W ∗ by putting w∗ as the direct successor of w
for each w ∈W , see Fig. 2.

w1 w2 w3 w4

w1 w
∗
1 w2 w

∗
2 w3 w

∗
3 w4 w

∗
4

W ∪W ∗,�∗

W,�

Figure 2. Extending (W,�) to (W ∪W ∗,�∗).

Formally we define �∗ as follows:

�∗ := � ∪ {(v∗, w∗) : v � w} ∪ {(v, w∗) : v � w} ∪ {(v∗, w) : v ≺ w} .

Let Lim(W ) denote the set of limit worlds in W :

w ∈ Lim(W ) iff (∀w′ � w)(∃w′′ � w)(w′′ ≺ w′) .

Observe that a maximal element of K, if it exists, would be in Lim(W ). We define

W ′ := W ∪ {w∗ : w ∈ Lim(W )}
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and we define �′ as the restriction of �∗ to W ′:

�′ := �∗ ∩ (W ′ ×W ′) .

Let K ′ := (W ′,�′).
Next, we apply the Horn monomorphism from the proof of Lemma 3.1.7 to the

converse of K ′, i.e. to (W ′,�′). We obtain an embedding σ from (W ′,�′) to (Q ∩
[0, 1],≤) which satisfies the following form of continuity: for any subsets X and Y of
W ′, if

{w ∈W ′ : ∃x ∈ Xw �′ x} ∩ {w ∈W ′ : ∃y ∈ Y y �′ w} = ∅
and

{w ∈W ′ : ∃x ∈ Xw �′ x} ∪ {w ∈W ′ : ∃y ∈ Y y �′ w} = W ′

then supσ(Y ) = inf σ(X).
To finish our construction, let VK be the closure of σ(W ′):

VK := σ(W ′) .

It remains to show that the logics L(K) and GVK coincide, which can be shown using
notions and lemmas from [19].

The following example considers the logic of the Kripke frame with set of worldsQ.
Takano [38] has shown that this logic is axiomatised by any complete axiom system for
first-order intuitionistic logic (see e.g. [40]) plus the axiom scheme of linearity (A →
B) ∨ (B → A) and the axiom scheme of constant domain (or quantifier shift) ∀x(A ∨
B(x)) → (A ∨ ∀xB(x)), where x must not occur free in A. This axiomatisation is the
same as the one for the standard first-order Gödel logic, i.e. the one based on the full
interval [0, 1] (cf. [28]). Hence, we can expect that our construction derives a related
Gödel set from the Kripke frame Q.

EXAMPLE 3.4.2 (The logic L(Q)). Let KQ = (Q,≤) be the Kripke frame of Q. We
want to describe the Gödel set VQ corresponding to KQ which is obtained by the con-
struction given in the proof of the previous Theorem. VQ will be isomorphic to the set of
upsets of Q.

Note that for every element q ∈ Q there are two designated upsets in Up(KQ), q↑

and q↑ \ {q}. Between these two upsets there is no other upset in Up(KQ). Thus, q↑ and
q↑ \ {q} under the isomorphism between Up(KQ) and VQ determine an open interval of
[0, 1] which will never contain a point during our construction. Hence, doing this for all
elements of Q, countably many disjoint open intervals are generated which are densely
ordered, which is achieved by a set isomorphic to the Cantor set.

To be more precise: For every q ∈ Q the upset q↑ \ {q} is of type β. Thus, our
construction from the last proof duplicates all the rational number, i.e. Q′ = Q ∪ {q∗ :
q ∈ Q} and ≤′ = ≤∗. Now fix a particular enumeration of Q = {q1, q2, . . . } and
consider the following enumeration induced onQ′ = {q1, q

∗
1 , q2, q

∗
2 , . . . }. The images of

the pairs q1, q
∗
1 , q2, q

∗
2 , etc., under the Horn function h determine a sequence of disjoint

open intervals of [0, 1] which are removed from [0, 1]. This obviously mimics Cantors
middle third construction of repeatedly removing the middle thirds of line segments of
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[0, 1]. Hence the image of Q′ under the Horn function h for this enumeration is a set
isomorphic to the set of boundary points of the Cantor set, and the completion of h(Q′)
is a set isomorphic to the Cantor set.

Now, the Gödel logic GC[0,1]
generated by the Cantor set C[0,1] is equal to the

Gödel logic of the full interval, G[0,1] (Theorem 3.3.4). To obtain an idea for this, first
observe that obviously G[0,1] ⊆ GC[0,1]

. Furthermore, for each ϕ /∈ G[0,1] we can find
a valuation based on a countable model which makes ϕ false; hence the occurring truth
values form a countable set (not necessarily closed!) which can be embedded into C[0,1]

such that existing infima and suprema are preserved. This gives rise to an interpretation
based on C[0,1] which also makes ϕ false. Hence, also ϕ /∈ GC[0,1]

.

Going from Gödel sets to Kripke frames is not as complicated as the other direction.
First we consider countable Gödel sets. For the general case of uncountable Gödel
sets we will use Example 3.4.2 and a splitting lemma (Lemma 3.4.5) which divides
uncountable Gödel sets into a countable part and a part containing a perfect set.

LEMMA 3.4.3. For every countable Gödel set V there is a countable linear Kripke
frame KV such that GV = L(KV ).

Proof. Since V is countable and closed, it can be viewed as a complete and completely
distributive linear lattice. Every element of V is either an isolated point, or it is the
limit of some isolated points. Thus every element of V is the join of a set of completely
join-irreducible elements and V is isomorphic to a complete linear ring of sets (see [35]
for definitions of join-irreducibility and this result). Furthermore, a lattice is isomorphic
to a complete ring of sets if and only if it is isomorphic to the lattice of order ideals of
some partial order P (see e.g. [22] for the definition of order ideals and this result). It is
an easy exercise to show now that the logicss GV and L(P ) coincide.

REMARK 3.4.4. It is worth explicitly describing the construction of the Kripke frame
underlying the previous proof. This is useful for finding Kripke frames for concretely
given Gödel sets such that the logics defined by the Kripke frames are the same as the
logics defined by the Gödel sets.

Let V be a countable Gödel set. By removing proper suprema from V we obtain a
corresponding Kripke frame KV : Let Sups(V ) be the set of all suprema of V ,

Sups(V ) := {p ∈ V : ∃(pn) ⊂ V strictly increasing to p} ∪ {0}.

We define the set of worlds as WV := V \ Sups(V ). Then the Kripke frame KV :=
(WV ,≥) defines the same logic as the Gödel set V . This construction works because a
supremum of V will reoccur in Up(KV ) as the upset of all elements smaller than that
supremum.

For the treatment of general, i.e. uncountable, Gödel sets we need the following
splitting Lemma which allows to split Kripke frames into parts and consider the logics
of these parts only.



Gödel-Dummett Logics 161

LEMMA 3.4.5. Let V1 and V2 be Gödel sets and K1 = (W1,�1) and K2 = (W2,�2)
be Kripke frames such that (Vi,≤) and (Up(Ki),⊆) are isomorphic. Assume W1 ∩
W2 = ∅. Let α ∈ (0, 1), define

V := αV1 ∪ ((1− α)V2 + α)

and K := (W2 ∪W1,�) with

� := �2 ∪ �1 ∪ {(w2, w1) : w2 ∈W2, w1 ∈W1} ,

see Fig. 3. Then (V,≤) and (Up(K),⊆) are isomorphic, too.

K2

K1

V1 V2

Figure 3. The relation of V1, V2 to K1,K2.

Proof. Let fi be the isomorphism from Vi to Up(Ki). We define f : V → Up(K) as
follows: If v ∈ [0, α] ∩ V then f(v) = f1(v/α). If v ∈ [α, 1] ∩ V then f(v) =
W1 ∪ f2((v − α)/(1− α)).

First observe that f is well defined: the only critical point is at α where we have two
ways to compute f(α):

f(α) = f1(α/α) = f1(1) = W1

and

f(α) = W1 ∪ f2((α− α)/(1− α)) = W1 ∪ f2(0) = W1 ∪ ∅ = W1 .

It is easy to verify that f is a (V,≤)–(Up(K),⊆) isomorphism: f being bijective is
reduced to f1 and f2 being bijective, and it is also immediate from the construction that
f is a ≤–⊆ homomorphism.

THEOREM 3.4.6 ( [19], Theorem 25). For every Gödel set V there is a countable linear
Kripke frame KV such that GV = L(KV ).

Proof. In Corollary 1.6.6 the Cantor-Bendixon representation of V gives a countable
set C and a perfect set P such that V = C ∪ P and C ∩ P = ∅. If V is countable,
then P is empty and the Gödel logic induced by V can already be represented using
Lemma 3.4.3. So assume that V is not countable, which means P is not empty. Let
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α := inf P , V ′′ := V ∪ [α, 1] and V ′ := (V ∩ [0, α]) ∪ C[α,1], where CI is the Cantor
middle-third set on the interval I , which is a perfect set. Using Theorem 3.1.9 we obtain
that GV = GV ′′ = GV ′ . Hence, it is enough to consider V ′.

In the case that α = 0 we have V ′ = C[0,1], in which case the Gödel logic based on
V ′ is the same as the L(Q), see Example 3.4.2.

Otherwise let V1 := (1/α)(V ∩ [0, α]) and V2 := C[0,1]. Then we can write V ′ as

V ′ = αV1 ∪ ((1− α)V2 + α).

By construction of α, V1 is countable and due to V being closed V1 is also closed. Hence,
by the proof of Lemma 3.4.3 we can find a countable linear Kripke frame K1 such that
(V1,≤) and (Up(K1),⊆) are isomorphic. Due to Example 3.4.2 we know that (V2,≤)
and (Up(KQ),⊆) are isomorphic. Applying Lemma 3.4.5 we obtain a countable Kripke
frameK such that (V ′,≤) and (Up(K),⊆) are isomorphic. Finally, it is easy to see that
the induced logics agree:

GV = GV ′ = L(Up(K)) = L(K) .

It is worth pointing out some structural consequences which can be inferred from our
constructions. LetK be a countable linear Kripke frame and let VK be the corresponding
Gödel set. K having a top element is equivalent to 0 being isolated in VK , andK having
a bottom element is equivalent to 1 being isolated in VK . Let K ends with Q denote
that there is an embedding σ of Q into K such that ∀k ∈ K ∃q ∈ Q k � σ(q). In
this case we have that L(K) = L(Q). To see this observe that, as in Example 3.4.2, the
condition ‘K ends with Q’ implies that VK contains a Cantor set which contains 0. But
then Theorem 3.1.9 shows that the induced Gödel logic GVK is the same as the Gödel
logic of the full unit interval, hence

L(K) = GVK = G[0,1] = L(Q) .

It is interesting to note that Theorem 3.4.6 cannot be deduced from the Löwenheim-
Skolem Theorems in [33] and Lemma 3.4.3. Rather, the results presented in the present
paper indicate that the Löwenheim-Skolem Theorem in [33, Theorem 4.8], which deals
with reducing the cardinality of the pseudo-Boolean algebra, cannot be strengthened in
the form that it is reduced to the cardinality of the universe (assuming it is infinite), i.e.
in terms of [33, Theorem 4.8], λ′ = 2λ cannot be replaced by λ in general. To see
this observe that the pseudo-Boolean algebra [0, 1] cannot be replaced by any countable
pseudo-Boolean algebra: the Gödel logic of the former is axiomatisable (see above),
where the Gödel logic of any countable truth value set is not axiomatisable (see Theo-
rem 3.3.11).

As consequences of previous results on axiomatizability we obtain

COROLLARY 3.4.7. Let K be a countable linear Kripke frame. The intermediate
predicate logic defined by K on constant domains is axiomatisable if and only if K is
finite, or if Q can be embedded into K, and either K has a top element or ends with a
copy of Q.



Gödel-Dummett Logics 163

COROLLARY 3.4.8. LetK be a countable linear Kripke frame. IfK is either not finite
and Q cannot be embedded into K (i.e., K is scattered), or Q can be embedded into K,
but K does not end with Q and K does not have a top element, then the intermediate
predicate logic defined by K on constant domains is not recursively enumerable.

COROLLARY 3.4.9. The set of intermediate predicate logics defined by countable lin-
ear Kripke frames on constant domains is countable.

Another surprising aspect from the point of view of the last corollary is that while
there are uncountably many different countable linear orderings (which can be taken as
Kripke frames), the class of logics defined by them on constant domains only contains
countably many elements. Furthermore, the last result is contrasted by the fact that the
number of all intermediate logics extending the basic linear logic with constant domains
is uncountable.

In a similar way one can show that the logics of scattered Kripke frames with con-
stant domains are not recursively enumerable.

3.5 Number of different Gödel logics

Following the last remark we will now consider the number of different logics. A
reasonable argumentation for a lower bound on it would be as follows: If we have a
basic logic with extensions in which each of countable many principles can be either
true or false, then we would expect uncountably many different logics. As an example
let us consider the class of all intermediate predicate logics, i.e. all those logics which
are between Intuitionistic Logic and Classical Logic (cf. [33]). Here, we have a common
basic logic, Intuitionistic Logic, and extensions of it by different principles. And in fact
there are uncountably many intermediate predicate logics. Another example is the class
of modal logics which has K as its common basic logic.

Considering Gödel logics, there is a common basic logic, the logic of the full inter-
val, which is included in all other Gödel logics. On the side of logics defined by linear
Kripke frames on constant domains this corresponds to the logic determined by a set of
worlds of order-type Q. There are still countably many extension principles but, sur-
prisingly, in total only countably many different logics. This has been proven recently
by formulating and solving a variant of a Fraı̈ssé Conjecture [25] on the structure of
countable linear orderings w.r.t. continuous embeddability.

The ordering relation in this article is smc-embeddability, which is a strictly mono-
tone and continuous embedding of one countable closed subset of the reals into another.

THEOREM 3.5.1 ( [20], Corollary 40). The set of Gödel logics

(a) is countable

(b) is a (lightface) Σ1
2 set

(c) is a subset of Gödel’s constructible universe L.

Proof. (a) First note that the set of countable Gödel logics (i.e. those with countable truth
value set), ordered by ⊇, is a wqo. To see this, assume that 〈Gn : n ∈ ω〉 is a sequence
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of countable Gödel logics. Take the sequence of countable Gödel sets 〈Vn : n ∈ ω〉 gen-
erating these logics and define the respective Q-labeled countable closed linear ordering
(cclo) (also denoted with Vn) with Q = {0, 1}, 0 <Q 1 and Vn(0) = Vn(1) = 1,
and Vn(x) = 0 otherwise. Using results from [20] one shows that original sequence of
Gödel logics 〈Gn : n ∈ ω〉 is good, i.e., it is neither an infinite anti-chain or infinitely
decreasing chain with respect to embeddability.

As each countable Gödel logic is a subset of a fixed countable set (the set of all
formulas), the family of countable Gödel logics cannot contain a copy of ω1. So by [20,
Lemma 39], the family of countable Gödel logics must be countable.

According to Theorem 3.1.9 any uncountable Gödel logic, i.e. Gödel logic deter-
mined by an uncountable Gödel set, such that 0 is not included in the prefect kernel P
of the Gödel set is completely determined by the countable part V ∩ [0, inf P ]. So the
total number of Gödel logics is at most two times the number of countable Gödel logics
plus 1 for the logic based on the full interval, i.e. countable.

(b) First, note that the set

{(v, ϕ, v(ϕ)) : Mv = N}

is a Borel set, since we can show by induction on the quantifier complexity of ϕ that the
sets {(v, q) : Mv = N, v(ϕ) ≥ q} are Borel sets (even of finite rank).

Next, a set G of formulas is a Gödel logic iff

There exists a closed set V ⊆ [0, 1] (say, coded as the complement of a
sequence of finite intervals) such that:

• For every ϕ ∈ G, for every v with Mv = N, v(ϕ) = 1, and

• For every ϕ /∈ G, there exists v with Mv = N, v(ϕ) < 1.

(We can restrict our attention to valuations v with vM = N because of Proposi-
tion 3.1.4.)

Counting quantifiers we see that this is a Σ1
2 property.

(c) follows from (a) and (b) by the Mansfield-Solovay theorem (see [30], [31, 8G.1
and 8G.2]).

4 Further topics

In the following we shortly mention some further topics and observations and refer
the interested reader to the cited references.

4.1 The Delta operator

With respect to the set of valid formulas the 4 operator extends the recursively
enumerable infinitely valued Gödel logics.

THEOREM 4.1.1 ( [15]). A Gödel logic with 4 is axiomatizable iff the truth value set
is one of:

• {0, 1} ⊂ V∞
axiomatization: H∆
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• 0 ∈ V∞, 1 isolated
axiomatization: H∆ + ISO0

• 0 isolated, 1 ∈ V∞
axiomatization: H∆ + ISO1

• 0 and 1 isolated and V∞ 6= ∅ (thus V is uncountable)
axiomatization: H∆ + ISO0 + ISO1

• V finite
axiomatization: H∆ + FIN(n)

Another observation is that G∆
↑ is not anymore the intersection of the finitely valued

Gödel logics with Delta.

4.2 The Takeuti-Titani rule and quantified propositional logics

As already mentioned and discussed in the introduction, Takeuti and Titani in [39]
introduced the following rule

C ∨ (A→ x) ∨ (x→ B)

C ∨A→ B

where the variable x does not occur in the conclusion. Recall that this rule can be
semantically and syntactically eliminated from proofs, see [18, 37]. This shows that
using dependent rules certain semantic properties can forced.

Using this rule we can introduce quantified propositional Gödel logics on [0, 1].

DEFINITION 4.2.1 (Propositional quantified Gödel logic over V ). The language is the
propositional language with quantifiers binding propositional variables. The proposi-
tional quantifiers range over all truth values.

THEOREM 4.2.2 ( [16]). The quantified propositional Gödel logic on [0, 1] admits
quantifier elimination and is axiomatized by the quantified propositional variant of H
together with the Takeuti-Titani rule.

Note that in this case the Takeuti-Titani rule cannot be eliminated, but can be re-
placed by the equivalent formulation as axiom.

By coding open and closed intervals in the language one obtains the following result:

PROPOSITION 4.2.3 ( [16]). There are uncountable (ℵ1) many quantified propositional
Gödel logics.

Other quantified propositional logics that admit quantifier elimination are G↑ and
G↓, but in these cases a syntactical extension of the language by an unary operator is
necessary [9, 12].

Considering the intersection of quantified propositional Gödel logics a varied image
is shown:

• the intersection of all finitely valued q.p. without4 is the q.p. logic over V↑
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• the intersection of all finitely valued q.p. with4 is not a Gödel logic
(with4 and propositional quantifiers finiteness can be expressed)

• the intersection of all q.p. without4 is not a Gödel logic.

We conclude this further topics with an observation of rarely considered logics
where first order and quantified propositional quantifiers are mixed.

First note that in all first order Gödel logics the following two implications are valid:

∀xA(x) ∨B → ∃x(A(x)→ C ∨ C → B)

A→ ∃xB(x) → ∃x(A→ C ∨ C → B(x))

Thus, in the quantified propositional Gödel logic over [0, 1] the following equiva-
lences are valid (where the first quantifier can be a propositional or first order quantifier)

(∀xA(x)→ B) ↔ ∀p∃x(A(x)→ p ∨ p→ B)

(A→ ∃xB(x)) ↔ ∀p∃x(A→ p ∨ p→ B(x)

Combining that with the fact that all other quantifier shifts are valid we obtain

THEOREM 4.2.4. In the Gödel logic over [0, 1] with first order and quantified proposi-
tional quantifiers all formulas can be transformed into equivalent prenex formulas.

4.3 Fragments of Gödel logics

THEOREM 4.3.1. [13] The bottom-less fragment, the prenex fragment, and the exis-
tential fragment for infinitely valued Gödel logics are recursively enumerable if and only
if the truth value set is uncountable. The resulting sets of valid formulas conincide.

4.4 Entailment

The compactness of the underlying entailment relation is of central importance for
the deductive properties of the logic under consideration. If the entailment is not com-
pact, no effective representation of the entailment can be constructed [17].

DEFINITION 4.4.1 (Compactness). G0
V is compact if, whenever Π |=V A there is a

finite Π′ ⊂ Π such that Π′ |=V A.

It is important to mention that if we consider entailment relations or compactness,
the underlying truth value set has to be closed under infima.

In the case of propositional tautologies, all logics of infinite truth value sets are the
same (Theorem 2.1.8). The case for the entailment relation is similar with dense linear
subset taking the position of the infinite subset.

It is an easy but fundamental result that Taut(V ) = G0
V and Ent(V ), the set of

valid entailment relations, depend only on the order type of V . This central property
of Gödel logics is dependent on the specific definition of the Gödel implication, other
definitions of implication might not allow this kind of equivalence (see Lemma 3.1.3).

THEOREM 4.4.2 ( [17], Proposition 3.2). If V is finite then GV is compact.
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Proof. We are discussing the entailment Π 
 A. Let Π = {B1, B2, . . .}, and let X =
{p0, p1, . . .}, be an enumeration of variables occurring in Π, A such that all variables in
Bi occur before the variables in Bi+1. We show that either {B1, . . . , Bk} 
 A for some
k ∈ N or Π 1 A.

Let T be the complete semantic tree on X , i.e. T = V <ω . An element of T of
length k is a valuation of p0, . . . , pk−1. Since V is finite, T is finitary. Let T ′ be the
subtree of T defined by: v ∈ T ′ if for every initial segment v′ of v and every k such that
all the variables in A,B1, . . . , Bk are among p0, . . . , p`(v′),

v′({B1, . . . , Bk}) = min{v(B1), . . . , v(Bk)} > v′(A).

In other words, branches in T ′ terminate at nodes v′, where

v′({B1, . . . , Bk}) ≤ v(A).

Now if T ′ is finite, there is a k such that B1, . . . , Bk 
V A. Otherwise, since T ′ is
finitary, it contains an infinite branch. Let v be the limit of the partial valuations in that
branch. Obviously, since V is finite, v(Π) > v(A) and so Π 1V A.

THEOREM 4.4.3 ( [17], Theorem 3.4). If V is uncountable, then GV is compact.

Proof. Let W be a densely ordered, countable subset of V . Such a subset exists ac-
cording to Proposition 1.6.4. Let X be a set of variables. A chain on X is an arrange-
ment of X in a linear order. Formally, a chain C on X is a sequence of pairs 〈pi, oi〉
where oi ∈ {<,=, >} where pi appears exactly once. A valuation I respects C if
I(pi) = I(pi+1) if oi is =, I(pi) > I(pi+1) if oi is >, and I(pi) < I(pi+1) if oi is <.
If X is finite, there are only finitely many chains on X .

We consider the entailment relation Π 
 A and construct a tree in stages as fol-
lows: The initial node is labeled by 0 < 1 and an empty valuation. Stage n + 1: A
node N constructed in stage n is labeled by a chain on the variables p1, . . . , pn and a
valuation IN of p1, . . . , pn respecting the chain. N receives successor nodes, one for
each possibility of extending the chain by inserting pn+1. The labels of each successor
node N ′ are the corresponding extended chain and an extension of IN which respects
the extended chain. The value IN ′(pn+1) is chosen inside W , i.e. the endpoints of W
may not be chosen as values. SinceW is densely ordered, this ensures that such a choice
can be made at every stage.

We call a branch of T closed at node N (constructed at stage n) if for some finite
Π′ ⊆ Π such that var(Π′) ∪ var(A) ⊆ {p1, . . . , pn} it holds that IN (Π′) ≤ IN (A). T
is closed if it is closed on every branch. In that case, for some finite Π′ ⊆ Π, we have
Π′ 
 A.

If T is not closed, it contains an infinite branch. Let I be the limit of the IN of
nodes N on the infinite branch. It holds that I(B) > I(A) for all B ∈ Π, for otherwise
the branch would be closed at the first stage where all the variables in A were assigned
values. Let w = I(A). By Lemma 3.2.6, Iw(A) = I(A) and Iw(Π) = inf{Iw(B) :
B ∈ Π} = 1, and so Π 1 A, a contradiction.

THEOREM 4.4.4 ( [17], Theorem 3.5). If V is countably infinite, then GV is not com-
pact.
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Proof. Note that if V is countable, it cannot contain a densely ordered subset, since
truth-value sets for entailment have to be closed (under infima). We define a sequence
of formulas Γk as follows:

Γ′k = {p0/2k ≺ p1/2k ≺ . . . ≺ p(2k−1)/2k ≺ p2k/2k}
Γ′′k = {p0/2k → q, . . . , p2k/2k → q}
Γk = Γ′k ∪ Γ′′k

Γ =
⋃

k∈ω
Γk

Intuitively, Γ′k expresses that the pr = pi/2k are linearly ordered and
⋃
k∈ω Γ′k expresses

that the variables pr are densely ordered. Since V does not contain a densely ordered
subset, we have

Γ 
V q.

In fact the only I such that I(Γ) = 1 is I(pr) = 1 for all r, and I(q) = 1. Now assume
a finite Γ′ ⊂ Γ such that

Γ′ 
V q.

There is a Γk ⊇ Γ′. Since V is infinite we can choose at least 2k + 2 different truth
values v0 < · · · < v2k+1 < 1. Define the valuation I as

I(pi/2k) = vi

I(q) = v2k+1.

Then we have I(Γk) = I(Γ′) = 1, but I(q) < 1 and therefore, Γ′ 1V q.

Thus, we have succeeded in characterizing the compact propositional Gödel logics.
They are all those where the set of truth values V is either finite or contains a nontrivial
densely ordered subset.

Although the number of first-order Gödel logics has been settled to countable (see
Theorem 3.5.1), it is possible to prove that there are uncountably (2ℵ0 ) many entailment
relations:

PROPOSITION 4.4.5. The number of different entailment relations of first-order Gödel
logics is 2ℵ0 .

Sketch. It is possible to express ordinals and their orderings with entailment relations.
Oberving that there are uncountably many such orderings concludes the proof.

4.5 Satisfiability

In the case of Gödel logics, the connection between satisfiability and entailment
one is used to from classical logic breaks down. It is not the case that |= A iff {¬A} is
unsatisfiable. For instance,B∨¬B is not a tautology, but can also never take the value 0,
hence I(¬(B ∨ ¬B)) = 0 for all I, i.e., ¬(B ∨ ¬B) is unsatisfiable. So entailment
cannot be defined in terms of satisfiability in the same way as in classical logic. Yet,
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satisfiability can be defined in terms of entailment: Γ is satisfiable iff Γ 2 ⊥. Hence also
for Gödel logics, establishing soundness and strong completeness for entailment yields
the familiar versions of soundness and completeness in terms of satisfiability: a set of
formulas Γ is satisfiable iff it is consistent.

In the following we concentrate on satisfiability as many practical problems are
connected to it: large ontologies are always checked for consistency, i.e., satisfiability.
For the applicability of Gödel logics it is essential that satisfiability in many cases means
classical satisfiability, and therefore usual automated theorem provers may be used for
consistency checks.

THEOREM 4.5.1 ( [6]). In the following cases satisfiability in Gödel logics is classical
satisfiability:

• in the propositional case,

• 0 is isolated in the truth value set,

• prenex fragment for any truth value set.

• existential fragment for any truth value set.

Proof. For the first two cases let Q be any formula of GV . If Q is satisfiable in classical
logic then Q is satisfiable in GV . For the converse direction, consider any interpretation
IG of GV such that IG(Q) = 1. An interpretation ICL of classical logic such that
ICL(Q) = 1 is defined as follows: for any atomic formula A

ICL(A) =

{
1 if IG(A) > 0

0 otherwise.

It is easy to see that for each formula P , (∗) IG(P ) = 0 if and only if ICL(P ) = 0
and IG(P ) > 0 if and only if ICL(P ) = 1. The proof proceeds by induction on the
complexity of P and all cases go though for all Gödel logics except when P has the
form ∀xP1(x); in this case, being 0 an isolated point in V , IG(P ) = 0 if and only
if there is an element u in the domain of IG such that IG(P1(u)) = 0; by induction
hypothesis ICL(P1(u)) = 0 and hence ICL(∀xP1(x)) = 0.

Considering the prenex case, let Q = Qx̄P be any prenex formula, were Qx̄ is the
formula prefix and P does not contain quantifiers. Assume that IG(Q) = 1. As above
we can prove (∗) for P . ICL(Q) = 1 easily follows by induction on the number n of
quantifiers in Qx̄.

4.5.1 Recursively enumerability of (un)satisfiability
This is an area with many open questions. The only known results are

THEOREM 4.5.2. • for finitely valued logics, unsatisfiability is r.e.

• for the prenex fragment with 4 over the truth value set [0, 1], unsatisfiability is
r.e. [10].
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• for the class FO1
mon consisting of all formulas in the first-order language with4

of the form

n∨

i=1

(∃xAi1(x) ∧ . . . ∧ ∃xAini(x) ∧ ∀xBi1(x) ∧ . . . ∧ ∀xBimi(x)),

satisfiability is decidable [7]

It can be easily shown that with respect to satisfiability there are at least countably
many logics, but the upper limit is not known.

We conclude this part with two observations, the first concerning the Löwenheim-
Skolem theorem. Consider

¬(x = y)→ ¬4(P (x)↔ P (y)).

which implies that the upward Löwenheim-Skolem theorem does not hold for infinitely
valued Gödel logics with4.

To show the contrast between validity and satisfiability, we emphasize the following
theorem:

THEOREM 4.5.3. The prenex fragment of the monadic class (with at least 2 predicate
symbols) for infinitely valued Gödel logics is

• undecidable (with the possible exceptions of G↑) with respect to validity (the con-
struction in [5] is easily adaptable to the prenex case)

• decidable with respect to satisfiability (see Theorem 4.5.1)
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