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Abstract. Dual-Policy Attribute Based Encryption (DP-ABE), proposed in
2009, is a combination of two variants, Ciphertext Policy-ABE (CP-ABE)
and Key Policy-ABE (KP-ABE), where an encryptor can associate the data
simultaneously with both a set of objective attributes and of subjective
access policies. Or, a user is given a private key assigned simultaneously
for both a set of objective attributes and a subjective access policy. A major
problem of the above DP-ABE scheme is the ciphertext size linear to the
number of attributes while the LSSS access structure can be assumed.
We propose two novel DP-ABEs, which achieve constant-size ciphertext,
regardless of the number of attributes in a logical AND data access policy
with wildcards. We present two constructions: the first scheme under
the q-Bilinear Diffie Hellman Exponent (q-BDHE) and the second scheme
under the Decisional Bilinear-Diffie-Hellman assumptions (DBDH).
Keywords: Attribute-based Encryption, Dual Policy, Constant Ciphertext
Length Size

1 Introduction

Attribute-based encryption (ABE) [2, 5, 3, 1] achieves an attractive feature
and is used to various applications [4]. In Attribute-based encryption
(ABE), a user’s credentials are represented by a set of strings called “at-
tributes”, and the predicate is represented by a formula over these at-
tributes. It allows the encryptor embedding the access policies or the user
credentials in the ciphertext or the private keys. Three types of ABE called
Ciphertext-Policy ABE (CP-ABE) [2, 5], Key-Policy ABE(KP-ABE) [3] and
Dual-Policy ABE (ABE) [1] are proposed.
In CP-ABE [2], a secret key is associated to a user’s credentials, such as
{“Student”, “Faculty : CS”, “Major: Cryptography”} and a ciphertext is as-
sociated to access policies by composing multiple attributes through logi-
cal operators such as “AND”, “OR”, such as “Student”∧ (“Birthday:1988”
∨“Faculty:CS”). If a decryptor wants to decrypt the message successfully,
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Technology Development of Vietnamese Government.
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the attributes embedded in the secret key must satisfy the access policies
embedded in the ciphertext. In KP-ABE scheme, data are associated with
attributes for each of which a public key component is defined. An en-
cryptor associates a set of attributes to the message by encrypting it with
the corresponding public key components. Each user is assigned an access
structure which is usually defined as an access tree over data attributes,
i.e., interior nodes of the access tree are threshold gates and leaf nodes are
associated with attributes. A user secret key is defined to reflect the access
structure so that the user is able to decrypt a ciphertext if and only if the
data attributes satisfy his access structure.
A combination of two variants CP-ABE and KP-ABE, called Dual-Policy
ABE (DP-ABE), was proposed in 2009 [1], in which an encryptor can
associate the data simultaneously with both a set of objective attributes
that ascribe the data itself such as {“.doc”,“.mp3”,“wma”} and a subjective
access policy that states what kind of receivers “Age > 18” ∧ (“Student”
∨“Faculty:CS”) will be able to decrypt. Otherwise, a user is given a private
key assigned simultaneously for both a set of subjective attributes that
annotates user’s credentials {“Name : Alice”,“Student”, “Age:24”} and a
subjective access policy that states what kind of data (“.doc” ∧ “.mp3”)
can be decrypted. The decryption can be done if the objective attribute set
satisfies the objective policy and the subjective attribute set satisfies the
subjective policy.
Apart from the promising features provided by the previous DP-ABE, a
major problem of the DP-ABE is that the size of the ciphertext increases
linearly with respect to the number of included attributes.
In this paper, we propose two novel DP-Abe’s, named DP-ABE 1 and DP-
ABE 2, which incur a constant size of ciphertext, regardless of the number
of attributes in a logical AND data access policy with wildcards. Our two
schemes achieve higher performance in the construction with the short
length size of the ciphertext in the encryption and the reduced number of
pairing in decryption. In addition, we prove that our schemes are secure
under the selective-set security notion. To the best of our knowledge, this
is the first DP-ABE with constant ciphertext.

Table 1. Comparison

Scheme Encryption Decryption Ciphertext Length Assumption Access Structure
DP-ABE [1] 4ex 4p |GT | + (n + 2)|G| q-BDHE Linear Structure
DP-ABE 1 4ex 4p |GT | + 3|G| q-BDHE AND Gates
DP-ABE 2 4ex 4p |GT | + 3|G| DBDH AND Gates

Table 1 compares our scheme to the previous scheme [1] from the follow-
ing viewpoint: the computational complexity of encryption and decryp-
tion, access structure, ciphertext length and the security assumption. The
computational complexity is measured by the number of pairing compu-
tation p and exponentiation computation ex. The computational cost over
Zp is ignored as usual. Compare with [1], our scheme yields a constant
length size of ciphertext of DP-ABE 1 and DP-ABE 2 regardless of the
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number of subject attributes embedded in the secret key and of the ob-
jective attributes embedded in the ciphertext. DP-ABE 1 is secure under
the q-Bilinear Diffie-Hellman Exponent problem (q-BDHE) assumption.
DP-ABE 2 is secure under the decisional Bilinear Diffie Hellman (DBDH)
assumption and, thus it achieves stronger security than DP-ABE1. Both
two schemes use the AND gates structure.
Organisation of paper: In Section 2, we provide preliminary materials such
as the notion of access structure, bilinear pairing, security assumptions,
functional definition and security notion of DP-ABE. In Section 3, we
present our DP-ABE 1 and prove it is secure under the q-BDHE assump-
tion. In Section 4, we construct our DP-ABE 2 and prove it is secure under
the DBDH assumption. Finally, Section 5 concludes our result.

2 Preliminaries

2.1 The Bilinear Map and Its Related Assumptions
Let G and GT be two multiplicative cyclic groups of prime order p, and e
be a bilinear map, where e :G ×G→GT. A bilinear map has the following
properties:

1. Bilineariry : for all u,v ∈ G and a,b ∈ Zp, we have e(ua, vb) = e(ub, va) =
e(u, v)ab.

2. Non-degeneracy : e(g, g) , 1.
In this paper, we use a symmetric bilinear map such that e(ga, gb) =
e(g, g)ab = e(gb, ga).

Definition 1 (Definition of q-BDHE) LetG,GT be a bilinear group with prime
order p and y be a given vector:

y = (g, h, gα, gα
2
. . . , g(αq), g(αq+2), . . . , g(α2q),Z) ∈ G2q+1 ×GT.

Then, the q-Bilinear Diffie-Hellman Exponent (q-BDHE) problem is a problem to
determine whether Z = e(g, h)αq+1 .
Let Yg,α,q = (gα, gα2

, . . . , g(αq), g(αq+2), . . . , g(α2q)). An algorithm A that solves
q-BDHE problems has advantage ϵ in solving decisional q-BDHE in G if

| Pr[A(g, h,Ygα,q, e(g, h)α
q+1

) = 0] − Pr[A(g, h,Yg,α,q,Z) = 0] |≥ ϵ,
where the probability is over the random choice of generation g, h ∈ G, randomly
chosen α ∈ Zp and Z ∈ GT.
We say that the decision q-BDHE assumption holds in G if no polynomial-time
algorithm has a non-negligible advantage in solving the q-BDHE problem.

Definition 2 The Decisional Bilinear Diffie-Hellman (DBDH) problem in G1

is defined as: For input of a tuple (g, ga, gb, gc,T) ∈ G4
1 × GT, to decide whether

T = e(g, g)abc. An algorithm A that solves DBDH problems has advantage ϵ in
solving the DBDH problem in G1 if

AdvDBDH(A) =| Pr[A(g, ga, gb, gc, e(g, g)abc) = 0]−Pr[A(g, ga, gb, gc,T) = 0] |≥ ϵ,
where the probability is over the random choice of g ∈ G, a, b, c ∈ Zp.
We say that the DBDH assumptions hold in G1 if no polynomial-time algorithm
has a non-negligible advantage in solving the DBDH problem in G1.
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2.2 Functional Definition of DP-ABE

A DP-ABE consists of four algorithms: Setup, Encrypt, KeyGen, and
Decrypt.

Setup This is a randomised algorithm that takes no input other than
the implicit security parameter. It outputs the public key pk and the
master key msk.

Encrypt(pk,M, (S, ω)) This is a randomised algorithm that takes as input
the public key pk, a messageM, a subjective access structure S, a set
of objective attributes ω. It outputs the ciphertext ct.

KeyGen(pk,msk, (ψ,O)) This is a randomised algorithm that takes as in-
put the public key pk, the master key msk, a set of subjective attributes
ψ, an objective access structureO. It outputs a private decryption key
sk.

Decrypt(pk, (ψ,O), sk, (S, ω), ct) This algorithm takes as input the public
key pk, a decryption key sk and its associated pair of set of subjective
attributes ψ and objective access structure O, a ciphertext ct and its
associated pair of subjective access structure S and set of objective at-
tributesω. It outputs the messageM if the setω of objective attributes
satisfies the objective access structure O and the set ψ of subjective
attributes satisfies the subjective access structure S.

Here we explain the access structure. Let U = {A1,A2, ...,Ak} be the Uni-
verse of attributes in the system. Each Ai has three values {A+i ,A−i ,A∗i },
where A+i represents a positive attribute, A−i represents a negative at-
tributes and A∗i represents a wildcard. When a user joins the system, the
user is tagged with an attribute list defined as follows:

– A user’s attribute list is denoted as L = {A+/−1 ,A+/−2 , ...,A+/−k }, where
A+/−i ∈ {A+i ,A−i } and k is the number of attributes in the universe.
L = L+

∪
L−, L+ = {A+i | ∀i ∈ {1...k}} and L− = {A−i | ∀i ∈ {1...k}}. We

have L+
∩

L− = ∅. Intuitively, A+i means a user has Ai; A−i means a user
does not have Ai, or Ai is not a proper attribute of this user.

– Let W = {A1,A2, ...,Ak} be an AND gate access policy, where Ai ∈
{A+i ,A−i ,A∗i }. The notation L |= W denotes that the attribute list L of a
user satisfies W, that is

L |=W ⇐⇒ W ⊂ L
∪
{A∗1,A∗2 . . .A∗k}.

For example, suppose U = {A1 = CS,A2 = EE,A3 = Faculty,A4 = Student}.
Alice is a student in the CS department; Bob is a faculty in the EE de-
partment; Carol is a faculty holding a joint position in the EE and CS
department. Their attribute lists are illustrated in Table 2.

2.3 Security Model of DP-ABE

Let us give the selective-set security notion for DP-ABE [1].
Init The adversary declares the target subjective access structure S∗ and

the target objective attribute set ω∗.
Setup The challenger runs the Setup algorithm and provides the public

parameters pk to the adversary.
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Table 2. List of attributes

Attributes A1 A2 A3 A4

Description CS EE Faculty Student
Alice A+1 A−2 A−3 A+4
Bob A−1 A+2 A+3 A−4

Carol A+1 A+2 A+3 A−4

Phase 1 The adversary makes repeated private-key queries for pairs of
subjective attribute set and objective access structure (ψ,O) such that
ω∗ < O or ψ < S∗. That is, the negated condition of that of a legitimate
key which can be used to decrypt a challenge ciphertext.

Challenge The adversary submits two equal length messages M0 and
M1. The challenger, then, flips a random bit β, and encrypts Mβ on
the target pair (S∗, ω∗) subjective access structure and the target objec-
tive attribute set ω∗. Then, the resulting ciphertext ct∗ is given to the
adversary.

Phase 2 Phase 1 is repeated.
Guess The adversary outputs a guess β′ of β.

The advantage of an adversary A in the above game is defined as Pr[β′

=β]-1/2. Note that the model can easily be extended to handle chosen-
ciphertext attacks by allowing for decryption queries in Phases 1 and 2.

Definition 3 A DP-ABE scheme is secure in the selective-set security notion if
all polynomial time adversaries have at most a negligible advantage in the above
game.

3 DP-ABE based on q-BDHE (DP-ABE 1)

Let Us and Uo be the universe of subjective and objective attributes, re-
spectively. We will show DP-ABE 1 below:

Setup There are k attributes Us = {A1,A2, . . . ,Ak} in the system, and K = 3k
attributes in total since each Ai has 3 values: {A+i ,A−i ,A∗i }. A one-to-
one map φ is used from {A+1 ,A+2 , . . . ,A+k } to {1, . . . , k}, {A−1 ,A−2 , . . . ,A−k }
to {k + 1, . . . , 2k} and {A∗1,A∗2, . . . ,A∗k} to {2k + 1, . . . , 3k} for the sake of
simplicity.
The algorithm first picks a random generator g ∈ G and random
exponent α, a, γ ∈ Zp. It then defines two functions for randomly
chosen h, t ∈ G,

Fs : Zp → G (Fs(x) = hα
x
)

F0 : Zp → G (Fo(x) = tα
x
).

It assigns the public key as pk = {g, e(g, g)γ, ga, hα, . . . , hα3k
, tα, . . . , tα3k }

and master key as msk = {γ, a}.
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KeyGen The inputs the algorithm is a pair of objective policy O and
subjective attributes ψ ⊂ Uo. The algorithm chooses r, r1, r2, . . . , r3k ∈
Zp and computes b = γ + a · r. The secret key sk is set to

sk = (O,K, {K̂i,K′i |i ∈ B+}, {K̂i,K′i |i ∈ B−}, {K̂i,K′i |i ∈ B∗}, {Kx}x∈ψ, {|i ∈ B+}),

which is computed as follows:

K = gr,
Ki = Fs(i)r (i ∈ ψ)
K̂i = gb · Fo(i)−ri , K′i = gri (∀i ∈ ψ ⊂ B+)
K̂i = gb · Fo(i)−ri+k , K′i = gri+k (∀i ∈ ψ ⊂ B−)
K̂i = gb · Fo(i)−ri+2k , K′i = gri+2k (∀i ∈ ψ ⊂ B∗).

Encryption The inputs of the algorithm is a messageM, the public key
pk, a pair of subjective policy S and objective attributes ω ⊂ Us. A ci-
phertext CT = (S,C,Ci, Ĉ, {C′x}x∈ω) is computed for a randomly chosen
s in Zp as follows:

C =M · e(g, g)γs, Ci = (
∏
i∈ω

gaFs(i))−s

Ĉ = gs, C′x = Fo(x)s (x ∈ ω)

Decrypt The inputs of the algorithm is a ciphertext CT embedded the
subjective policy S and a set of objective attributes ω ⊂ Us, and a
secret key sk embedded the objective policy O and a set of subjective
attributes ψ ⊂ Uo. The constraint to decrypt is the message that the
set of subjective attributes ψ must satisfy the subjective policy S and
the set of objective attribute ω must satisfy the objective policy O.
Decryption is done by:

A = e(Ci,K) · e(Ĉ,
∏
i∈ω

Ki)

= e((
∏
i∈ω

gaFs(i))−s, gr) · e(gs, (
∏
i∈ω

Fs(i))r)

= e(g, g)−asr · e(
∏
i∈ω

Fs(i), g)−sr · e(
∏
i∈ω

Fs(i), g)sr

= e(g, g)−asr

B = e(Ĉ,
∏
i∈ψ

K̂i) · e(
∏
i∈ψ

C′i ,K
′
i )

= e(gs,
∏
i∈ψ

gbFo(i)−ri ) · e(
∏
i∈ψ

Fo(i)s, gri )

= e(g, g)bs · e(g,
∏
i∈ψ

Fo(i))−sri · e(g,
∏
i∈ψ

Fo(i))sri

= e(g, g)bs.
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ThenM can be recovered by using b = γ + ar.

A · B = e(g, g)−ars.e(g, g)bs

= e(g, g)−ars · e(e, g)γs · e(g, g)ars

= e(g, g)γs

C
A · B =

M · e(g, g)γs

e(g, g)γs =M

The security proof is shown below:

Theorem 1 Suppose the decisional q-BDHE assumption holds. Then no polynomial-
time adversary can break our DP-ABE 1 with a challenge ciphertext CT∗ in the
selective-set security notion.

Proof: LetA be an adversary with an advantage ϵ = AdvA in attacking DP-
ABE 1. We will show how to build a simulator,B, that plays the decisional
q-BDHE problem (recall that gi = gαi ).
Init : The simulator B takes a q-BDHE challenge (g, h,Yg,α,q,T). A) gives
B the algorithm a pair (S∗, ω∗) of challenge subjective access structure and
objective attributes. Let |ω∗| = n, and m be the number of elements in the
AND gate access policy S∗, where 3m ≤ q.
Setup :B chooses γ′ ∈ Zp randomly and implicitly sets γ = γ′+αq+1 which
satisfies e(g, g)γ = e(g, g)γ′ ·e(gαq

, gα). ThenB chooses d ∈ Zp randomly and
computes by setting a implicitly:

gd(
∏
j∈O

gα
3k+1− j

)−1 = gd−∑ j∈O α3k+1− j
= ga if ω∗does not satisfy O.

gd(
∏
j∈S∗

gα
3k+1− j

)−1 = gd−∑ j∈S∗ α3k+1− j
= ga if ψ does not satisfy S∗.

B implicitly sets a function Fs(x) = gp(x) for a polynomial p in Zp[x] with
degree m + 3k − 1 as follows: set 3m + 3k + 1 polynomials p0, . . . , p3k+3m in
Zp[x] with degree m + 3k − 1 to

pi(x) =
{

xi (i ∈ [1, 3m])
0 (i ∈ [3m + 1, 3m + 3k])

and p0 is set randomly from Zp[x]. Then B sets

p(x) =
3k+3m∑

i=0

pi(x) · αi, hi = gpi(x)
i (i ∈ [0, 3k +m − 1]).

Then, Fs satisfies

Fs(x) =
3k+m−1∏

i=0

hi = gp(x),

which can be explicitly computedB. Then set a function Fo as follows: For
fi(x) = x − zi with zi ∈ {1, · · · , 3k} according to a set of attributes ω∗, set:

f (x) =
n−1∑
i=0

fi(x),
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which ensures that f (x) = 0 if and only if x ∈ ω∗. Then let

Fo(x) =
n−1∏
i=0

g fi(x) = g f (x),

and ti = g fi(x). The public key pk = {g, e(g, g)γ, gd, h0, . . . , h3m, t0, . . . , t3m} is
given toA.
Phase 1:A submits a pair (O, ψ) of objective access structure and subjective
attribute set for private keys, where ψ must not satisfy S∗ or ω∗ must not
satisfy O. We will prove 2 cases separately.
Case 1: ω∗ does not satisfy O.
The simulator randomly chooses r, ri ∈ Zp(i = 1 . . . k). It then lets K = gr

and Kx = Fs(x)r for all x ∈ ψ. When attribute j in ω∗, either j ∈ 1, . . . , k and
j+k ∈ O, or j ∈ k + 1, . . . , 2k and j−k ∈ O holds. It implicitly sets b = a+γ ·r.
Then, for all i ∈ ω∗+ and i + k ∈ O, generate:

K̂i = gγgrdαi
∏
j∈O

(gα
3k+1− j+i

)−1 grdri
∏
j∈O

(gα
3k+1− j

)−ri g f (i)−ri = gbFo(i)−ri

Ki = gri .

For all i ∈ ω∗− and i − k ∈ O, generate:

K̂i = gγgrdαi
∏
j∈O

(gα
3k+1− j+i

)−1 grdri−k
∏
j∈O

(gα
3k+1− j

)−ri−k g f (i)−ri−k = gbFo(i)−ri−k

K′i = gri−k .

For all i ∈ ω∗∗ and i < O, generate:

K̂i = gγgrdαi
∏
j∈O

(gα
3k+1− j+i

)−1 grdri−2k
∏
j∈O

(gα
3k+1− j

)−ri−2k g f (i)−ri−2k = gbFo(i)−ri−2k

K′i = gri−2k

Case 2: ψ does not satisfy S∗.
B randomly chooses ri ∈ Zp for i = 1 . . . k, and computes K = gr for
r = r1 + . . .+ rk, and sets implicitly b = a+γ · r. When attribute j in ψ, either
j ∈ 1, . . . , k and j + k ∈ S∗, or j ∈ k + 1, . . . , 2k and j − k ∈ S∗ holds. Then, for
all i ∈ ψ+ and i + k ∈ S∗, generate:

K̂i = gγgrdαi
∏
j∈S∗

(gα
3k+1− j+i

)−1 grdri
∏
j∈S∗

(gα
3k+1− j

)−ri g f (i)−ri = gbFo(i)−ri

K′i = gri

For all i ∈ ψ− and i − k ∈ S∗, generate:

K̂i = gγgrdαi
∏
j∈S∗

(gα
3k+1− j+i

)−1 grdri−k
∏
j∈S∗

(gα
3k+1− j

)−ri−k g f (i)−ri−k = gbFo(i)−ri−k

K′i = gri−k .

For all i ∈ ψ∗ and i < S∗, generate:

K̂i = gγgrdαi
∏
j∈S∗

(gα
3k+1− j+i

)−1 grdri−2k
∏
j∈S∗

(gα
3k+1− j

)−ri−2k g f (i)−ri−2k = gbFo(i)−ri−2k

K′i = gri−2k .
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For all x ∈ ψ, compute:

Kx = grpo(x)
k∏

j=1

(gri

3k+3m∏
i=1

gpi(x)) = (gr)p(x) = Fs(x)r.

Challenge: Finally,A gives two messages M0 and M1 to B. The simulator
flips a coin β ∈ {0, 1} and outputs C = MβZ · e(gs, gα′ ) and Ĉ = gs by using
randomly chosen s ∈ Zp. As for other components Ci and Cx, output:

Ci = (
∏
i∈S∗

(gsd)(
∏
i∈S∗

(gsα3k+1− j
)(

3m∏
i=1

(gspi(x)) = (
∏
i∈ω

gaFs(i))−s

Cx = (
3m∏
i=1

g fi(x))s = Fo(x)s.

Phase 2: Repeat Phase 1.
Guess: A will eventually output a guess β′ of β. B outputs 0 if β′ = β,
which means that Z = e(g, h)aq+1 is guessed; otherwise, it outputs 1, which
means that Z is guessed to be a random group element in GT.
When Z is a correct tuple, the simulator B gives a perfect simulation, so
we obtain:

| Pr[(B(g, h,Yg,α,q,Z = e(g, h)α
q+1

) = 0] − 1
2
|≤ AdvA

When Z is a random group element, the message Mβ is completely hidden
from the adversary, and we have Pr[B(g, h,Yg,α,q,Z = R) = 0] = 1

2 . There-
fore, B has the advantage ϵ at least in attacking the decisional q-BDHE
problem since | Pr[A(g, ga, gb, gc, e(g, g)abc) = 0] − Pr[A(g, ga, gb, gc,T) =
0] |≥ ϵ holds. ⊓⊔

4 DP-ABE based on DBDH (DP-ABE 2)

LetUs andUo be the universe of subjective and objective attributes.

Setup There are k attributes Us = {A1,A2, . . . ,Ak} in the system, and K = 3k
attributes in total since each Ai has 3 values: {A+i ,A−i ,A∗i }. A one-to-
one map φ is used from {A+1 ,A+2 , . . . ,A+k } to {1, . . . , k}, {A−1 ,A−2 , . . . ,A−k }
to {k + 1, . . . , 2k} and {A∗1,A∗2, . . . ,A∗k} to {2k + 1, . . . , 3k} for the sake of
simplicity.
The algorithm first picks a random generator g ∈ G and random
exponent a, γ ∈ Zp. It then defines two functions for randomly chosen
h, t ∈ G,

Fs : Zp → G (Fs(x) = hx)

F0 : Zp → G (Fo(x) = tx).

It assigns the public key as pk = {g, e(g, g)γ, ga, h, . . . , h3k, t, . . . , t3k} and
master key as sk = {γ, a}.
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KeyGen The algorithm inputs to the pair of objective policy O and
subjective attributes ψ ⊂ Uo. Then, the algorithm chooses randomly
r, r1, r2, . . . , r3k ∈ Zp and computes b = γ + a · r. The secret key sk is set
to

sk = (O,K, {K̂i,K′i |i ∈ B+}, {K̂i,K′i |i ∈ B−}, {K̂i,K′i |i ∈ B∗}, {Kx}x∈ψ, {|i ∈ B+}),

which is computed as follows:

K = gr,
Ki = Fs(i)r (i ∈ ψ)
K̂i = gb · Fs(i)−ri , K′i = gri (∀i ∈ ψ ⊂ B+)
K̂i = gb · Fs(i)−ri−k , K′i = gri−k (∀i ∈ ψ ⊂ B−)
K̂i = gb · Fs(i)−ri−2k , K′i = gri−2k (∀i ∈ ψ ⊂ B∗).

Encryption The inputs of the algorithm is a messageM, the public key
pk, a pair of subjective policy S and objective attributes ω ⊂ Us. A ci-
phertext CT = (S,C,Ci, Ĉ, {C′x}x∈ω) is computed for a randomly chosen
s in Zp as follows:

C =M · e(g, g)γs, Ci = (
∏
i∈ω

gaFs(i))−s

Ĉ = gs, C′x = Fo(x)s (x ∈ ω)

Decrypt The inputs of the algorithm is a ciphertext CT embedded the
subjective policy S and a set of objective attributes ω ⊂ Us, and a
secret key sk embedded the objective policy O and a set of subjective
attributes ψ ⊂ Uo. The constraint to decrypt is the message that the
set of subjective attributes ψ must satisfy the subjective policy S and
the set of objective attribute ω must satisfy the objective policy O.
Decryption is done by:

A = e(Ci,K) · e(Ĉ,
∏
i∈ω

Ki)

= e((
∏
i∈ω

gaFs(i))−s, gr) · e(gs, (
∏
i∈ω

Fs(i))r)

= e(g, g)−asr · e(
∏
i∈ω

Fs(i), g)−sr · e(
∏
i∈ω

Fs(i), g)sr

= e(g, g)−asr

B = e(Ĉ,
∏
i∈ψ

K̂i) · e(
∏
i∈ψ

C′i ,K
′
i )

= e(gs,
∏
i∈ψ

gbFo(i)−ri ) · e(
∏
i∈ψ

Fo(i)s, gri )

= e(g, g)bs · e(g,
∏
i∈ψ

Fo(i))−sri · e(g,
∏
i∈ψ

Fo(i))sri

= e(g, g)bs.
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ThenM can be recovered by using b = γ + ar.

A · B = e(g, g)−ars.e(g, g)bs

= e(g, g)−ars · e(e, g)γs · e(g, g)ars

= e(g, g)γs

C
A · B =

M · e(g, g)γs

e(g, g)γs =M

Then we can recoverM.

C
A · B =

M · e(g, g)γs

e(g, g)γs =M

The security proof is shown below:

Theorem 2 Suppose the decisional BDH assumption holds. Then no polynomial
time can break our DP-ABE 2 in the selective-set security notion.

Proof : Let A be an adversary with an advantage ϵ = AdvA in attacking
DP-ABE 2. We show how to build a simulator,B, that plays the decisional
BDH problem.
Init: The simulator takes in a decisional BDH challenge {y,T}, where y =
(g, gx, gy, gs) and T = e(g, g)xys or a random element in GT. The adversary
gives the algorithm a pair of challenge subjective access structure S∗ and
objective attributes ω∗. Let |ω∗| = n, and m = the number of elements in the
AND gate access policy S∗, where 3m ≤ q.
Setup: B chooses random γ′ ∈ Zp and implicitly sets γ = γ′ + xy by
letting e(g, g)γ = e(g, g)γ′ · e(gx, gy). Then B chooses d ∈ Zp randomly and
computes by settinga implicitly:

gd(
∏
j∈O

gα
3k+1− j

)−1 = gd−∑ j∈O α3k+1− j
= ga if ω∗does not satisfy O.

gd(
∏
j∈S∗

gα
3k+1− j

)−1 = gd−∑ j∈S∗ α3k+1− j
= ga if ψ does not satisfy S∗.

B implicitly sets a function Fs(x) = gp(x) for a polynomial p in Zp[x] with
degree m + 3k − 1 as follows: set 3m + 3k + 1 polynomials p0, . . . , p3k+3m in
Zp[x] with degree m + 3k − 1 to

pi(x) =
{

ix (i ∈ [1, 3m])
0 (i ∈ [3m + 1, 3m + 3k])

and p0 is set randomly from Zp[x]. Then B sets

p(x) =
3k+3m∑

i=0

pi(x), hi = gpi(x)
i (i ∈ [0, 3k +m − 1]).

Then, Fs satisfies

Fs(x) =
3k+m−1∏

i=0

hi = gp(x),
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which can be explicitly computed B.
Then set a function Fo as follows: For fi(x) = x − zi with zi ∈ {1, · · · , 3k}
according to a set of attributes ω∗, set:

f (x) =
n−1∑
i=0

fi(x),

which ensures that f (x) = 0 if and only if x ∈ ω∗. Then let

Fo(x) =
n−1∏
i=0

g fi(x) = g f (x),

and ti = g fi(x). The public key pk = {g, e(g, g)γ, gd, h0, . . . , h3m, t0, . . . , t3m} is
given toA.
Phase 1: The adversary A submits a pair of objective access structure O
and subjective attribute set ψ for private keys. Then, either condition that
ψ does not satisfy S∗ or ω∗ does not satisfy O holds. We will prove 2 cases
separately.
Case 1: ω∗ does not satisfy O.
The simulator randomly chooses r, ri ∈ Zp for i = 1 . . . k. It then lets K = gr

and Kx = Fs(x)r for all x ∈ ψ and implicitly lets b = a + γ · r. There must
exist a j in ω∗ such that: j ∈ 1, . . . , k and j + k ∈ O or j ∈ k + 1, . . . , 2k and
j − k ∈ O.
Then, for all i ∈ ω∗+ and i + k ∈ O, generate:

K̂i = gγgrdi ∏
j∈O

(g3k+1− j+i)−1 grdri
∏
j∈O

(g3k+1− j)−ri g f (i)−ri

= gbFo(i)−ri

K′i = gri

For all i ∈ ω∗− and i − k ∈ O, generate:

K̂i = gγgrdi ∏
j∈O

(g3k+1− j+i)−1 grdri−k
∏
j∈O

(g3k+1− j)−ri−k g f (i)−ri−k

= gbFo(i)−ri−k

K′i = gri−k

For all i ∈ ω∗∗ and i < O, generate:

K̂i = gγgrdi ∏
j∈O

(g3k+1− j+i)−1 grdri−2k
∏
j∈O

(g3k+1− j)−ri−2k g f (i)−ri−2k

= gbFo(i)−ri−2k

K′i = gri−2k

Case 2: ψ does not satisfy S∗.
The simulator k randomly chooses ri ∈ Zp for i = 1 . . . k, sets K = gr for
r = r1 + . . . + rk, and implicitly sets b = a + γ · r. There must exist a j in ψ
such that j ∈ 1, . . . , k and j + k ∈ S∗ or j ∈ k + 1, . . . , 2k and j − k ∈ S∗.
Then, for all i ∈ ψ+ and i + k ∈ S∗, generate:
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K̂i = gγgrdi ∏
j∈S∗

(g3k+1− j+i)−1 grdri
∏
j∈S∗

(g3k+1− j)−ri g f (i)−ri

= gbFo(i)−ri

K′i = gri

For all i ∈ ψ− and i − k ∈ S∗, generate:

K̂i = gγgrdi ∏
j∈S∗

(g3k+1− j+i)−1 grdri−k
∏
j∈S∗

(g3k+1− j)−ri−k g f (i)−ri−k

= gbFo(i)−ri−k

K′i = gri−k

For all i ∈ ψ∗ and i < S∗, generate:

K̂i = gγgrdi ∏
j∈S∗

(g3k+1− j+i)−1 grdri−2k
∏
j∈S∗

(g3k+1− j)−ri−2k g f (i)−ri−2k

= gbFo(i)−ri−2k

K′i = gri−2k

For all x ∈ ψ, compute:

Kx = grpo(x)
k∏

j=1

(gri

3k+3m∏
i=1

gpi(x)) = (gr)p(x) = Fs(x)r.

Challenge: Finally,A gives two messages M0 and M1 to B. The simulator
flips a coin β ∈ {0, 1} and outputs C = MβT · e(gs, gα′ ) and Ĉ = gs by using
randomly chosen s ∈ Zp. As for other components Ci and Cx, output:

Ci = (
∏
i∈S∗

(gsd)(
∏
i∈S∗

(gs3k+1− j
)(

3m∏
i=1

(gspi(x)) = (
∏
i∈ω

gaFs(i))−s

Cx = (
3m∏
i=1

g fi(x))s = Fo(x)s.

Phase 2: Repeat Phase 1.
Guess: The adversary will eventually output a guess β′ of β. The simulator
outputs 0 if β′ = β, which means T = e(g, g)xys is guessed; otherwise,
it outputs 1, which means that that T is guessed to be a random group
element in GT.
When T is a tuple, the simulatorB gives a perfect simulation so we obtain
that:

Pr[B(y,T = e(g, g)xys) = 0] =
1
2
+ AdvA.

When T is a random group element, the message Mβ is completely hidden
from the adversary and we have Pr[B(y,T = R) = 0] = 1

2 . Therefore,B has
advantage ϵ at least in attacking the decisional BDH problem. ⊓⊔



14

5 Conclusion

In this paper, two constant Dual Policy Attribute Based Encryption, DP-
ABE 1 and DP-ABE 2 have been proposed. The ciphertext size of both our
proposed schemes is constant to attributes and can support expressive
access policies. The security of our proposals is based on a selective-ID
attack. One open problem would be to construct DP-ABE secure against
the adaptive adversary model.
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