
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
How to Enhance the Security on the Least

Significant Bit

Author(s) Miyaji, Atsuko; Mo, Yiren

Citation Lecture Notes in Computer Science, 7712: 263-279

Issue Date 2012

Type Journal Article

Text version author

URL http://hdl.handle.net/10119/10906

Rights

This is the author-created version of Springer,

Atsuko Miyaji and Yiren Mo, Lecture Notes in

Computer Science, 7712, 2012, 263-279. The

original publication is available at

www.springerlink.com,

http://dx.doi.org/10.1007/978-3-642-35404-5_20

Description

11th International Conference, CANS 2012,

Darmstadt, Germany, December 12-14, 2012.

Proceedings

How to Enhance the Security on the Least Significant
Bit

Atsuko Miyaji ⋆ and Yiren Mo

Japan Advanced Institute of Science and Technology
miyaji@jaist.ac.jp

Abstract. Scalar multiplication, which computes dP for a given point P
and a scalar d, is the dominant computation part of Elliptic Curve Cryp-
tosystems (ECC). Recently, Side Channel Attacks (SCA) on scalar multi-
plication have become real threats. This is why secure and efficient scalar
multiplication is important for ECC, and many countermeasures have
been proposed so far. The Montgomery Ladder and the Regular right-to-
left algorithm are the simplest and the most elegant algorithms. However,
they are vulnerable to an SCA on the Least Significant Bit (LSB). In this
paper, we investigate how to enhance the LSB security without spoiling
the original features of simplicity. Our elegant techniques make the previ-
ous schemes secure against the SCA on LSB, while maintaining original
performances.

Key words: Elliptic Curve Cryptography, Scalar Multiplication, Side Channel Attack

1 Introduction

The Elliptic Curve Cryptosystem (ECC), which uses a group of rational points
of an elliptic curve over a finite field, was independently proposed by Miller
and Koblitz in the mid 1980s. The security of ECC is based on the Elliptic Curve
Discrete Logarithm Problem (ECDLP) and the scalar multiplication, which com-
putes dP for a given point P and a scalar d =

∑ℓ−1
i=0 di2i(d > 0), is the dominant

computation part of ECC. The simplest scalar multiplication is the so-called
binary algorithm. The ECC has been attracting the attention of various ap-
plications on small devices because the ECC yield security with a compact
memory and little computational cost. Especially, for the use of smart card, the
ECC needs to be resistant to side channel attacks on scalar multiplication, such
as Simple Power Analysis (SPA)[16], Differential Power Analysis (DPA)[16],
Zero-value Point Attack (ZPA)[1], Refined Power Analysis (RPA)[7], Safe-Error
Attack (SEA)[25], and etc.; and must still work with a compact memory and lit-
tle computational cost. To address these two issues, many scalar multiplications
have been proposed so far. However, there is still room for improvement from
the viewpoint of security, memory amount, and computational cost.
⋆ This study is partly supported by Grant-in-Aid for Exploratory Research, 19650002.

2

Let us review some previous results on right-to-left algorithms. The regular
right-to-left algorithm [12] is secure against both SPA and SEA, while it works
without extra computation and just repeats both doubling and additions. This
is a simple and elegant algorithm. However, it unfortunately does not work
regularly for an arbitrary scalar, and needs a special treatment to force the
parity of d, that is, d0 to be an odd number. In fact, not only the right-to-left
algorithm but also other right-to-left algorithms (Algorithms 1 and 3 in [11])
do not work regularly for an arbitrary scalar. Two other right-to-left algorithms
(Algorithms 1′ and 2 in [11]) work for an arbitrary d, but they are vulnerable to
SEA. In a sense, those right-to-left algorithms fail to achieve the security on the
Least Significant Bit (LSB), which is called LSB security in this paper. The typical
special treatments are: computing (d − d0 + 1)P and subtracting P at the end; or
adding an appropriate multiple of ord(P) to d. The former method needs one
additional subtraction at the end, and the latter method is useful for only scalars
d ≪ ord(P). Those special treatments seem to be rather exaggerated and spoil
the simplicity of regular right-to-left algorithm. The problem is just on the LSB
security, but is nevertheless unavoidable to execute any d.

On the other hand, from the viewpoint of countermeasure to ZPA, a Random-
Initial-Point algorithm (RIP), which works regularly in the right-to-left way, was
proposed in [10]. It is called IIT-RIP in this paper. RIP in the left-to-right way
was proposed in [19], which is called MMM-RIP in this paper. Both algorithms
enhance the security by just repeating both doubling and additions, without
extra computation. In a sense, both IIT-RIP and MMM-RIP are also elegant
and simple. Compared with MMM-RIP resistant to both SEA and ZPA, IIT-
RIP, however, is vulnerable to SEA and needs one more register of points than
MMM-RIP, although it is secure against ZPA. In order to enhance the security
to SEA, error detection steps are introduced in [2, 13]. These, however, need
additional steps, and, thus, spoils the original simplicity.

Next, let us review some previous results on left-to-right algorithms. The
Montgomery Ladder [23] works regularly in the right-to-left way with only
2 registers of points. However, it is vulnerable to SEA, and leaks LSB (See
Alg. 7 in Section 2.5). The signed-digit algorithm proposed in [9] can also work
regularly in the left-and-right way with only 2 registers of points in the same
way as the Montgomery Ladder. The signed-digit algorithm is secure against
SEA, but it is not available for even d. There is room for improvement for both
the Montgomery Ladder and the signed-digit algorithm from the viewpoint of
security and availability.

In this paper, we improve the right-to-left and left-to-right algorithms from
the viewpoint of security, memory amount, computational cost, and availability.
First, we improve Joye’s regular right-to-left algorithm to work for an arbitrary
scalar d, while maintaining the same memory amount as the original. In this
paper, our improved algorithm is called the subtracting-doubling algorithm.
Next, we improve the IIT-RIP from the viewpoint of security and memory
amount. Our improved algorithm can reduce one register of points from the
IIT-RIP, and security is further enhanced. Then, we improve the Montgomery

3

Ladder to be secure against SEA for an arbitrary scalar d, while maintaining
the same memory amount as the original algorithm. Finally, we improve the
signed-digit algorithm to work for an arbitrary scalar d with only 2 registers of
points in the same way as the original.

This paper consists of 6 sections. Section 2 describes some known side chan-
nel attacks and the previous right-to-left and left-to-right algorithms. Section 3
presents two new right-to-left algorithms, which improve the IIT-RIP or Joye’s
regular right-to-left algorithms. Section 4 presents two new left-to-right algo-
rithms, which improve the Montgomery Ladder or the signed-digit algorithm.
Section 5 compares our proposed algorithms with the previous algorithms [10,
12, 23, 9]. Section 6 concludes this paper.

2 Previous Results

2.1 Elliptic curve, coordinate system, and scalar multiplication

We can use several different coordinate systems to represent an elliptic curve.
In this work, we assume that an elliptic curve E is defined over Fp with p > 3,
and choose the Jacobian coordinate. Then, an elliptic curve is given by E : y2 =
x3 + ax + b (a, b ∈ Fp). The Jacobian coordinate and its variants are described
in [5], whose doubling and addition can be slightly improved by changing
multiplication to square such as 2Z1Z2 = (Z1+Z2)2−Z2

1−Z2
2. The latest addition

and doubling formulae are available from [5], and the latest iterated doubling
formulae are presented in [22]. The co-Z addition, ZADDU, deals with points
having the same Z-coordinate [21], where (R,P)← ZADDU(P,Q) is defined as:
R← P+Q = (X3 : Y3 : Z3) and P← (λ2X1 : λ3Y1 : Z3) with Z3 = λZ1 for input of
P← (X1 : Y1 : Z) and Q← (X2 : Y2 : Z). The conjugate addition, which outputs
(P+Q,P−Q) from P and Q [18], is further improved to ZADDC by combining the
co-Z [8], where (R,S)← ZADDC(P,Q) is defined as R← P +Q = (X3 : Y3 : Z3)
and S← (X3 : Y3 : Z3) for input of P← (X1 : Y1 : Z) and Q← (X2 : Y2 : Z).

Let us summarize the computational cost of the formulae. Here we denote
the computational cost of multiplication, square, and inversion over a definition
field by M,S and I. Then, the costs of the EC point addition, doubling, k-iterated
doublings, and conjugate addition in Jacobian coordinate are 11M+5S, 2M+8S,
(3k − 1)M + (5k + 3)S and 12M + 6S, respectively. Note that k-iterated doublings
are used in right-to-left algorithms, and the conjugate addition is used in both
right-to-left and left-to-right algorithms. We also give the left-to-right and the
right-to-left binary algorithms.

Addition formula (Jacobian coord.)
U1 = X1Z2

2, U2 = X2Z2
1, S1 = Y1Z3

2, S2 = Y2Z3
1

H = U2 −U1, I = (2H)2, J = HI,
R = 2(S2 − S1), V = U1I
X3 = R2 − J − 2V, Y3 = R(V − X3) − 2S1 J,
Z3 = ((Z1 + Z2)2 − Z2

1 − Z2
2)H

Doubling formula (Jacobian coord.)
S = 2((X1 + Y2

1)2 − X2
1 − Y4

1),
M = 3X2

1 + aZ4
1,

X3 =M2 − 2S,
Y3 =M(S − X3) − 8Y4

1 ,
Z3 = (Y1 + Z1)2 − Y2

1 − Z2
1

4

Iterated Doubling Formulae to compute 2kP in Jacobian Coordinate

Y′0 = 2Y0,W0 = aZ4
0,T0 = Y′40 , S = ((X0 + Y′20)2 − X2

0 − T0), M = 3X2
0 +W0

X1 =M2 − 2S, Y′1 = 2M(S − X1) − T0,Z1 = ((Y′0 + Z0)2 − Y′20 − Z2
0)/2

For i = 1 to k − 1 : {
Wi =Wi−1Ti−1,Ti = Y′4i , S = ((Xi + Y′2i)2 − X2

i − Ti),M = 3X2
i +Wi

Xi+1 =M2 − 2S,Y′i+1 = 2M(S − Xi+1) − Ti,Zi+1 = Y′i Zi

}
Yk = Y′k/2

Conjugate Addition Formulae in Jacobian Coordinate

P = (X1,Y1,Z1),Q = (X2,Y2,Z2),P +Q = (X3,Y3,Z3),P −Q = (X4,Y4,Z4)
X3 = A2 − (4B3 + 8Z2

2X1B2),Y3 = A(Z2
2X1B2 − X3) − Z3

2Y1B3,Z3 = DB
X4 = C2 − (4B2 + 8Z2

2X1B2),Y4 = C(Z2
2X1B2 − X4) − Z3

2Y1B3,Z4 = Z3

A = 2(Z3
1Y2 − Z3

2Y1),B = Z2
1X2 − Z2

2X1,C = −2(Z3
1Y2 + Z3

2Y1),D = (Z1 + Z2)2 − Z2
1 − Z2

2

Algorithm 1 Left-to-Right Binary Alg.

Input: P and d =
∑ℓ−1

i=0 di2i =
dℓ−1dℓ−2 . . . d0

Output: dP
1: R[0]← O,R[1]← P
2: for i = ℓ − 1 to 0 do
3: R[0]← 2R[0]
4: if di = 1 then
5: R[0]← R[0] + R[1]
6: end if
7: end for
8: return R[0]

Algorithm 2 Right-to-Left Binary Alg.

Input: P and d =
∑ℓ−1

i=0 di2i =
dℓ−1dℓ−2 . . . d0

Output: dP
1: R[0]← O,R[1]← P
2: for i = 0 to ℓ − 1 do
3: if di = 1 then
4: R[0]← R[0] + R[1]
5: end if
6: R[1]← 2R[1]
7: end for
8: return R[0]

2.2 Side Channel Attacks

Side Channel Attacks (SCA) are a type of attack which uses information taken
from the physical implementation, such as Timing Analysis Attack [15], Simple
Power Analysis (SPA) [16] and Differential Power Analysis (DPA) [16]. These are
explained in [4]. Here, we summarize SPA and DPA. SPA observes a suitable side
channel, such as the power consumption or electromagnetic emanations, and
recovers secret information from the leaked information. In DPA, an attacker
not only observes but also statistically analyzes the power consumption of a
cryptosystem.

In addition to these attacks, the Doubling Attack, which works only in
left-to-right algorithms, is proposed in [24], called DblA in this paper. This is
because left-to-right algorithms usually execute in such a way that a return
value is doubled and added P when di = 1, where d =

∑ℓ
i=0 2idi is represented by

dℓ−1dℓ−2 . . . d0, and di is the current bit. Right-to-left algorithms usually execute
in such a way that 2iP is added to a return value when di = 1. Here, let us
explain how DblA works in left-to-right algorithms. DblA computes dP and
d(2P). If di = 0, then the ith-round R[0] in the computation of dP is the same

5

as the (i − 1)th-round R[0] in the computation of d(2P). In the (i + 1)th round
of dP and ith round of d(2P), each round executes a doubling. It is possible for
an attacker to check whether result values of two doubling operations are the
same.

Safe-Error Attack (SEA) timely induces a fault during the execution of an
instruction [25], and, deduces whether a target instruction is dummy or not,
because an induced error will be a safe-error when the corresponding operation
is dummy. Let us explain SEA by taking the double-and-add always algorithm
(Algorithm 3) as an example. Suppose that R[1] in Step 4 for i = i0 (ℓ−1 ≤ i0 ≤ 1)
is attacked. Let (R[0],R[1],R[2]) = (a, b, c) in the beginning of Step i0. In the case
of (di0 , di0−1) = (0, ∗), Algorithm 3 works as Table 1, where N/A means that the
value is wrong: R[1] has an error in i = i0, while there is no error in either
R[0] or R[2]. However, the error in R[1] will disappear in Step 4 for i = i0 − 1
by inputting R[1] ← R[0] + R[2]. This is why the error of R[1] for i = i0 is a
safe-error. In the case of (di0 , di0−1) = (1, ∗), Algorithm 3 works as Table 2: R[1]
has an error, where the error in R[1] is copied into R[0] by R[0]← R[1] in Step 5
for i = i0; and, finally, both R[0] and R[1] have errors in Step 4 for i = i0 − 1. This
is why the error of R[1] for i = i0 is a real-error. Thus, we can detect di0 = 0 or 1
(ℓ − 1 ≥ i0 ≥ 1) by using the fact of whether the output value is correct.

Table 1. Safe-Error

(i, Step) Instruction Value
(i0, 3) R[0]← 2R[0] R[0] = 2a
(i0, 4) R[1]← R[0] + R[2] R[1] = N/A
(i0, 5) R[0]← R[0] R[0] = 2a
(i0 − 1, 3) R[0]← 2R[0] R[0] = 4a
(i0 − 1, 4) R[1]← R[0] + R[2] R[1] = 4a + c
(i0 − 1, 5) R[∗]← R[1] R[0] = 4a or 4a + c

Table 2. Real-Error

(i, Step) Instruction Value
(i0, 3) R[0]← 2R[0] R[0] = 2a
(i0, 4) R[1]← R[0] + R[2] R[1] = N/A
(i0, 5) R[0]← R[1] R[0] = N/A
(i0 − 1, 3) R[0]← 2R[0] R[0] = N/A
(i0 − 1, 4) R[1]← R[0] + R[2] R[1] = N/A
(i0 − 1, 5) R[∗]← R[1] R[0] = N/A

2.3 Highly Regular Right-to-Left Scalar Multiplication Algorithm

Joye proposed a highly regular powering ladder [12], whose idea is to use a
representation of d − 1 instead of d. The representation of d − 1 for the binary
expansion of d =

∑ℓ−1
i=0 di2i (dℓ−1 = 1) is given as follows: d − 1 =

∑ℓ−2
i=0 (di + 1)2i.

This follows easily by regarding −1 as 1̄11 . . . 11︸ ︷︷ ︸
l

. Algorithm 4 shows his regular

right-to-left scalar multiplication algorithm.

6

Algorithm 3 DBL-and-ADD always alg. (L-
R)[6]

Input: P and d =
∑ℓ−1

i=0 di2i(d > 0)
Output: dP
1: R[0]← P,R[2]← P
2: for i = ℓ − 1 to 0 do
3: R[0]← 2R[0]
4: R[1]← R[0] + R[2]
5: R[0]← R[di]
6: end for
7: return R[0]

Algorithm 4 Regular Right-to-Left alg. [12]

Input: P and d =
∑ℓ−1

i=0 di2i(d > 1)
Output: dP
1: R[1]← d0P,R[2]← P,R[0]← R[2]
2: for i = 1 to ℓ − 2 do
3: R[0]← 2R[0]
4: R[1 + di]← R[1 + di] + R[0]
5: end for
6: R[0]← R[1] + 2R[2]
7: return R[0]

We should note that if d0 = 0, this algorithm induces an addition to O in the
first i ≥ 1 with di = 0: R[1]← O+R[0] in Step 4, since R[1] = O until the i. Thus,
Algorithm 4 itself can securely execute only for an odd d. In order to enhance
the LSB security of d, some special treatment, as described in [12, 11], is needed
to force the parity of d to 1 such as: computing (d− d0 + 1)P and subtracting P at
the end; or adding an appropriate multiple of ord(P) to d. The former method
needs one additional subtraction at the end, and the latter method is useful for
only scalars d≪ ord(P). Those special treatments seem to be rather exaggerated
and spoil the simplicity of Algorithm 4. The problem exists only in the LSB, but
it is nevertheless unavoidable to execute any d. We’ll propose a simple method
to enhance the LSB security, which does not need any additional computation,
and works for any ord(P).

Here, we investigate the LSB security of previous right-to-left scalar multipli-
cation algorithms in [12, 11]. Not only Algorithms 4, but also other right-to-left
scalar multiplication algorithms (Algorithms 1 and 3 in [11]) have an initial
value of O in spite of d0 = 0 or 1. As a result, these algorithms also need a special
treatment in order to work on an arbitrary d. Two other right-to-left algorithms
(Algorithms 1′ and 2 in [11]) work for both even and odd d, since they have no
initial value with O. They are, however, vulnerable to SEA in the last step: if
k0 = 1, then an error induced on R[b] ← R[b] − P will be a safe error, because a
return value is R[0], and the error is in R[1]. Therefore, those previous right-to-
left algorithms in [12, 11] leak LSB of the scalar, need a special treatment for an
arbitrary d, or are vulnerable to SEA.

2.4 Left-to-Right and Right-to-Left RIP Algorithms

There are several countermeasures against DPA attacks, such as the Random-
ized Projective coordinate method (RPC)[6], the Randomized Curve method
(RC) [14], the Exponent Splitting method (ES)[3] and the Random Initial Point
method (RIP)[19, 10]. Both RPC and RC are vulnerable to both the Refined
Power Analysis (RPA) and the Zero-value Point Attack (ZPA). ES and RIP are
resistant to both RPA and ZPA. There are two algorithms of RIP. Algorithm 5

7

is the left-to-right RIP [19], called MMM-RIP in this paper, although it is called
BRIP in the original paper. Algorithm 6 is the right-to-left RIP algorithm [10],
called IIT-RIP, although it is called ADA and RIP in the original paper.

Algorithm 5 MMM-RIP[19, 20]

Input: P and d =
∑ℓ−1

i=0 di2i(d > 1)
Output: dP
1: R← randompoint()
2: R[0]← R; R[1]← −R[0]
3: R[2]← P − R[0]
4: for i = ℓ − 1 to 0 do
5: R[0]← 2R[0] + R[1 + di]
6: end for
7: R[0]← R[0] + R[1]
8: return R[0]

Algorithm 6 IIT-RIP[10]

Input: P and d =
∑ℓ−1

i=0 di2i(d > 1)
Output: dP
1: R = randompoint()
2: R[0]← R; R[2]← P; R[3]← R[0]
3: for i = 0 up to ℓ − 1 do
4: R[1]← R[0] + R[2]
5: R[2]← 2R[2]; R[0]← R[di]
6: end for
7: R[0]← R[0] − R[3]
8: return R[0]

Let us investigate differences between Algorithms 5 and 6 from the view-
point of security, computational cost and memory amount. As for security,
Algorithm 6 is vulnerable to SEA: an error in step 4 will be a safe error when
di = 0. It, however, is secure against SPA, DPA, RPA, ZPA, and DblA described
in Section 2.2. On the other hand, Algorithm 5 is secure against SEA, SPA, DPA,
RPA, ZPA, and DblA. As for the computational cost, we assume the Jacobian
coordinate. Algorithm 6 can use the iterated doubling formulae presented in
Section 2.1 in the same way as other right-to-left algorithms, which can reduce
the computational cost of each 2iP. The computational cost for ℓ doublings,
2ℓM+ 8ℓS, is reduced to (3ℓ− 1)M+ (5ℓ+ 3)S in total. However, it needs to keep
an intermediate point (Xi,Y′i ,Zi) for the next computation, as well as outputs
(Xi,Yi,Zi) in each round 1 ⩽ i ⩽ ℓ − 1. On the other hand, Algorithm 5 cannot
use the iterated doubling formulae but the doubling add algorithm [17], which
can compute directly both double and add with a cost of 14M + 9S. The dou-
bling add algorithm reduces the computational cost of ordinary computations
of double and add (13M + 13S) by 4S −M, but increases the memory amount
by 2 more registers. So, there is no difference in the computational cost between
Algorithms 5 and 6, under the ordinary addition formulae without increasing
memory amount. As for the memory amount, Algorithm 5 needs 3-point regis-
ters, while Algorithm 6 needs one more register to keep R until Step 8, and thus,
it needs 4-point registers in total.

In summary, Algorithm 5 can execute with a smaller memory amount and is
secure against SEA, SPA, DPA, RPA, ZPA, and DblA, while Algorithm 6 needs
more registers and is not secure against SEA. Section 3 will present an elegant
technique to improve Algorithm 6.

2.5 Highly Regular Left-to-Right Scalar Multiplication
Montgomery Ladder

8

The Montgomery Ladder [23] is described in Algorithm 7. In order to reduce
the computational cost, the co-Z coordinate can be applied in Algorithm 8,
where (R,P) ← DBLU(P) in Step 1 is defined as: R ← 2P = (X2 : Y2 : Z2)
and P ← (λ2X1 : λ3Y1 : λ) with λ = Z2 [9]; and ZACAU(R[di],R[1 − di]), that
is a combination of ZADDC and ZADDU, and can work in 9M + 7S with an
extra register of C = (X1 − X2)2 in addition to two points R[di] = (X1,Y1,Z) and
R[1 − di] = (X2,Y2,Z).

The Montgomery Ladder can work regularly in the left-and-right way with
only 2 registers of points. However, we notice that an operation on R[1] of
for-loop for the last round, i.e. i = 0, becomes a dummy operation because
both R[0] and R[1] are executed in the last round, but only R[0] is returned at
Step 6. This is why the Montgomery Ladder is vulnerable to SEA, and leaks
LSB. One possible countermeasure is to check the coherency between R[0] and
R[1] to detect some fault attack. However, it is rather exaggerated and spoils
the simplicity of the Montgomery Ladder. We will present a simple method to
enhance the LSB security in Section 4.1.

Algorithm 7 Montgomery Ladder[23]

Input: P, d =
∑ℓ−1

i=0 di2i(d > 0)
Output: dP
1: R[0]← P; R[1]← 2P
2: for i = ℓ − 2 to 0 do
3: R[1 − di]← R[0] + R[1]
4: R[di]← 2R[di]
5: end for
6: return R[0]

Algorithm 8 Montgomery Ladder (co-Z)[8]

Input: P, d =
∑ℓ−1

i=0 di2i(d > 0)
Output: dP
1: (R[1],R[0])←DBLU(P)
2: for i = ℓ − 2 to 0 do
3: (R[di],R[1 − di])← ZACAU(R[di],R[1 − di])

4: end for
5: return R[0]

Signed-digit Algorithm
Signed-digit algorithms, both left-to-right and right-to-left, are proposed in [9]
by using the fact that any w-bit binary expansion 00 · · · 01 is equal to a w-bit
signed-digit expansion 11̄ · · · 1̄1̄. Here 1̄ means −1. In fact, any odd binary-
expansion number d =

∑ℓ−1
i=0 di2i (dℓ−1, d0 = 1) can be written in a non-zero form,

called ZSD expansion, as d =
∑ℓ−1

i=0 δi2i, where δi = (−1)1+di+1 (0 ⩽ i ⩽ ℓ − 2) and
δℓ−1 = 1. Here, we focus on only the left-to-right algorithm, which is presented
in Algorithm 9. Remarkably, the ZSD expansion can be obtained on the fly, as
we will see in Algorithm 9. In order to reduce the computational cost, the co-Z
coordinate can be applied in Algorithm 10, where (R,P)←TPLU(P) in Step 1 is
defined as: R ← 3P = (X3 : Y3 : Z3) and P ← (λ2X1 : λ3Y1 : λ) with λ = Z3 [9];
and ZDAU(R[0], (−1)1+di R[1]) is a direct computation of ZADDU and ZADDC,
which can work in 9M + 7S.

Note that, in the same way as the Montgomery Ladder, the signed-digit
algorithm can work regularly in the left-and-right way with only 2 registers of
points and is secure against SEA. However, it works for only odd d. Section 4.2

9

will present an elegant method to let the signed-digit algorithm work for any d.

Algorithm 9 Signed-digit Alg. [9]

Input: P, d =
∑ℓ−1

i=0 di2i (d0 = 1)
Output: dP
1: R[0]← P; R[1]← P
2: for i = ℓ − 1 to 1 do
3: R[0]← 2R[0] + (−1)1+di R[1]
4: end for
5: return R[0]

Algorithm 10 Signed-digit Alg. (co-Z)[9]

Input: P, d =
∑ℓ−1

i=0 di2i (d0 = 1, d ≥ 3)
Output: dP
1: (R[0],R[1])← TPLU(P)
2: for i = ℓ − 2 to 1 do
3: (R[0],R[1])← ZDAU(R[0], (−1)1+di R[1])

4: R[1]← (−1)1+di R[1]
5: end for
6: return R[0]

3 Enhance the LSB Security of Right-to-Left Algorithms
First, we improve Algorithm 4 to Algorithm 11, which works for any scalar d and
is resistant to SEA and SPA, while maintaining the performance of Algorithm 4.
Next, we improve Algorithm 6 from the point of view of security and memory
amount, which is presented in Algorithm 12.

3.1 Subtract-doubling algorithm

Let us explain Algorithm 1 in detail. To enhance the LSB security, Algorithm 11
transforms an ℓ-bit binary-expansion d =

∑ℓ−1
i=0 di2i into an ℓ-bit {1̄, 2̄}-expansion

with MSB equal to 3 = dℓ−1+2 by changing d to d+2 on the fly, and, then computes
(d + 2)P − 2P by regarding 2 as 22̄2̄ . . . 2̄2̄ for 2̄ = −2. The idea is an extension
of Joye’s algorithm that regards −1 as 1̄11 . . . 11 for 1̄ = −1. Thus, Algorithm 11
naturally changes d0 to “− 2” and “− 1”, and repeats subtraction and doubling.
This is why Algorithm 11 is called the subtract-doubling algorithm. To further
enhance the security of d1 (next to LSB), Algorithm 11 treats d1 separately from
a for-loop. Theorem 1 proves the correctness of Algorithm 11 and also shows
that the final subtraction of 2P is executed naturally by setting R[2] = d0P − 2P
in Step 1.

Theorem 1. Algorithm 11 computes dP correctly.
Proof: The initial values of (R[0],R[1],R[2]) in Step 1 are: (R[0],R[1],R[2]) =
(2P,−P, d0P− 2P). Thus, the final subtraction of 2P, that is, (d+ 2)P− 2P is imple-
mented in the beginning. From the simple discussion, the values of R[0],R[1],R[2]
right after the for-loop satisfies the equations: R[0] = 2ℓ−1P, and 2R[1] + R[2] =∑ℓ−2

i=0 (di − 2)2iP − 2P. Thus, dP is correctly returned as follow:

R[0] + 2(R[0] + R[1]) + R[2] = (dℓ−1 + 2)2ℓ−1P +
ℓ−2∑
i=0

(di − 2)2iP − 2P = dP.

As for security, Algorithm 11 works in a highly-regular right-to-left way, and
executes the same operations in each iteration of for-loop without any dummy
operation. This is why Algorithm 11 is resistant to SPA, DblA, and SEA.

10

3.2 Modified IIT-RIP

Algorithm 6 uses a register of R[3] to store a random initial point R which is used
only in Steps 2 and 8. Our algorithm 12 can execute without this register (See in
Steps 2 and 10 of algorithm 12). Let us explain in detail. Algorithm 12 embeds a
random initial point 2R into Algorithm 4 elegantly, where Algorithm 4 computes
(d − 1)P + P by setting (R[0],R[1],R[2]) = (P, d0P,P) in the beginning, repeating
doubling and addition, and finally returning R[1] + 2R[2], which includes the
final addition to P in (d − 1)P + P implicitly. We apply this idea to compute
((d − 1)P + 2R) + (P − 2R) as follows: set (R[0],R[1],R[2]) = (P, d0P + 2R,P − R)
in the beginning, repeat doubling and addition, and finally return R[1] + 2R[2],
which includes the addition to P − 2R in ((d − 1)P + 2R) + (P − 2R) implicitly.
Furthermore, the register R[0] is well re-used in the initialization, which avoids
increasing one more register. By using these elegant ideas, no extra register is
needed to store the random initial point. Note that the conjugate addition in
Section 2 can be applied to Step 3, which can reduce the computational cost.
The correctness of Algorithm 12 will be shown in Theorem 2.

As for security, Algorithm 12 works in a highly-regular right-to-left way,
executes the same operations in each iteration of for-loop without any dummy
operation, and applies the RIP countermeasure at the same time. This is why
Algorithm 12 is resistant to SPA, DblA, SEA, RPA, ZPA and DPA.

Algorithm 11 Subtract-Doubling Alg.

Input: P and d =
∑ℓ−1

i=0 di2i(d > 3)
Output: dP
1: R[0]← 2P; R[1]← −P
2: R[2]← (−1)d0+1R[d0]
3: R[1 + d1&d0]← (−1)d1&d0 R[1] − R[0]

4: R[0]← 2R[0]
5: R[2]← (−1)d1&d0 R[1 + (−1)d1&d0]
6: for i = 2 to ℓ − 2 do
7: R[di + 1]← R[di + 1] − R[0]
8: R[0]← 2R[0]
9: end for

10: R[0]← R[0] + 2(R[0] + R[1]) + R[2]
11: return R[0]
(d0 means the complement of d0.)

Algorithm 12 Modified IIT-RIP

Input: P and d =
∑ℓ−1

i=0 di2i(d > 1)
Output: dP
1: R = RandomPoint()
2: R[0]← R; R[2]← P
3: R[1]← R[2] + R[0]
4: R[2]← R[2] − R[0]
5: R[1]← R[1] + (−1)1+d0 R[1 − (−1)1+d0]

6: R[0]← R[0] + R[2]
7: for i = 1 to ℓ − 2 do
8: R[0]← 2R[0]
9: R[1 + di]← R[1 + di] + R[0]

10: end for
11: R[0]← R[1] + 2R[2]
12: return R[0]

Theorem 2. Algorithm 12 computes dP correctly.

Proof:
Values of (R[0],R[1],R[2]) before Step 6 are1: (R[0],R[1],R[2]) = (P, d0P +

2R,P − R). From the simple discussion, the values of (R[1],R[2]) right after the
1 To avoid an addition to O, Algorithm 12 does not compute R[1] = d0P + 2R directly

but sets R[1] = P + 2R or 2R for an odd or even d, respectively.

11

for-loop are: R[2] = P − R +
∑ℓ−2

i=1 di2iP and R[1] = d0P + 2R +
∑ℓ−2

i=1 di2iP, where
di means the complement of di. Thus, dP is correctly returned as follows:

2R[2] + R[1] =
ℓ−2∑
i=0

(di + 1)2iP + P = (d − 1)P + P = dP.

4 Enhance the LSB Security of Left-to-Right Algorithms

First, we improve the Montgomery Ladder (Algorithms 7 and 8) such that it is
resistant to SEA. It is called the Modified Montgomery Ladder (Algorithms 13
and 14). We also improve the signed-digit algorithm such that it is available for
any scalar. It is called the extended signed-digit algorithm (Algorithms 15 and
16).

4.1 Modified Montgomery Ladder

An operation on R[1] in i = 0 of the for-loop in Algorithm 7 is a dummy
operation, mentioned in Section 2.5. Let us explain steps in i = 0 of the for-loop
and Step 6 of Algorithm 7 in detail. A returned value R[0] in Step 6 can be
represented by using (r0, r1) = (R[0],R[1]) in i = 1 of the for-loop:

R[0] =
{

2r0 if d0 = 0,
r0 + r1 if d0 = 1.

We modify steps in i = 0 of the for-loop to use both registers by changing to:
compute R[d0] = 2r0 + r1 and R[d0] = R[d0] − R[1 − d0], and return R[d0]. Then,
the returned value is the same as Algorithm 7, seen below:

R[d0] =
{

2r0 if d0 = 0,
r0 + r1 if d0 = 1.

Our Algorithm 13 actually uses both two registers until Step 8. Thus, our algo-
rithm is resistant to SEA. Furthermore, Algorithm 13 executes the same opera-
tions in each iteration of the for-loop, and, thus is resistant to SPA in the same
way as Algorithm 7. As for the memory amount, it uses registers of 2 points,
which is the same as in the case of Algorithm 7.

As for the computational cost, Algorithm 13 has the same for-loop as Algo-
rithm 7. The difference exists only in steps for i = 0, where it is in the for-loop
in Algorithm 7, while it is out of the for-loop in Algorithm 13. For a further
reduction of the computational cost, the co-Z coordinate can be applied in the
same way as Algorithm 7, which is described in Algorithm 14. The difference
is that ZACAU in i = 0 of the for-loop in Algorithm 8 is changed to ZDAU and
ZADDU in Steps 5 and 6 in Algorithm 14.

12

Algorithm 13 Modified Montgomery
Ladder

Input: P, d =
∑ℓ−1

i=0 di2i(d > 0)
Output: dP
1: R[0]← P; R[1]← 2P
2: for i = ℓ − 2 to 1 do
3: R[1 − di]← R[0] + R[1]

4: R[di]← 2R[di]

5: end for
6: R[d0]← 2R[0] + R[1]
7: R[d0]← R[d0] − R[1 − d0]
8: return R[d0]

Algorithm 14 Modified Montgomery Ladder (co-Z)

Input: P, d =
∑ℓ−1

i=0 di2i(d > 0)
Output: dP
1: (R[1],R[0])← DBLU(P)
2: for i = ℓ − 2 to 1 do
3: (R[di],R[1 − di])← ZACAU(R[di],R[1 − di])

4: end for
5: (R[d0],R[1 − d0])← ZDAU(R[0],R[1])

6: (R[d0],R[1 − d0])← ZADDU(−R[1 − d0],R[d0])

7: return R[d0]

4.2 Extended Signed-digit Algorithm

Algorithm 9 is only available for an odd scalar, as mentioned in Section 2.5, while
Algorithm 7 can work for any d although it reveals LSB. Both algorithms 7 and
9 have an important similarity such that both work with two registers of points.
We will change the last steps of Algorithm 9 in the same way as Algorithm 7 to
work for any d.

Let us compare these two algorithms. Let (R[0]i,R[1]i) be values of (R[0],R[1])
at the end of the for-loop for 1 < i < ℓ − 2. Then, by using the feature that
R[1] − R[0] = P holds in Algorithm 7, the next equations hold.

R[1 − di]i = R[0]i+1 + R[1]i+1 = 2R[0]i+1 + P = 2R[1]i+1 − P (Step 3, Alg. 7), (1)

R[di]i = 2R[di]i+1 = R[1 − di]i + (−1)1+di P(Step 4, Alg. 7), (2)

where Eq. (1) is represented by using di+1 as follows:

R[1 − di]i = 2R[1 − di+1]i+1 + (−1)1+di+1 P (Step 3, Algorithm 7). (3)

This is easily derived from: R[1− di]i = 2R[0]i+1 +P = 2R[1− di+1]i+1 + (−1)1+di+1 P
if di+1 = 1, and R[1 − di]i = 2R[1]i+1 − P = 2R[1 − di+1]i+1 + (−1)1+di+1 P if di+1 = 0.
On the other hand,

R[0]i = 2R[0]i+1 + (−1)1+di P (Step 3, Algorithm 9). (4)

Then, the following theorem holds.

Theorem 3. Let (R[0]i,R[1]i) be values of (R[0],R[1]) at the end of the for-loop for
1 < i < ℓ− 2 in each Algorithms 7 and 9. Then, for the same scalar d and ℓ− 2 > i > 1,

R[1 − di]i(Alg. 7) = R[0]i+1(Alg. 9).

Proof: The statement follows by induction on i. When i = ℓ − 2,

R[1 − dℓ−2]ℓ−2 = 2R[1 − dℓ−1]ℓ−1 + (−1)1+dℓ−1 P = 2R[0] + P = 3P(Alg. 7),

R[0]ℓ−1 = 2R[0]ℓ + (−1)1+dℓ−1 P = 2P + P = 3P(Alg. 9),

13

follows. Assume that R[1 − di]i(Alg. 7) = R[0]i+1(Alg. 9) holds for i. Then,

R[1 − di−1]i−1 = 2R[1 − di]i + (−1)1+di P(Alg. 7),

R[0]i = 2R[0]i+1 + (−1)1+di P(Alg. 9),

holds for i − 1, and, thus statements follows.
A simple example between Algorithms 7 and 9 in Table 3 makes Theorem 3
more clear, where underlined points show the relation.

Table 3. Transit of (R[0],R[1]) in Alg. 7 and 9 (d = 45 = (101101)2)

Algorithm Initial Value i = 5 4 3 2 1 0 Return
Alg. 7 R[0] P - 2P 5P 11P 22P 45P 45P

R[1] 2P - 3P 6P 12P 23P 46P
Alg. 9 R[0] P 3P 5P 11P 23P 45P - 45P

R[1] P P P P P P -

Our algorithm is presented in Algorithm 15: for-loop is the same as that
of Algorithm 9; and Step 6 changes (R[0],R[1]) to those in i = 1 of for-loop of
Algorithm 7; and Steps 7 and 8 are the same as Steps 6 and 7 in Algorithm 13 in
order to be secure against SEA on LSB. Tables 4, 5, 6, and 7 describe all patterns
in Algorithm 15.

Algorithm 15 Extended Signed-digit
Alg.

Input: P, d =
∑ℓ−1

i=0 di2i with d > 1

Output: dP
1: R[1]← P; R[0]← P
2: for i = ℓ − 1 to 2 do
3: R[0]← 2R[0] + (−1)1+di R[1]

4: end for
▷ Finalization

5: b = d1 ⊕ d0

6: R[1] = R[0] + (−1)1+d1 R[1]
7: R[b] = 2R[1 − d1] + R[d1]
8: R[b] = R[b] − R[1 − b]
9: return R[b]

Algorithm 16 Extended Signed-digit Alg. (co-Z)

Input: P, d =
∑ℓ−1

i=0 di2i with d0 = 1 and d ≥ 3

Output: dP
1: (R[0],R[1])← TPLU(P)
2: for i = ℓ − 2 to 2 do
3: (R[0],R[1])← ZDAU(R[0], (−1)1+di R[1])

4: R[1]← (−1)1+di R[1]
5: end for
▷ Finalization

6: b = d1 ⊕ d0

7: (R[1],R[0])← ZADDU(R[0], (−1)1+d1 R[1])

8: (R[b],R[1 − b])← ZDAU(R[1 − d1],R[d1])

9: (R[b],R[1 − b])← ZADDU(R[b],−R[1 − b])

10: return R[b]

Thus, our Algorithm 15 can work for any d. As for security, Algorithm 15
executes the same operations in each iteration of the for-loop, and is thus secure
against SPA. Algorithm 15 is also secure against SEA without revealing LSB
using the same idea as in Algorithm 13. As for the memory amount, it uses
registers of 2 points, which is the same as that of Algorithm 9. As for the
computational cost, Algorithm 15 has the same for-loop as Algorithm 9. The
differences exist only in steps for i = 1, where it is in the for-loop in Algorithm 9,

14

Table 4. Transit of (R[0],R[1]) in Alg. 15 (d = 44 = (101100)2)

Initial Value For-loop (5 ⩾ i ⩾ 2) Finalization Return
5 4 3 2 Step 6 Step 7 Step 8

R[0] P 3P 5P 11P 23P 23P 23P 23P
R[1] P P P P P 22P 67P 44P 44P

Table 5. Transit of (R[0],R[1]) in Alg. 15 (d = 45 = (101101)2)

Initial Value For-loop (5 ⩾ i ⩾ 2) Finalization Return
5 4 3 2 Step 6 Step 7 Step 8

R[0] P 3P 5P 11P 23P 23P 67P 45P 45P
R[1] P P P P P 22P 22P 22P

Table 6. Transit of (R[0],R[1]) in Alg. 15 (d = 46 = (101110)2)

Initial Value For-loop (5 ⩾ i ⩾ 2) Finalization Return
5 4 3 2 Step 6 Step 7 Step 8

R[0] P 3P 5P 11P 23P 23P 70P 46P 46P
R[1] P P P P P 24P 24P 24P

Table 7. Transit of (R[0],R[1]) in Alg. 15 (d = 47 = (101111)2)

Initial Value For-loop (5 ⩾ i ⩾ 2) Finalization Return
5 4 3 2 Step 6 Step 7 Step 8

R[0] P 3P 5P 11P 23P 23P 23P 23P
R[1] P P P P P 24P 70P 47P 47P

while it is out of the for-loop in Algorithm 15. For a further reduction of the
computational cost, the co-Z coordinate can be applied in the same way as
Algorithm 9, which is described in Algorithm 16. The differences are that ZDAU
in i = 1 of the for-loop in Algorithm 16 is changed to ZADDU, ZDAU and
ZADDU in Steps 7 to 9 in Algorithm 16.

5 Comparison

Table 8 shows comparisons of security, which omit the security with the co-Z
coordinate because they are the same as that without the co-Z coordinate. Table 9
shows comparisons of computational cost and memory amount. Let ℓ represent
the length of a scalar d. The computational cost assumes Jacobian coordinates
described in Section 2.1. The memory amount is described in two ways: the first
indicates the number of points necessary to implement each algorithm; and the
other indicates the precise number of registers necessary to implement, which
includes registers of points.

Let us compare the right-to-left algorithms: our Algorithms 11 (resp. 12)
with Algorithms 4 (resp. 6) from the viewpoint of security, computational cost,
and memory amount. Compared with Algorithm 4, our Algorithm 11 enhances

15

the LSB security for SPA, while maintaining the performances such as computa-
tional cost per bit and memory amount. Algorithm 4 needs a special treatment
in order to be secure against SPA for an arbitrary scalar. On the other hand,
Algorithm 12 also enhances security for SEA, although Algorithm 6 is vulnera-
ble to SEA. In addition, Algorithm 12 can work with 3 points of R[0],R[1],R[2],
and thus, it can reduce memory amount. To reduce the computational cost, all
right-to-left algorithms, Algorithms 6, 4, 11, and 12, can use iterated doubling
formulae, although this technique increases memory amount.

Let us compare left-to-right algorithms from the viewpoint of security,
computational cost, and memory amount. Compared with Algorithm 7, Al-
gorithm 13 enhances the LSB security for SEA, while maintaining the perfor-
mances such as computational cost per bit and memory amount. Algorithm 7
leaks LSB by SEA. On the other hand, Algorithm 15 enhances the availability of
Algorithm 9 that works only for odd d. Algorithm 15 is secure against SEA, SPA,
and DblA in the same way as Algorithm 9, and also keeps the performances
such as computational cost per bit and memory amount.
6 Conclusion

We have revisited regular right-to-left and left-to-right algorithms, IIT-RIP (Al-
gorithm 6), Joye’s regular right-to-left algorithm (Algorithm 4), the Montgomery
Ladder (Algorithm 7), and the signed-digit algorithm (Algorithm 9), and we
modified them to Algorithm 12, Algorithm 11, Algorithm 13, and Algorithm
15, respectively. Those modified algorithms enhance each LSB security using
elegant techniques while maintaining performances such as memory amount
and computational cost per bit.

References

1. Toru Akishita and Tsuyoshi Takagi. Zero-value point attacks on elliptic curve cryp-
tosystem. In Colin Boyd and Wenbo Mao, editors, Proceedings of Information Security,
6th International Conference, ISC 2003, volume 2851 of Lecture Notes in Computer Sci-
ence, pages 218–233. Springer, 2003.

2. Yoo-Jin Baek. Regular 2w-ary right-to-left exponentiation algorithm with very ef-
ficient DPA and FA countermeasures. International Journal of Information Security,
9:363–370, 2010.

3. Mathieu Ciet and Marc Joye. (Virtually) Free randomization techniques for elliptic
curve cryptography. In Sihan Qing, Dieter Gollmann, and Jianying Zhou, editors,
Proceedings of Information and Communications Security, 5th International Conference,
ICICS 2003, volume 2836 of Lecture Notes in Computer Science, pages 348–359. Springer,
2003.

4. Henri Cohen, Gerhard Frey, Roberto Avanzi, Christophe Doche, Tanja Lange, Kim
Nguyen, and Frederik Vercauteren, editors. Handbook of Elliptic and Hyperelliptic Curve
Cryptography (Discrete Mathematics and Its Applications). Chapman and Hall/CRC, July
2005.

5. Henri Cohen, Atsuko Miyaji, and Takatoshi Ono. Efficient elliptic curve exponenti-
ation using mixed coordinates. In Kazuo Ohta and Dingyi Pei, editors, Proceedings
of Advances in Cryptology - ASIACRYPT ’98, International Conference on the Theory and

16

Table 8. Comparisons of security

Alg. SEA SPA DPA RPA ZPA DblA
Right-to-left algorithms:
Alg. 4 [12] S LW W W W S
Alg. 11 S S W W W S
Alg. 6 [10] W S S S S S
Alg. 12 S S S S S S
Left-to-right algorithms:
Alg. 7 [23] LW S W W W S
Alg. 13 S S W W W S
Alg. 9 [9] S S W W W S
Alg. 15 S S W W W S

S: Secure, W: Weak, LW: LSB Weak
Table 9. Comparisons of computational cost and memory amount

Alg. Computational Memory Memory Work for
cost(per bit) amount(# regs.) amount(# points.) ∀d

Right-to-left algorithms:
Alg. 4 [12] 13M + 13S 14 R[0],R[1],R[2] odd d
Alg. 11 13M + 13S 14 R[0],R[1],R[2] ∀d
Alg. 6 [10] 13M + 13S 17 R[0],R[1],R[2],R[3] ∀d
Alg. 12 13M + 13S 14 R[0],R[1],R[2] ∀d
Left-to-right algorithms:
Alg. 7 [23] 13M + 13S 11 R[0],R[1] ∀d
Alg. 8 (co-Z) [8] 9M + 7S 8 R[0],R[1] ∀d
Alg. 13 13M + 13S 11 R[0],R[1] ∀d
Alg. 14 (co-Z) 9M + 7S 8 R[0],R[1] ∀d
Alg. 9 [9] 13M + 13S 11 R[0],R[1] odd d
Alg. 10 (co-Z) [9] 9M + 7S 8 R[0],R[1] odd d
Alg. 15 13M + 13S 11 R[0],R[1] ∀d
Alg. 16 (co-Z) 9M + 7S 8 R[0],R[1] ∀d

Applications of Cryptology and Information Security, volume 1514 of Lecture Notes in
Computer Science, pages 51–65. Springer, 1998.

6. Jean-Sébastien Coron. Resistance against differential power analysis for elliptic
curve cryptosystems. In Çetin Kaya Koç and Christof Paar, editors, Proceedings of
Cryptographic Hardware and Embedded Systems, First International Workshop, CHES’99,
volume 1717 of Lecture Notes in Computer Science, pages 292–302. Springer, 1999.

7. Louis Goubin. A refined power-analysis attack on elliptic curve cryptosystems. In
Yvo Desmedt, editor, Proceedings of Public Key Cryptography - PKC 2003, 6th Inter-
national Workshop on Theory and Practice in Public Key Cryptography, volume 2567 of
Lecture Notes in Computer Science, pages 199–210. Springer, 2003.

8. Raveen R. Goundar, Marc Joye, and Atsuko Miyaji. Co-Z addition formulæ and
binary ladders on elliptic curves - (extended abstract). In Stefan Mangard and
François-Xavier Standaert, editors, Proceedings of Cryptographic Hardware and Embed-
ded Systems, CHES 2010, 12th International Workshop, volume 6225 of Lecture Notes in

17

Computer Science, pages 65–79. Springer, 2010.
9. Raveen R. Goundar, Marc Joye, Atsuko Miyaji, Matthieu Rivain, and Alexandre

Venelli. Scalar multiplication on Weierstraß elliptic curves from co-Z arithmetic.
Journal of Cryptographic Engineering, 1(2):161–176, 2011.

10. Kouichi Itoh, Tetsuya Izu, and Masahiko Takenaka. Efficient countermeasures
against power analysis for elliptic curve cryptosystems. In Jean-Jacques Quisquater,
Pierre Paradinas, Yves Deswarte, and Anas Abou El Kalam, editors, Proceedings of
Smart Card Research and Advanced Applications VI, IFIP 18th World Computer Congress,
TC8/WG8.8 & TC11/WG11.2 Sixth International Conference on Smart Card Research and
Advanced Applications (CARDIS), pages 99–114. Kluwer, 2004.

11. Marc Joye. Highly regular right-to-left algorithms for scalar multiplication. In Pascal
Paillier and Ingrid Verbauwhede, editors, Proceedings of Cryptographic Hardware and
Embedded Systems - CHES 2007, 9th International Workshop, volume 4727 of Lecture
Notes in Computer Science, pages 135–147. Springer, 2007.

12. Marc Joye. Highly regular m-ary powering ladders. In Michael J. Jacobson Jr., Vin-
cent Rijmen, and Reihaneh Safavi-Naini, editors, Selected Areas in Cryptography, 16th
Annual International Workshop, SAC 2009, volume 5867 of Lecture Notes in Computer
Science, pages 350–363. Springer, 2009.

13. Marc Joye and Mohamed Karroumi. Memory-efficient fault countermeasures. In
Emmanuel Prouff, editor, Smart Card Research and Advanced Applications - 10th IFIP
WG 8.8/11.2 International Conference, CARDIS 2011, volume 7079 of Lecture Notes in
Computer Science, pages 84–101. Springer, 2011.

14. Marc Joye and Christophe Tymen. Protections against differential analysis for elliptic
curve cryptography. In Çetin Kaya Koç, David Naccache, and Christof Paar, editors,
Proceedings of Cryptographic Hardware and Embedded Systems - CHES 2001, Third Inter-
national Workshop, volume 2162 of Lecture Notes in Computer Science, pages 377–390.
Springer, 2001.

15. Paul C. Kocher. Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In Neal Koblitz, editor, Proceedings of Advances in Cryptology -
CRYPTO ’96, 16th Annual International Cryptology Conference, volume 1109 of Lecture
Notes in Computer Science, pages 104–113. Springer, 1996.

16. Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis. In
Michael J. Wiener, editor, Proceedings of Advances in Cryptology - CRYPTO ’99, 19th
Annual International Cryptology Conference, volume 1666 of Lecture Notes in Computer
Science, pages 388–397. Springer, 1999.

17. Patrick Longa. ECC point arithmetic formulae (EPAF). http://patricklonga.
bravehost.com/jacobian.html.

18. Patrick Longa and Catherine H. Gebotys. Novel precomputation schemes for elliptic
curve cryptosystems. In Michel Abdalla, David Pointcheval, Pierre-Alain Fouque,
and Damien Vergnaud, editors, Proceedings of Applied Cryptography and Network Secu-
rity, 7th International Conference, ACNS 2009, volume 5536 of Lecture Notes in Computer
Science, pages 71–88. Springer, 2009.

19. Hideyo Mamiya, Atsuko Miyaji, and Hiroaki Morimoto. Efficient countermeasures
against RPA, DPA, and SPA. In Marc Joye and Jean-Jacques Quisquater, editors,
Proceedings of Cryptographic Hardware and Embedded Systems - CHES 2004, 6th Interna-
tional Workshop Cambridge, volume 3156 of Lecture Notes in Computer Science, pages
343–356. Springer, 2004.

20. Hideyo Mamiya, Atsuko Miyaji, and Hiroaki Morimoto. Secure elliptic curve ex-
ponentiation against RPA, ZRA, DPA, and SPA. IEICE TRANSACTIONS on Fun-
damentals of Electronics, Communications and Computer Sciences, 89-A(8):2207–2215,
2006.

18

21. Nicolas Meloni. New point addition formulae for ECC applications. In Claude Carlet
and Berk Sunar, editors, Proceedings of Arithmetic of Finite Fields, First International
Workshop,WAIFI 2007, volume 4547 of Lecture Notes in Computer Science, pages 189–
201. Springer, 2007.

22. Atsuko Miyaji. Generalized scalar multiplication secure against SPA, DPA, and RPA.
IEICE TRANSACTIONS on Fundamentals of Electronics, Communications and Computer
Sciences, 91-A(10):2833–2842, 2008.

23. Peter L. Montgomery. Speeding the Pollard and elliptic curve methods of factoriza-
tion. Mathematics of Computation, 48(177):243–264, 1987.

24. Katsuyuki Okeya and Kouichi Sakurai. On insecurity of the side channel attack
countermeasure using addition-subtraction chains under distinguishability between
addition and doubling. In Lynn Margaret Batten and Jennifer Seberry, editors,
Proceedings of Information Security and Privacy, 7th Australian Conference, ACISP 2002,
volume 2384 of Lecture Notes in Computer Science, pages 420–435. Springer, 2002.

25. Sung-Ming Yen and Marc Joye. Checking before output may not be enough against
fault-based cryptanalysis. IEEE Transactions on Computers, 49(9):967–970, 2000.

