
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
自律オブジェクト群の制御を目的とするデザインパタ

ーンの拡張

Author(s) 鈴木, 大輔

Citation

Issue Date 1998-03

Type Thesis or Dissertation

Text version author

URL http://hdl.handle.net/10119/1114

Rights

Description Supervisor:落水 浩一郎, 情報科学研究科, 修士

Extensions of Design Patterns to

Control Autonomous Objects

Daisuke SUZUKI

School of Information Science,

Japan Advanced Institute of Science and Technology

February 13, 1998

Keywords: Pattern Oriented, Design Patterns, Distributed, Cooperative, Software

Development, Autonomous Objects.

In this paper, we propose a software development style using domain speci�c Design

Patterns extended to construct a distributed software development environment using

autonomous objects. We also describe usability of that extended Patterns.

We generally take the following way to develop a software using frameworks and kits.

(W.M.Tepfenhart described in \A Uni�ed Object Topology")

1. Analyze a domain to make the domain model.

2. Decide and Design an architectural style to realize the model.

3. Design an architecture based on the architectural style and implement the frame-

work.

4. Build kits to �ll the hot spots of the framework.

5. Construct an application with the framework and kits.

There are, however, large gaps between 1 and 2 and between 3 and 4 which may cause

di�culty to map each other. This large gap should be �lled by architectures. Recently,

we take a development style using Design Patterns (E. Gamma) to make a framework or

kits
exible and reusable, which is called \Pattern Oriented Programming".

Design Patterns have a number of good features like reusable designs or easiness to

understand. But Design Patterns are also have some problems. Sometimes it is called

as Micro Architecture, and it is very small piece of design. This property causes serious

problems to design a whole system architecture. Because it does not show the way how

Copyright c
 1998 by Daisuke SUZUKI

1

to apply a number of Design Patterns to the system architecture, and how to select

suitable Design Patterns. In addition to these, Design Patterns have some problems

that it cannot apply to implementation easily and it doesn't consider a domain and

implementation language. Design Patterns are not contain a domain speci�c or language

speci�c knowledges.

In this paper, we propose a software development style using extended or modi�ed

Design Patterns to solve the already mentioned problems and to make the best use of

Design Patterns. We analyze one of target domains to �nd some issues of Design Pat-

terns and extension or modi�cation policies to adjust to the domain. For this purpose,

we choose for the target domain to \Distributed and Cooperative Software Developmen-

t Environment on Computer Network (aka JIZAI)" that is currently developed in our

OCHIMIZU-laboratory at JAIST. \JIZAI" is a model that de�nes an information repos-

itory that keeps the state of artifacts (products) and decisions, re
ecting the state of

progress precisely. And it is expressed as \A number of autonomous objects, and it's

execution environment". We design and implement some small-scale programs that pre-

cisely express the functions that is needed for \supporting environments for Autonomous

objects". Applying the selected Design Patterns to that small-scale programs, we �nd

that how to extend, how to modify the Design Patterns, and what patterns are needed

to create.

Now we de�ne the \Autonomous Objects". A general de�nition of an autonomy is

de�ned by M. Jackson. He classi�es into �ve categories for the de�nition as following;

� Active : This can do something without any impulse from outer world. Active can be

divided in three sub category; Autonomous : This cannot be controllable from outer

world. So this cannot be a computer software. Biddable : This can control from

outer world. (This can do something actively only if it was ruled.) Programmable

: This can work something only by programmed rules.

� Reactive : This can only react upon impulses from outer world.

� Inert : This cannot do anything automatically.

Our \Autonomous Object" is categorized as Programmable on his categories. But it may

do something autonomously in cooperative work. Because if someone works with my

object, it may change its own states, and this change cannot control by me. So, we call

it \Autonomous Objects".

Then, we design �ve small-scale programs that examines the following functions:

1. Observable objects which is observed by another objects.

2. Objects can pull out another object references which is created or destroyed ran-

domly.

3. Object can composite to another objects dynamically. This function may be de-

signed as speci�cation of Java language.

2

4. Object can have a State Transition Diagram, and it should be encapsulized. This

function may be used with �rst function. This program should build as extension

of �rst program.

5. Referring to distributed objects can be transparently.

The �ve small-scale programs are designed as simpler enough to construct a program.

Now we sort out an issue of Design Patterns, and de�ne the extension policies as below

by analyzing above software designing and programming.

� Encapsulate an object referring process to hide dispersion of objects.

� Consider synchronous message communications or object referring.

� Consider repercussions among with objects to give activeness for a system.

� Consider a method of pattern combination to design entire architecture easily.

� Consider an autonomy of objects.

� Accept a Java speci�c design method or implement method aggressively to provide

an implementation of patterns.

On the design policies as stated above, we de�ne some extended patterns that are

needed for \JIZAI" domain with designs and implementations of above small-scale proto-

type programs. And we also propose some newly patterns to make up for the de�ciency

of Design Patterns. Using this extended patterns as a whole system architecture that is

considered as implementation or domain model, we can develop a software (application,

framework, kits) more easily. Since we specify a target domain (as distributed software

development environment) and implementation language (as Java), we can o�er a some

template code as implementation. And we also examine an availability of the software

development style with extending or modifying Design Patterns. Then we apply the ex-

tended patterns to \JIZAI" system to design a whole system architecture. We �nally

show an availability of the extended patterns.

Now we are challenging to develop a prototype system architecture of \JIZAI" using

our extended patterns to investigate the usability of the patterns. And also we are exam-

ining some issues of extended patterns caused by our modi�cations, and also examining

an applicability of the extended patterns to another domains or another frameworks. And

we need to examine the extended patterns to re�ne. After I design a prototype system

architecture, I will feed back experiences to my extended patterns to re�ne them.

3

