
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title Parallel TRAMを基にした超並列TRAMの実装と評価

Author(s) 平田, 寛道

Citation

Issue Date 1998-03

Type Thesis or Dissertation

Text version author

URL http://hdl.handle.net/10119/1118

Rights

Description Supervisor:二木 厚吉, 情報科学研究科, 修士



Design and Implementation of

Massively Parallel TRAM

based on Parallel TRAM

Hiromichi Hirata

School of Information Science,

Japan Advanced Institute of Science and Technology

February 13, 1998

Keywords: parallel term rewriting, abstract machines, TRAM, Parallel TRAM,

message passing.

Introduction

We can use algebraic speci�cation languages such as OBJ3 and CafeOBJ to write formal

speci�cations of software and/or hardware systems. Algebraic speci�cation languages are

usually executable, we can verify some correctness of the speci�cations and can reason

about some properties of the systems through the speci�cations (semi) automatically by

using computers. Since the speci�cations can be executed as programs in the speci�cation

languages, we may use the speci�cation languages as rapid prototyping tools. Many

algebraic speci�cation languages are based on (order-sorted conditional) term rewriting

systems (TRSs) as a general computational model. To implement the rewrite engines

e�ciently on conventional computers, abstract machines for term rewriting systems are

designed. TRAM (Term Rewriting Abstract Machine) is one of these abstract machines

that adopts the E-strategy as its reduction strategy, which makes it possible to control the

reduction reasonably. Parallel TRAM is a parallel version of TRAM, which adds ability

of parallel rewriting to TRAM. It has the parallel E-strategy that is an extension of the

E-strategy, and can control the parallelism of the reduction suitably.

On the other hand, nowadays, since hardware technologies are enhanced rapidly, and

parallel processing has come into wide use, a workstation cluster has becomes popular to

realize the parallel distributed environments economically. Furthermore, recent massively

parallel computers have been used to various areas, include TRSs.

Copyright c
 1998 by Hiromichi Hirata

1



Considering the above things, it is very important to develop a method of implementing

rewrite engines e�ciently on massively parallel computers and/or workstation clusters.

Our approach, we have massively parallelized TRAM based on Parallel TRAM so that

the rewrite engines can be implemented e�ciently on the massively parallel computers.

In addition, we have implemented the massively parallelized TRAM (Massively Parallel

TRAM) on the Cray T3E which is a massively parallel computer, and have evaluated

the performance of the implementation by executing several benchmark programs on

Massively Parallel TRAM.

Massively Parallel TRAM

The characteristic points of the Massively Parallel TRAM are as follows:

� The Massively Parallel TRAM is designed to be executed on massively parallel

computers and/or workstation clusters.

� The Massively Parallel TRAM adopts the message passing model as its parallel

computational model.

� The simple master/worker model is used as the basic parallel algorithm for Massively

Parallel TRAM.

� The master maintains three pieces of information about workers, and each worker

is has the three states: idle, busy and waiting.

� In the Massively Parallel TRAM, the reference table called INFO is put into the

Strategy List.

Design

Since Parallel TRAM was originally designed to be executed on multiprocessors, its par-

allel computational model was the shared-memory model. However, it is di�cult to im-

plement Massively Parallel TRAM by using shared-memory model on massively parallel

computers and/or workstation clusters. On the other hand, the message passing model

can be applied to many kinds of parallel architecture. Therefore, we have decided to make

use of the message passing model as the parallel computational model of the improved

TRAM.

To manage the load of works on the processors, the simple master/worker model is

used as the basic parallel algorithm. The model is generally used to manage the process

by using message passing. In the model, a parallel work is scheduled to work e�ciently

by a host processor, this host processor is called master, and the processor in the parallel

work is called worker.

2



Worker states

The master has three pieces of information about workers. Each worker has the three

states: idle, busy and waiting. Just after booting Massively Parallel TRAM, all workers

are the idle states. The master holds all the idle workers in Idle Stack. The workers which

is rewriting terms are the busy states. A busy worker may ask idle workers to rewrite

some subterms, and wait to receive the results of the rewriting from the workers. The

workers waiting the results from other workers are the waiting states. The master holds

all the waiting workers in Wait List. Not only idle workers but also waiting workers may

undertake tasks from busy workers.

INFO:Reference Table

Since Parallel TRAM was originally designed to be executed on multiprocessors, inter-

process memory access had no problem. On the other hand, Massively Parallel TRAM is

designed to be executed on massively parallel computers and/or workstation clusters, thus

its parallel computational model is distributed-memory model. Accordingly, an interpro-

cess memory references have some problem; some process must have synchronization for

garbage collection, etc. Because this problem may be serious overhead for the perfor-

mance of term rewriting, we must remove interprocess memory references. We make use

of reference table called INFO that extends the Strategy List.

Conclusion

We have improved Parallel TRAM for massively parallel computers and implemented it

on Cray T3E has 128 processing elements by using the message passing library MPI(the

Message-Passing Interface). We obtained following results:

� We parallelized TRAM very massively by using a concept of Parallel TRAM on

distributed memory computers, without losing the advantages of TRAM.

� Since we improved the message passing model by using INFO, we can collect garbage

asynchronous.

� The maximum performance of Massively Parallel TRAM was 67 times as faster as

the performance of TRAM when it was executed with 127 workers.

3


