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1 Introduction

In shared-nothing parallel database systems, retrieval and update operations are executed

in parallel on each PE where data they access is stored. Therefore, load balancing among

PEs results in improvement of processing performance, and data partitioning strategies

for load balancing become very important[1, 3]. There are many strategies of partitioning

data, such as hash partitioning or range partitioning[2]. However, the hash partitioning

cannot cope with range queries which the range partitioning can, and with clustering

data accesses. On the other hand, the range partitioning needs very large cost to balance

loads when a data skew occurs as a result of updating data. In order to solve these

problems, there have been a study using a parallel B-tree for data partitioning[4]. By

using a parallel B-tree, we cannot only solve the weak points of both hash and range

partitioning strategies, but also speed up data access. But in the previous study on

parallel B-trees, there are problems of updating the parallel directory. If all PEs have

copies of the whole directory for access distribution, simultaneous update accesses to all

PEs reduce throughput of the system. On the other hand, if the directory is placed in

one PE, centralized accesses to the PE cause a process bottleneck.

In this study, a new method of structuring a parallel directory, Fat-Btree[6], is adopted.

This study examines characteristics of the Fat-Btree, compares the method adopting the

Fat-Btree with the ordinary method copying the whole B-tree to all PEs by probability

based performance analyses, and shows that the Fat-Btree structure is better in respects

of both throughput and response time. This study also examines a way for implementing

Fat-Btree, and considers about the alternative ways to implement which are caused by

the di�erence between Fat-Btree and ordinary B-trees.
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2 Fat-Btree

ＰＥ２ ＰＥ３ＰＥ１ＰＥ０

First level Index Page
           (Root Page)

Second level Index Pages 

Final level Index Pages
           (Leaf Pages)

Data Pages

Figure 1: Fat-Btree structure

In Fat-Btree structure, leaf pages (�nal level index pages) of B-tree are distributed

uniformly to all PEs. With regard to index pages (except leaf pages) of B-tree, the pages

which are recursively above the leaf pages stored in the PE are stored in the same PE.

Hence, in the Fat-Btree structure, the subtree from the root page to the leaf pages is

stored to each PE (Figure 1).

In Fat-Btree structure, higher level index pages included in many paths to leaf pages

are copied and distributed to PEs having descendent pages. Thus the root page is copied

to all PEs. However, index pages modi�ed in a directory update are mostly lower level

pages, and those pages are copied to a less PEs. So, the processing cost of directory

update in the Fat-Btree method is expected to be lower than one for the method copying

the whole B-tree to all PEs. Moreover, since whole path from the root page to a leaf

page is stored in one PE, data retrieval can be done in parallel on each PE. It can avoid

concentrating processes on a few PEs.

3 Probability based Performance Analyses

In order to show usefulness of Fat-Btree, this study compares the method adopting Fat-

Btree with the ordinary method copying the whole B-tree to all PEs[4] (say the whole

B-tree copying method) using probability based performance analyses. In the analyses,

the numbers of page accesses and communication messages both which are necessary for

one READ or WRITE operation, are calculated from expected value of the number of
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copies per an index page, rate of incidence of splitting a page, and so on. From these

numbers, the total processing time and response time per one operation are calculated.

Throughput and response time of the system are calculated from them.

The analysis results indicate that the Fat-Btree is mostly better than the whole B-

tree copying method in respects of throughput, unless memory caches are not used, the

number of PEs is not large, and the directory updates are few. In particular, the larger the

numbers of PEs and tuples grow, and the higher the ratio of write operations increases,

on a larger scale the Fat-Btree improve the whole B-tree copying method in respects of

throughput. If the number of PEs grows higher, the whole B-tree copying method needs

high cost for simultaneous update accesses to all PEs, so it reduces system throughput.

On the other hand, the Fat-Btree restricts the PEs involved in the directory updating to

a few PEs, so it has few simultaneous update accesses to many PEs, and it improve the

system's throughput linearly as the number of PEs grows. Moreover, the Fat-Btree stores

fewer directory pages on a PE, therefore it increases hit ratio of cache memory, and it is

better than the whole B-tree copying method also in respects of response time.

4 Implement of Fat-Btree

In Fat-Btree structure, since some child pages of a index page are in other PEs and have

many copies in many PEs, it is a problem that how to link the parent index page with

the child index page. One of the good solutions for the problem is that, physical page

number of a child index page stored in the same PE with parent index page is recorded

into the parent index page, ones of child pages stored in other PEs are recorded into

another pages, and the additional pages are linked from the parent index page.

At making initial Fat-Btree structure from a relation, it is a problem that how to make

the respective di�erent directories in each PE. One of the good solutions for the problem

is that, every PE makes the identical Fat-Btree structure simultaneously from the same

relation, and then each PE deletes respective unnecessary pages in it.

In Fat-Btree structure, an access path spreads over a few PEs, so the page locking

protocol is an important issue. In the case of READ, the Fat-Btree structure had better

adopt a modi�ed B-link structure[5]. Then a lock on the parent page can be released

before a lock on the child page is acquired when the query is taken over between PEs. In

the case of WRITE, an optimistic page locking protocol using IX locks suits to Fat-Btree.

In this protocol, an updater traces access path to leaf page using IX locks, and if the

updater updates the directory as a result of a write process in the leaf page, the updater

redos its tracing from the root page using SIX locks.

5 Conclusions

The results of our probability based performance analyses indicate that the larger the

numbers of PEs and tuples grow, and the higher the ratio of write operations increases,

on a larger scale the Fat-Btree improve the ordinary method copying the whole B-tree
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to all PEs in respects of throughput. Moreover, our Fat-Btree method improves response

time as well as the throughput. We presented about these analysis results in IEICE

Special Interest Group of Data Engineering[7].

This study also examined the way to implement Fat-Btree, and considered about

structures of an index page, methods for making the initial Fat-Btree structure, and page

locking protocols. We will present about these consideration about implement Fat-Btree

in Data Engineering Workshop(DEWS'98).

Future works could involve: we need to implement Fat-Btree indeed, and to do more

detailed performance analyses that take account of waiting time for locking and real

number of copy pages.
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